Homing and Synchronizing Sequences

Sven Sandberg

Information Technology Department Uppsala University Sweden

Outline

- 1. Motivations
- 2. Definitions and Examples
- 3. Algorithms
 - (a) Current State Uncertainty (used in algorithms)
 - (b) Computing Homing Sequences
 - (c) Computing Synchronizing Sequences
- 4. Variations
 - (a) Adaptive homing sequences
 - (b) Computing shortest sequences
 - (c) Parallel algorithms
 - (d) Difficult related problems
- 5. Conclusions

Motivation for Homing Sequences: Testing [13]

• Learning algorithms:

experiment with a given a black box automaton until you learn the contents

- Protocol verification
- Hardware fault-detection

Motivation for Synchronizing Sequences: Pushing Things

[12]

Mealy Machines

Deterministic, *total*, finite state machine with outputs on transitions

Inputs: $I = \{a, b\}$ Outputs: $O = \{0, 1\}$ States: $S = \{s, t, u, v\}$

 $\begin{array}{c} \text{Mealy machine: } \mathcal{M} = \langle I, O, S, \delta, \lambda \rangle \\ & \text{Inputs, } I \underbrace{-}^{I} \underbrace{-}^{$

Synchronizing Sequences

Intuitive Definition

- 1. Initial state is unknown.
- 2. Apply a sequence $x \in I^*$ of inputs,
- 3. afterwards only one final state is possible

If this is possible, x is a synchronizing sequence

Formal Definition

 $x \in I^*$ is synchronizing iff $|\delta(S, x)| = 1$

Example: Getting Home by Subway in Uppsala [14]

- Initial position is unknown
- There are no signs that reveal the current station
- Find your way to Flogsta, switching red and blue line as needed

Solution: brrbrrbrr

Homing Sequences

Intuitive Definition

- 1. Initial state is unknown.
- 2. Apply a sequence $x \in I^*$ of inputs,
- 3. observe outputs,
- 4. conclude what the *final* state is

If this is possible, x is a **homing sequence**

Formal Definition

 $x \in I^*$ is homing iff for all states $s, t \in S$, $\delta(s, x) \neq \delta(t, x) \implies \lambda(s, x) \neq \lambda(t, x)$

Homing Sequences: Example

- Homing sequences care about the output
- E.g., in Uppsala the subway sometimes goes above ground.
- Using this information, we can more efficiently figure out the final state.

Solution: e.g., brr

Initial State Uncertainty

- Data structure crucial in algorithms computing homing sequences
- The Initial State Uncertainty with respect to an input string "indicates for each output string the set of possible initial states"
- Formally, for an input string x ∈ I* it is the partition of states induced by the equivalence relation
 s ≡ t ⇔ λ(s, x) = λ(t, x)

("x produces the same output from s as from t")

Initial State Uncertainty: Example

Initial State Uncertainty: Example

input string	initial state uncertainty	
arepsilon	$\{\{s,t,u\}\}$	
a	$\{\{t\}_{1}, \{s, u\}_{0}\}$	
ab	$\{\{t\}_{10}, \{s, u\}_{00}\}$	
aba	$\{\{t\}_{100}, \{s\}_{000}, \{u\}_{001}\}$	

(here, the output corresponding to a block is indicated in red)

Current State Uncertainty

- Another data structure crucial in algorithms computing homing sequences
- The Current State Uncertainty with respect to an input string "indicates for each output string the set of possible final states"
- Formally, for an input string $x \in I^*$ it is the set $\sigma(x) \stackrel{\text{def}}{=} \{\delta(B, x) : B \text{ is a block of the initial state uncertainty w.r.t. } x\}.$
- Important: x is homing iff $\sigma(x)$ is a set of singletons

Current State Uncertainty: Example

Current State Uncertainty: Example

input string	initial state uncertainty	current state uncertainty
arepsilon	$\{\{s,t,u\}\}$	$\{\{s,t,u\}\}$
a	$\{\{t\}_1, \{s, u\}_0\}$	$\{\{s\}_1, \{s, u\}_0\}$
ab	$\{\{t\}_{10}, \{s, u\}_{00}\}$	$\{\{u\}_{10}, \{u, t\}_{00}\}$
aba	$\{\{t\}_{100}, \{s\}_{000}, \{u\}_{001}\}$	$\{\{u\}_{100 \text{ or } 000}, \{s\}_{001}\}$

Computing Homing Sequences: Idea

Assume machine is minimized.

