RANDOMIZED PARALLEL ALGORITHMS FOR THE
HOMING SEQUENCE PROBLEM

B. Ravikumar and X. Xiong
Department of Computer Science and Statistics
University of Rhode Island
Kingston, RI 02881, U.S.A.

({ravi,xiong}@cs.uri.edu)

Abstract — Homing sequences play an important
role in the testing of finite state systems and have been
recently used in learning algorithms due to Rivest and
Schapire [17] and Freund et al. [4]. It is well-known
that every minimal DFA has a homing sequence of
length O(n?) which can be constructed sequentially in
time O(n®). But no efficient parallel algorithm was
known for this problem. In this work, we present two
RNC algorithms of time complezity O(log?n) for this
problem. We show that one of our RNC' algorithms
produces a homing sequence of length O(n log®n) for
almost all DFA’s with n states using a random model
of Traktenbrot and Barzdin. We also discuss connec-
tions between the homing sequence problem and other
problems in the field of hardware fault-testing and pro-
tocol verification.

1. INTRODUCTION

Locating the current state in a finite-state system is
a fundamental problem in map-learning and robotics.
This problem has many variations. The version we
consider in this paper is the following: The transition
function of the system is known, but the current state
is not known. The states of the system are not ex-
ternally visible but each state produces a visible out-
put. The problem is to find an input sequence z such
that the output sequence on z uniquely determines
the state reached after applying . An input sequence
that achieves this goal is called a homing sequence.
More precisely, suppose ¢ is the transition function
and A is the output function of a deterministic finite
automaton (DFA). x is a (preset) homing sequence
if for any two states ¢, ¢/, if A(¢,z) = A(¢’,) then
d(q,2) = d(¢',). A homing sequence brings a DFA
to a known state and hence it is usually applied to a

DFA before testing it (e.g. in protocol verification or
fault-detection). Some recent applications of homing
sequence can be found in the following list of papers:
[17], [14], [4], [1] and [11]. These applications span a
wide range of topics: exploration of an unknown en-
vironment and map learning [17], [4], [1], hardware
fault-detection [14], reverse-engineering of protocols
[11] etc. In view of the wide range of applications, it is
of interest to design efficient algorithms to construct
a homing sequence. In this work, we present efficient
randomized parallel algorithms for this problem.

Every minimal DFA with n states has a homing se-
quence of length O(n?) and there is a well-known se-
quential algorithm to find a sequence of length O(n?)
in time O(n?). It is also known that there are minimal
DFA’s with n states in which the shortest homing se-
quence is of length Q(n?) and therefore the sequential
algorithm referred to above is essentially optimal (in
the worst-case). However, this algorithm seems inher-
ently sequential and designing a parallel algorithm for
this problem seems hard. The best deterministic par-
allel algorithm for this problem (with a polynomial
bound on the number of processors) is presented in
[15] and has time complexity O(y/n log?n). In this
work, we present a randomized parallel algorithm of
time complexity O(log?n) using a polynomial number
of processors.

The remainder of the paper is organized as follows.
In section 2 we introduce the basic definitions and ter-
minology. In section 3, we present a randomized par-
allel algorithm for the homing sequence problem and
show that the problem is in RNC. In section 4, we
present another parallel algorithm. Although this al-
gorithm is not an RNC, it is very efficient on almost all
input instances. In section 5, we discuss some prob-
lems related to the homing sequence problem and con-
clude with some open problems.

2. DEFINITIONS AND PRELIMINARIES

A finite automaton (DFA) or a finite state system
M is a b-tuple M = < Q,1,0,6, A > where @ is a
finite set of states, 7 is a finite set of input symbols, O
is a finite set of output symbols, § : Q x I — @ is the
transition function and A : @ x I — O 1s the output
function. Note that we use the Mealy machine model
but all our results hold for Moore machines as well.
Following [17], we will use the convenient abbreviation
q < & > to denote A(q,z) and qz to denote d(q,z)
throughout. If R C @ and z € ©*, we define §(R, z)
={d(r,z)|r € R}. As above, we abbreviate §(R, z) by
abbreviated Rz. In a similar way, we define A\(R, z)
and abbreviate it R < z >. A string z is said to
be a distinguishing string for two states p,q € @ if
p<e>Ftqg< x>

Let M = < Q,1,0,5,A > be a DFA. A (preset)
homing sequence for machine M is a string z such
that for any p,q € A, if p <2 >= ¢ < & > then pxr =
qz.

