

State Table Verification
for Sequential Circuit

Example : Consider FSM

(ABCD)
State table /
present| Input \
state |x=0 x=1 (AB)((ABCD)
A B0 D,0
B A0 BO Homogeneous component
1 A0 because
1 C,0 means that two states

gotoD

Algorithm to Generate a Distinguishing Sequence

Distinguishing sequence - path from root to a trivial
vector.

A distinguishing tree Is a successor tree Iin

which a node becomes terminal if

1. Non-homogenous components in an uncertainty
vector are the same as on the previous level

2. Uncertainty vector contains a homogeneous
non-trivial component (does not have to be
a homogeneous vector)

3. Uncertainty vector is trivial

Example : continuation of the same FSM
State table

present| Input
state |[x=0 x=1
A B,0 D,0
B A0 B,0 (ABCD)
C |D1 AD 0 1
D D,1 C,0 (AB)(DD) (ABCD)
L
—(AB)(DD) (BD)(CC)
0
(A)(D)(DD) O(BC)(AA)1

(A)D)(EE) (AB)(DD)

No distinguishing
sequence

Example : Consider FSM, different output vectors
for different initial state

Each input state responds to 10
with different output sequence

v

Input sequence X =1,0

ol Initial | input

State ta_ € state Ix=1 x=0
present| input A——C1°A1

state |x=0 x=1 B D,1 D,0

A A0 CL1 C [C0 A1

B |B0 D1 D |B0 B0

C Al C,0

D |D,0 B0 so X=1,0 distinguishing

State Table Verification
for Sequential Circuit

Transfer sequence - takes machine from one state
to another

Example : Consider previous FSM

We cannot
reach A or C
/ 1\

Not strongly connected FSI\/I

State Table Verification
for Sequential Circuit

Example : Consider the following FSM

State table
present| Input
state [x=0 x=1
A B,1 C,0
B A0 D,1
C B,0 AOQO
D C,l Al

Example : we get the transfer tree

State table
present| Input U
state |[x=0 x=1 ‘
A B,1 C,0 ‘
B A0 D,1
C B,0 AOQO 1/1 o p/0
D Cl Al 1/1
1/0
;)
¥ ® .
A D
o\ YN
5 c ¢ A TogettoCwecanselectx=1,0

State Table Verification
for Sequential Circuit

Synchronizing sequence takes machine to the
specific final state regardless of the output or
Initial state - does not always exists

Example :
Algorithm to generate synchronizing sequence :

Consider the previous machine with synchronizing
sequence X=1,1,0

State table

.. Input
Synchronizing sequence E{fﬁ:”txz'gpizl
A B,1 C,0
B A0 D1
Example : C |B0 ADQ
(ABCD) D |C1 Al
o T
(ABC) (ACD)
2N o
(AB) (ACD) (BC) (AC)
0N ! A
(AB) (CD) (AB) (AD) (B) (AC)

/ For this tree there are no more
Synchronizing sequenc synchronizing sequences

leads to this state

Designing Checking Experiments

Machine must be strongly connected & diagnosable

(1.e. have a distinguishing seqguence)

1. Initialization (take it to a fixed state[s])
a) Apply homing sequence & identify the

current state

b) Transfer current state to S

2. ldentification (make machine to visit each state
and display response)

3. Transition verification (make every state transition
result checked by distinguishing sequence)

Designing Checking Experiments

Example : Consider FSM

1. Inttialization:
State table

: Successor tree
present mput
table |x=0 x=1 (ABCD)
A [B.1 C0 0
B |A0 Dl (BC)(AB) (AC)(AD)
C |BO AQ o 1
D C1 Al (AB)(A)(B) (A)(C)(D)(D)

Homing sequence x = 0,1

Designing Checking Experiments

Example (cont.) :
Response Table

State table
present| input Initial Response | final
table [x=0 x=1 states (to0 1 states
A |B1 CO A B1-D,1| D
B A0 D1 B AO C0O | C
C B,0 AO C BO D1 | D
D Cl Al D Cl A0 | A

Designing Checking Experiments

take 1t to a fixed state
2. ldentification: recall

Analyze the results D O A Generates

10 on output
time 12345%8/9/1011

input 04 01%90%¥0101

state \D A C D

outputf 1 1 I-0 1 0 0 01 10

Designing Checking Experiments

3. Transition verification:
Check transition from A to B with input 0, then
apply distinguishing sequence 01

time 1 2 3
Input 0 01
state |A B C
output 1 00

Designing Checking Experiments

Example : Check transition from C to B with
iInput 0 and from C to A with input 1, and so on.
The entire checking test

time 123456 7 8 91011
Input 00100110100
state -B C—B C-A D-C
output 1 0000001110

Designing Checking Experiments

(cont)
time 12 13 14 15 16 17 18 19 20 21
Input 1 1 01 01 0 0 0 1
state D—A D B —A
output 1 1 1 1 1 0 1 0 11
time 22 23 24 25 26 27 28 29 30 31
Input 1 1 01 01 0 1 0 1
state D A—-C D B D

output

1 001 1 01110

DFT for Sequential Circuits

Critical testability problems

1.

2.

Noninitializable design - change design to have
a synchronizing sequence

Effects of component delays - check for hazard &
races in simulation

Nondetected logic redundant faults - do not use
logic redundancy

Existence of illegal states — avoid; add transition
to normal states

Oscillating circuit - add extra logic to control
oscillations

DFT for Sequential Circuits

Checking experiments can not be applied for
FSM without a distinguishing sequence

Modification procedure for such FSM:

|. Construct testing table

contains states & input/output pairs,

contains products of present & next
states with the rule that (state)*(-) = (-)

I1. Construct testing graph

DFT for Sequential Circuits

state table
present| Input
state | x=0 x=1
A A0 B0
B A0 CO0
C Al D,
D Al AQ

Testing table for machine

present

Input/output

state 0/0 0/1 1/0 1/1

AB
AC
AD
BC
BD
CD

HE

Example (continued) e

state x=0
A0
A0
Al
Al

|1 . Construct testing graph

OO w>

An edge X /Z, exists directed from present state
S;S; to next states S, S, If S, S, (k # 1) Is present In
row S;S; under X /Z,

Example:

for our machine @ @®

AB)
we have; Uﬁ |1/
AD)-

o
S
g %
S

1/0

x=1
B,0
C,0
D,0
A0

Example (continued)

present input Now we can modify the
state | x=0 x=1 graph by adding output(s)
A A0 B,0
B A0 C0
C Al DO First introduce new concept
D Al AQ of definitely diagnosable

Example: o
for our machine ~ @B -BC) Ac
we have: 1/0 |1/0 1/({ 31/0

100

DFT for Sequential Circuits (cont)

A machine is definitely diagnosable If its testing
graph has and there are
(1.e. no circled states In testing table)

In order to make machine definitely diagnosable
(up to k = log (# states))

DFT for Sequential Circuits

. (with added output)

present, Input Testing graph

State x=0 x=1

A,00 B,01 @ 1/01=

A,01 C,00
A,10 D,00

A1l A01 1/00

Now the machine has a distinguishing sequence

OO >

After machine is
apply checking experiment procedure
to test It.

Random Testing

Reduce computation time

1. Random sequence Is stored as a test when it can
detect fault, then this fault is detected from the
fault list and another random sequence Is

checked
2. Output of CUT (circult under test) Is compared
with this “golden unit” Is it good for
Two approaches : FSMs?

-<-/t

Sources

o Starzyk, Ohio University