- Concatenate strings iteratively,
- in each step improving the current state uncertainty.

$$("\sum_{B \in \sigma(x)} |B| - |\sigma(x)|" \text{ decreases})$$

• Each string should be *separating* for two states in the same block:

A separating sequence $x \in I^*$ for two states $s, t \in S$ gives different outputs: $\lambda(s, x) \neq \lambda(t, x)$

Since the machine is minimized, separating sequences always exist

[16]

Computing Homing Sequences: Algorithm

1 function HOMING-FOR-MINIMIZED (Minimized Mealy machine \mathcal{M}) 2 $x \leftarrow \varepsilon$ 3 while there is a block $X \in \sigma(x)$ with |X| > 14 take two different states $s, t \in X$ 5 let y be a separating sequence for s and t6 $x \leftarrow xy$ 7 return x [17]

Homing Sequences: Quality of Algorithm

(n = number of states, |I| = number of input symbols)

- Time: $O(n^3 + n^2 \cdot |I|)$
- Space: O(n)

(not counting the space needed by the output)

• Sequence length: $\leq n(n-1)/2$

Some machines require $\geq n(n-1)/2$

Computing Synchronizing Sequences: Idea [17]

Very similar to algorithm for homing sequences:

- Concatenate strings iteratively,
- in each step decrease $|\delta(S, x)|$.
- Each string should be *merging* for two states in $\delta(S, x)$:
 - A merging sequence $y \in I^*$ for two states $s, t \in S$ takes them to the same final state: $\delta(s, y) = \delta(t, y)$
 - This guarantees that $|\delta(S, xy)| < |\delta(S, x)|$
 - Merging sequences exist for all states \iff there is a synchronizing sequence

Computing Synchronizing Sequences: Algorithm ^[18]

Very similar to algorithm for homing sequences:

- 1 function SYNCHRONIZING (Mealy machine \mathcal{M})
 - $x \leftarrow \varepsilon$

 $\mathbf{2}$

3

4

5

6

- while $|\delta(S, x)| > 1$
- take two different states $s, t \in \delta(S, x)$ let y be a merging sequence for s and t(if none exists, return FAILURE) $x \leftarrow xy$
- 7 return x

Synchronizing Sequences: Quality of Algorithm

[19 - 20]

- Time: $O(n^3 + n^2 \cdot |I|)$
- Space: $O(n^2 + n \cdot |I|)$ (not counting the space needed by the output)
- Sequence length: $\leq (n^3 n)/6$

Černý's conjecture: length $\leq (n-1)^2$ (true in special cases, open in general)

Some machines require length $\geq (n-1)^2$

Homing Sequences for General Machines [20–21]

- We don't need to assume the machine is minimized
- A different algorithm solves this more general problem, but less efficiently

Combines ideas from algorithms for homing and synchronizing sequences

• Often possible to assume the machine is minimized

Adaptive Homing Sequences

[21 - 22]

- Apply the sequence as it is being computed,
- and let current input depend on previous outputs
- Can use modified version of the usual homing sequence algorithm
- May result in shorter sequence,
- but equally long in the worst case: $(n-1)^2$

Finding the Shortest Sequence

- It is important to minimize the length of sequences:
 - recall pushing things
 - in testing, a machine may be remote or very slow
- Exponential algorithms have been used
- Unfortunately, the problems are NP-complete
- Even impossible to approximate unless P=NP (follows from NP-completeness proof)

Related Problems are PSPACE-complete [26–28]

- 1. Nondeterministic transition system (instead of deterministic)
- 2. The initial state is in a subset $X \subseteq S$ (instead of S)
- 3. The final state may be in a subset $X \subseteq S$ (instead of any single state in S)

Parallel Algorithms

Homing Sequences

- Randomized algorithm uses $\log^2 n$ time, $O(n^7)$ processors. Hence, the problem belongs to RNC.
- Deterministic algorithm uses $O(\sqrt{n}\log^2 n)$ time Impractical due to high communication cost
- There is also a practical randomized algorithm

Synchronizing Sequences

- No known parallel algorithm
- Except one for *monotonic automata*

[29]

Conclusion

Homing sequences

- Problem is more or less solved (optimal and polynomial algorithm is known)
- Apparently more used for testing than synchronizing sequences

Synchronizing sequences

• Open question:

Narrow the gap between upper bound $O(n^3)$ and lower bound $\Omega(n^2)$ for the length of sequences

• Interesting algebraic properties and other applications, but less used for testing