Given below is an example of a DFA M and a hom-
ing sequence for M.

Response to the Sequence 010

Initial State | Response to 010 Final State
A 000 A
B 001 D
C 101 D
D 101 D

The table shows that 010 is a homing sequence for
M. Note that although 010 produces the same out-
puts from states C' and D, the definition of a homing
sequence is not violated since the same state is reached
in both cases. On the other hand, 01 is not a hom-
ing sequence for M since A < 01 >= B < 01 > but
A01 # BO1.

The study of homing sequences was initiated by
Moore in the classical work [12]. Early work by him
and others showed the existence of a homing sequence
of length O(n?) for any minimal DFA M with n states.

A sequential algorithm (taken from [17]) to construct a
homing sequence is presented in procedure HSEQ. In
line 3, the algorithm requires a distinguishing string
z for the states ph and gh. We assume that distin-
guishing strings for all pairs have been already com-
puted and stored in a table. These strings can be ob-
tained by modifying the DFA minimization algorithm
[6] and the existence of such a string is guaranteed for
all pairs of states by the minimality of M. In fact,
such a modified minimization algorithm can find the
shortest distinguishing string for all pairs of states in
time O(n?). Tt is well-known (see e.g. [6]) that for
any pair of inequivalent states in an n state DFA, a
distinguishing string of length at most n — 1 exists.
It is also not difficult to see that the number of it-
erations of the while loop is bounded by n — 1 since
the quantity | < h > | increases by at least 1 after
each iteration and |@ < h > | is upper-bounded by
n. Thus the length of the output A is bounded by
(n — 1)%2. Tt is possible to implement this algorithm
so that its sequential time complexity is O(n?) using
standard techniques. In general the bound O(n?) on
the length cannot be improved since examples of DFA
are known whose shortest homing sequence is of length
Q(n?) [7].
procedure HSEQ;
begin

h + ¢

while 3 p,g € Q s.t. p< h >=qg < h > and ph # qh do

begin

Let = be a distinguishing string for states ph and gh;
h « hz;

end;

output(h);
end

In this paper, we present a parallel algorithm for
the homing sequence problem and analyze it on the
PRAM model. We assume that the readers are fa-
miliar with this model. For a thorough discussion of
PRAM with a large number of examples, we refer the
reader to [8]. In the next paragraph, we describe a
randomized PRAM model very briefly and define the
classes NC and RNC.

A PRAM is a collection of sequential Random Ac-
cess Machines (RAM) which interact through a shared
memory. Each processor has its program and local
memory as well as access to shared memory. Dur-
ing each instruction cycle, each processor reads the
data from its local or shared memory, performs an in-
struction and stores the result in its local memory or
shared memory. Various modes by which concurrent
read/write access are permitted give rise to different
models such as EREW, CREW, common CRCW, pri-
ority CRCW etc. The details can be found in [8]. A

PRAM algorithm that solves a problem II is said to
have a processor bound P(n) if the number of proces-
sors used by the algorithm to solve instances of size n
of TT is bounded by P(n). Its time complexity T'(n) is
defined as the maximum time taken by any processor
to solve any instance of size n. An NC algorithm is a
PRAM algorithm in which the number of processors is
bounded by a polynomial in the problem size and the
time bound is O(log"n) on inputs of size n (with a con-
stant k). A randomized parallel algorithm is a PRAM
algorithm in which the instruction set includes an in-
struction like X <+ TOSS. This instruction randomly
assigns to X the value 0 or 1 with equal probability. A
randomized parallel algorithm (just like a randomized
sequential algorithm) may produce different results on
the same input since the computation sequence is gov-
erned not only by the input but also by the random
numbers produced. A randomized algorithm is said
to solve a problem with high probability of correctness
if on any input of size n, the probability of error is
bounded by 1/p(n) where p(n) is a polynomial in n.
Note that this kind of correctness bound is stronger
than a mere constant bound (such as error bounded
by 0.0001) since the error bound tends to 0 as the
problem size increases. But there is an even stronger
requirement (ultra-high probability) in which the error
bound is required to be ¢=" for some ¢ > 1. The re-
sults of this paper can be easily translated so that the
resulting algorithms are correct with ultra-high prob-
ability. But in order to compare different algorithms,
we should keep one model consistently and we choose
the high probability model. Finally, we define an RNC
algorithm for problem II as a randomized parallel al-
gorithm that uses a polynomial number of processors
on all inputs, has a poly-logarithmic time complexity
on all inputs and 1is correct with high probability. It
is possible to add an additional checking step so that
our algorithm is always correct (a Las Vegas type al-
gorithm). In this case, the time complexity becomes a
random variable and a poly-log time bound will hold
with a high probability.

3. A RANDOMIZED PARALLEL
ALGORITHM

In this section, we present an RNC algorithm for
the homing sequence problem. The algorithm pre-
sented below is based on a similar algorithm for syn-
chronization sequence due to Eppstein [3].
Algorithm 1:

Input: A DFA M = < Q,1,0,0,X > where Q =

{1,2,...,n}, and an integer m. (m is related to the

error tolerance of the algorithm. See the discussion
below.)
Output: A string h over the alphabet I. (h will
be a homing sequence of M with probability at least
1—¢=™/"" for some ¢ > 1.
Step 1. Generate a sequence of pairs of integers
(i1,71), (i2,J2),--; (4m,Jm) where each iy and jj is
a random integer between 1 and n, for all &.
Step 2. For each (7,) do in parallel
if (i,7) is a pair in the above sequence, find a

distinguishing sequence d; ; for the states ¢ and j.
Step 3. Output the string d;, j, ds, ;.di, 5, di,, 5.

First we show the correctness of the algorithm (in
a probabilistic sense).

Theorem 1. The probability that h is a homing se-
quence in Algorithm 1 is at least 1 — ¢=™/"" for some
c> 1.

Proof. (sketch) For simplicity, we assume that the
DFA M is a permutation machine, i.e. for every
state p € () and each input a € ¥ there is exactly
one state p’ such that p'a = p. (With minor mod-
ifications, the proof can be extended to the general
case.) We view the string h as being created by suc-
cessively concatenating an z; ; in m stages and let A,
= X4, j1 %iyja---Fi, 5. Define an equivalence relation
on @ (with respect to h,) as follows: p is equivalent
togqifp < h, >=¢q < h, > and let @1, ..., Qi be
the partition of @ induced. Let Q) = {qh,|q € Q:}.
Since M is a permutation machine, |@Q;] = |Q}]. Let
|Q:| be n; so n1 +...ng = n. Define a random variable
X (r) as number of distinct outputs at time r. Our
goal is to estimate a lower bound on the probability
that X(r+1) > k given that X (r) = k. We do this by
considering a Markov chain P = [p;;] (of order n) such
that p; ; is an estimate of the probability that X (r+1)
= j given that X (r) = i. Clearly, X(r + 1) > k given
that X(r) = kif ¢;,,, and q;,,, both belong to @Q; for
some ¢. The probability that this happens is given by

ni+ni+..+nl—-n 2
2 n(n—1)

In Cauchy-Schwartz inequality:

(Eeo) = (£4) (5

i=1 i=1 i=1

choosing z; = n; and y; = 1 we get the inequality

(n1+n2+...+nk)2§(n%—|—n§+...—|—n?)~k

Thus the above probability is lower bounded by
(Tl 2_knk) n(n2—1) = (77, - k)/k(n - 1)
Define the Markov chain P as follows:

ey ifj=i+1
pij = 1—% if j= 1
otherwise

From the foregoing discussion it is clear that the prob-
ability that h,, is a homing sequence is lower-bounded
by [P™]1,». In the remainder of the proof we will ob-
tain a lower bound on [P™]; , using the well known
connection to the eigenvalues of the matrix P.

The eigenvalues of P are 1, n(n —2)/(n —1)%, ...,
n/2(n — 1) and 0 (in decreasing order of magnitude).
The second eigenvalue is n(n — 2)/(n — 1)%. It is not
difficult to show that [P™]; , is given by:

for some d > 0. From this, we can show that
[Py > 1— e/

for some ¢ > 1. This completes the proof. e

Next we will show that Algorithm 1 can be imple-
mented as an RNC algorithm.

Theorem 2. Algorithm 1 can be implemented on a
probabilistic PRAM with time bound O(log?n) using
O(n") processors and the length of the output pro-
duced will be O(n3log n) for all inputs of size n. The
algorithm is correct with (polynomially) high proba-
bility.

Proof. We will assume that each processor of the
PRAM has a source of randomness with which it can
produce a sequence of unbiased, independent random
bits. We will also assume that the randomness sources
of different processors are independent of others. (In
practice, of course, we will use a pseudo-random gen-
erator as a substitute for the source and provide differ-
ent seeds for each processor.) With this assumption,
Step (1) can be easily implemented in O(log n) time
using O(m) processors as shown below. (Later we will
choose m to be O(n%log n); clearly, m is within the
number of processors available.) Processor k will gen-
erate two sequences of log n bits and these sequences
will define two integers (in binary) i; and ji between
1 and n.

Step (2) is implemented as follows. We will describe
an algorithm that finds d; ; a shortest distinguishing
string for all pairs of states (¢,7). This is done using
a modified matrix multiplication. Let M be the in-
put DFA. Define an associated n x n matrix 7" whose
entries are letters over I U {¢} (where ¢ is a special
symbol not occurring in 7) as follows. Assume that 7 is
ordered. Tj ; is the first letter a € I such that ia = ja
or i < a>#j < a>, if such a exists, else it is ¢. We
define matrix multiplication as follows: Let A, B be
two n X n matrices. Define AB as the product matrix
(also n x n) as: [AB]; ; is the string a; +.b; ; where ¢t is
the smallest integer such that both a; ; and b; ; are not
é. (If no such t exists, then define [AB); ; as ¢.) It is
easy to see that the smallest k for which [T*]; ; is not
¢ is the length of the shortest distinguishing string for
the state pair (¢,7). Thus the shortest distinguishing
strings for all pairs of states can be extracted from the
matrices T, T2, T3, ..., 7"~ 1. These can be computed
in O(log?n) using O(n") processors.

Step (3) is easy to implement within the available
resources. To obtain the claimed error bound and the
output length, set m = n%log n. Then by Theorem
1, the error probability will be at most 1 — 1/en (for
some constant ¢) and the length of the output will be
O(n®log n). This is because the pairwise distinguish-
ing strings found in Step (2) are the shortest ones and
thus their lengths are bounded by (n — 1) [9]. This

completes the proof. e

The performance of an NC (or RNC) algorithm for
an optimization problem can be measured by three
criteria: (i) parallel time bound, (ii) processor bound
and (iii) the quality of the solution found. The algo-
rithm presented above has a good time bound, but is
not satisfactory on the other measures. The processor
bound O(n7) is too large to make the algorithm practi-
cal. But this is a common feature of any parallel algo-
rithm that depends on some variant of the transitive-
closure problem as a subroutine. The output length
O(n®log n) is much larger than O(n?) length guaran-
teed by the simple sequential algorithm. In section 4,
we will improve on these aspects.

4. AN IMPROVED RNC ALGORITHM

In this section, we will show how to get improved
performance results for Algorithm 1 (and its varia-
tions) that holds for most of the instances. In order
to present such results, we first introduce an average-
case model. The standard way of creating a random

instance of a DFA is to choose both § and A functions
randomly. A stronger model was introduced by Trak-
tenbrot and Barzdin [18]. In their model, only the
output function A is chosen randomly. An adversary
chooses the transition function subject to the only con-
dition that all states are reachable from the start state.
Let G be the graph thus chosen by the adversary. The
probability distribution is defined over all DFA’s Mg
which can be derived from this automaton graph by
randomly selecting the output function. Throughout
this section, the performance bounds of the algorithms
are based on this stronger model. Clearly any upper
bound on this model implies a matching bound in the
weaker model in which both § and A are chosen ran-
domly.

Let P, . be any predicate on an n-state automaton
which depends on n, a confidence parameter € (where
0 < e < 1). We say that uniformly almost all au-
tomata have property P, . if the following holds: for
all ¢ > 0, for all n > 0 and for any n-state under-
lying automaton graph G, if we randomly choose A,
then with probability at least 1 —¢, the predicate P, .
holds.

Lemma 3. For uniformly almost all automata with
n states, every pair of inequivalent states has a distin-
guishing string of length at most 2 lg(n?/¢).

This lemma is Theorem 2 in [4]. Our next result is
that Algorithm 1 can be implemented as a PRAM al-
gorithm with better processor bound and shorter out-
put length uniformly on almost all DFA’s.

Theorem 4. Algorithm 1 can be implemented on
a probabilistic PRAM so that almost uniformly on
all input DFA’s with n states, its time complexity is
O(log?n), number of processors used is O(n?) and the
output length is O(n%log?n). The algorithm will be
correct with high probability.

Proof. (sketch) The essential idea behind the proof
is that Step (2) (which is the most expensive step) of
Algorithm 1 can be implemented in a more econom-
ical way on almost all instances. The new algorithm
is slower (in the worst-case), and uses fewer proces-
sors. But it has a good time complexity on almost
all instances. The idea is to modify the algorithm
in Figure 3.8 of [6] and parallelize it. First we de-
scribe the modification needed so that the algorithm
will find distinguishing strings d; ;. (The present al-
gorithm is aimed at minimizing a DFA, not to find
pairwise distinguishing strings.) When a state pair

(,7) is placed in the list for a state pair (¢, j), we
also store the symbol on which the transition between
(1,7) and (¥, j') occurred. The original algorithm’s re-
cursive marking step (5) in which a state pair (7, j) is
marked is replaced by identifying d; ; as follows. Sup-
pose (4, j) occurs in the list (¢, j/). Inductively assume
that d;» ;» has been determined already. Then d; ; is
ad; j+ where a is the symbol stored for the pair (7, 7).
Correctness of the algorithm is easy to see: If there is a
transition on a from (4, j) to (¢, j) and if i and j' are
distinguished by z then ¢ and j are distinguished by
ax. This can be implemented in parallel by a pointer
jumping using string concatenation as the basic oper-
ation. The algorithm is parallelized as follows. The
for loop beginning in line (2) is implemented in par-
allel for all pairs (p,¢) in Fx For Q—F xQ—F and
s repeated t times for a chosen value of ¢t. Note that
this redundancy is needed because of the parallelism.
We call the new loop introduced as the outer loop. We
can show by induction on 7 that a distinguishing string
for all states (p, ¢) that have a distinguishing string of
length at most ¢ would have been found after the i-th
iteration of the outer loop. The algorithm is repeated
for ¢ steps until no new state pair is marked during the
t-th iteration. By Lemma (3), for almost all DFA’s on
n states, ¢ is O(log n). The inner loop can be imple-
mented in O(log n) time using O(n?) processors using
pointer jumping as indicated above. The rest of the
details are easy to fill in. This completes the sketch of
the proof. e

It should be noted that the length of the output
claimed above is obtained by averaging over all pos-
sible random moves of the randomized PRAM algo-
rithm as well as over the random choices of the A
function. The other resources claimed are averaged
only over the random choices of A function.

We can improve Theorem 4 even further. We can
design a randomized PRAM algorithm which has the
same bounds as in Theorem 4 except that uniformly
on almost all instances, the output produced will be
of length O(nlog®n). In order to achieve this result,
we need to modify Algorithm 1. We also need a new
concept called a local homing sequence introduced in
[4. Let M = < @,I1,0,5,\A > be a DFA where @ =
{1,2,...,n}. A string z is said to be a local homing
sequence for state ¢ if for any state j € Q, 1 < x >=
j < x > implies iz = jz. Local homing sequences
play a central role in [4]. They are also important
in the deterministic parallel algorithm for the homing
sequence problem presented in [15]. We now present
Algorithm 2.

Algorithm 2:
Input: A DFA M = < Q,1,0,6,A > where @) =
{1,2,...,n}.
Output: A string h over the alphabet 7. (A will be
a homing sequence uniformly on almost all instances
with a high probability.)
Step 1. Generate a sequence of integers iy,..., i,
where m = O(n log n).
Step 2. For all ¢ do in parallel
if i occurs in the above list, obtain a local homing
sequence [; for state 7.
Step 3. Output L;,...L; .
Note the two main differences between Algorithms
1 and 2. In Algorithm 1, a larger number (namely
n? log n) of pairwise distinguishing sequences were
concatenated. In the latter, fewer (i.e. n log n) local
homing sequences (which possess stronger properties
than pairwise distinguishing sequences) are concate-
nated. The proof of the next result is left for the final
version.

Theorem 5. Algorithm 2 can be implemented on
a probabilistic PRAM so that uniformly almost on
all input DFA’s with n states, its time complexity is
O(log*n), the number of processors used is O(n?) and
the length of the output produced is O(n log*n). The
algorithm will be correct with high probability.

5. RELATED PROBLEMS

Some sequences closely related to a home sequence
are the synchronizing sequence, the distinguishing se-
quence and the checking sequence defined as follows:
A string z is a synchronizing sequence for a DFA M
if 6(q,z) = d(p,) for any two states p,q of M. A
string z is a distinguishing string for M if for any pair
of states p,¢, p < > =g < 2 > impliesp =¢q. A
string z is a checking sequence for a DFA M if for
any other DFA M’ with fewer than or equal number
of states the following holds: If p is a state in M and
q is a state in M’ then p < z ># ¢ < z >. A
minimal DFA need not have any of these sequences.
But if a synchronizing sequence exists, there must be
one of length bounded by O(n®). With some con-
nectivity assumptions, a checking sequence of length
O(n?) can be shown to exist. A polynomial time algo-
rithm (which is similar to the algorithm procedure
HSEQ) to find a synchronizing sequence (if it exists)
has been presented in [3]. The problem of design-
ing a deterministic NC algorithm for synchronizing

sequence was left open by Eppstein [3]. In the case of
a distinguishing sequence, even 1f it exists, 1ts length
can be exponential in n. Further, even the decision
problem of determining if a given DFA has a distin-
guishing sequence is PSPACE-complete [10]. There
is a simple NC' reduction from the homing sequence
problem to the synchronizing sequence problem. Our
parallel algorithms for the homing sequence problem
readily translate into parallel algorithm for the dis-
tinguishing sequence problem in the special case of
permutation DFA’s in which for every state and every
input symbol there is exactly one incoming arc into
that state labeled by the symbol. A randomized poly-
nomial time algorithm for finding a checking sequence
was presented in [10]. This algorithm can be easily
modified into an RNC algorithm.

There are three analogous problems of comput-
ing the adaptive counterpart of homing, synchronizing
and distinguishing sequences. See [9] for a definition of
the adaptive versions of these sequences. Since a pre-
set sequence 1s also an adaptive sequence, the upper
bounds automatically hold in each case. In the case
of distinguishing sequences, Lee and Yannakakis [10]
present a polynomial time algorithm to determine if an
adaptive distinguishing sequence exists and if it does,
to find one. This also implies a polynomial bound on
its length (which is defined as the height of the tree).
At this point, we do not even know how to solve this
decision problem efficiently in parallel; it may well be
P-complete. Finally, we note that a deterministic NC
algorithm is open even for the local homing sequence
problem. This collection of problems thus indicates
the importance and usefulness of randomness as a tool
for parallel algorithm design.

6. CONCLUSIONS

In this paper, we presented randomized parallel
(RNC) algorithms for finding a homing sequence in
a given DFA. In a companion paper [16], we present
the implementation of different sequential and parallel
algorithms for this problem. Our preliminary tests in-
dicate that it is hard to achieve a good speed up using
parallel processors in the worst-case, but it is achiev-
able when the instance 1is selected randomly according
to the Traktenbrot-Barzdin model. If both A and §
functions are selected at random, then the parallel pro-
gram performs really well; it can even handle DFA’s
with millions of states. Although these programs are
not directly based on the algorithms presented in this
paper, they use randomization and some ideas from

this work.

Our work on the homing sequence is part of a
larger project in which we plan to develop good al-
gorithms and programs (both sequential and paral-
lel) for a number of testing problems. This includes,
besides homing sequences, the synchronizing, distin-
guishing and checking sequences - their preset as well
as adaptive versions. We are interested in the theo-
retical problem of (provably) efficient algorithm design
as well as practical implementations which can solve
instances arising from real applications. As far the
homing sequence problem, it is not clear how to make
further progress on the theoretical front. The only
remaining problems are the design of a deterministic
NC algorithm and of an algorithm with guarantee on
the length of the output (e.g., relative to the length
of the shortest homing sequence). These problems ap-
pear to be difficult. But much remains to be done on
the practical implementation.

References

[1] M. A. Bender and D. K. Slonim, “The power of
team exploration: Two robots can learn unla-
beled directed graphs”, 35th Annual IEEE Sym-

postum on Foundations of Computer Science, pp.

75-85 (1994).

[2] S. Cho and D. Huynh,“The parallel complexity
of finite-state automata problems”, Information
and Computation, Vol. 97, No. 1, pp. 1-22 (1992).

[3] D. Eppstein, “Reset sequences for monotonic au-
tomata”, SIAM Journal on Computing, Vol. 19,
No. 3, pp. 500-510, (1990).

[4] Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R.
Schapire and L. Sellie, “Efficient Learning of typ-
ical automata from random walks”, Proc. of 25th
Annual ACM Symposium on Theory of Comput-
ing, pp. 315-324 (1993).

[5] G. Holzmann, Design and validation of protocols,

Englewood Cliffs, NJ, Prentice-Hall (1990).

[6] J. Hopcroft and J. Ullman, Introduction to Au-
tomata Theory, Languages and Computation,

Addison-Wesley Inc. Reading, MA (1979).

[7] T. Hibbard, “Least upper bounds on minimal ter-
minal state experiments for two classes of sequen-
tial machines” | Journal of the ACM, Vol. 8, pp.
601-612, (1961).

[8] J. JaJ4, An Introduction to Parallel Algorithms,
Addison-Wesley Inc. Reading, Mass. (1992).

[9] Z. Kohavi, Switching and Finite Automata The-
ory, McGraw-Hill Publishers Inc. Second Edition
(1978).

[10] D. Lee and M. Yannakakis, “Testing finite-state
machines: state identification and verification”,
IEEFE Transactions on Computers, Vol. 43, No.3,
(1994).

[11] D. Lee and M. Yannakakis, “Testing finite state
machines: fault detection”, Journal of Computer

and System Sciences Vol. 50, No.2, (1995).

[12] E. F. Moore, “Gedanken-experiments on sequen-
tial machines”, pp. 129-153, Automata studies,
Ed: McCarthy and Shannon, Princeton Univer-
sity Press, Princeton, NJ (1956).

[13] C. Papadimitriou and M. Yannakakis, “On com-
plexity as bounded rationality”, 26th Annual
ACM Symposium on Theory of Computing pp.
726-733 (1994).

[14] 1. Pomeranz and S. Reddy, “Application of hom-
ing sequences in the fault-detection of sequen-
tial circuits, IEEE Transactions on Computers,

(1994).

[15] B. Ravikumar, “A deterministic parallel algo-
rithm for the homing sequence problem” (unpub-
lished manuscript).

[16] B. Ravikumar and X. Xiong, “Implementing se-
quential and parallel programs for the homing se-
quence problem” (unpublished manuscript).

[17] R. L. Rivest, and R. E. Schapire, “Inference of
finite automata using homing sequences”, Infor-
mation and Computation, Vol. 103, pp. 299-347,
(1993).

[18] B. A. Traktenbrot and Ya. M. Barzdin, Finite Au-
tomata: Behavior and Synthesis, North-Holland
Publishing Company, Amsterdam (1973).

