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Abstract

This thesis investigates rule extraction from recurrent neural networks, which takes
the form of automated construction of models of an underlying network. Typically
the models are expressed as finite state machines and they should mimic the net-
work while being more intelligible. It is argued that rule extraction allows a deeper
and more general form of analysis than other, more or less ad hoc, methods which
are typically applied after the training of the recurrent networks. The first part of
this thesis reviews and analyses the development of related techniques. The second
part presents a novel algorithm, the Crystallizing Substochastic Sequential Machine
Extractor (CrySSMEx), which efficiently generates a sequence of increasingly refined
stochastic finite state models of an underlying system. Novel features of CrySSMEx
include, for example, freedom from parameters, deterministic extraction, a hierar-
chical vector quantizer, and a stochastic finite state model which can be constructed
also when some data is missing. Experiments show that CrySSMEx is, compared to
other methods, applicable to a wider range of problems (such as high-dimensional
or chaotic dynamic systems). Finally, the field is discussed from a more theoretical
perspective in terms of scientific methodology targeted at simulated systems. It
is suggested that a rule extractor (or Empirical Machine) can actively select data
from the system it is set to model by continuously targeting the weakest point of its
currently strongest model. These automated experimenters can, in turn, be made
part of a framework (or Popperian Machine) in which theories about populations
of systems are generated and tested in order to establish falsifiable statements.
These statements should have a high empirical content and thus concisely describe
emergent, and previously unknown, properties of the systems.
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Parmee & H.-G. Beyer (Eds.), GECCO’00: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1033–1040, San Fransisco: Mor-
gan Kaufmann.

Jacobsson, H. and Olsson, B. (2000). An Evolutionary Algorithm for Inversion
of ANNs. In Wang, P.P., ed., JCIS’00: Proceedings of The Fifth Joint Con-
ference on Information Sciences, pp. 1070–1073, Association for Intelligent
Machinery.

Technical reports

Jacobsson, H. and Ziemke, T. (2003). Reducing Complexity of Rule Extraction
from Prediction RNNs trough Domain Interaction2, Tech. report no. HS-
IDA-TR-03-007.

2Included verbatim in Appendix D.

iv



Contents

Abstract i

Acknowledgements ii

List of Publications iii

Contents v

List of Figures x

List of Tables xi

List of Algorithms xii

——————–

1 Introduction 1

I Rule Extraction from Recurrent Neural Networks - A
Survey 8

2 Introduction to Part I 9
2.1 Topic delimitation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Overview of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Background 13
3.1 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Finite state machines . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 The basic recipe for RNN rule extraction . . . . . . . . . . . . . . . 17

4 Evaluation Criteria and Taxonomy 19
4.1 Main criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Rule type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 State generation . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.4 Network type and domain . . . . . . . . . . . . . . . . . . . 20

4.2 Criteria from the ADT taxonomy . . . . . . . . . . . . . . . . . . . 20
4.2.1 Expressive power . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Translucency . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



4.2.3 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.5 Algorithmic complexity . . . . . . . . . . . . . . . . . . . . . 22

5 RNN-RE Techniques 23
5.1 Pre-RE approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Search in equipartitioned state space . . . . . . . . . . . . . . . . . 24
5.3 Search in state space partitioned through vector quantization . . . . 28
5.4 Sampling-based extraction of DFA . . . . . . . . . . . . . . . . . . . 31
5.5 Stochastic machine extraction . . . . . . . . . . . . . . . . . . . . . 34
5.6 A pedagogical approach . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 RE-supporting RNN architectures . . . . . . . . . . . . . . . . . . . 37

6 Discussion 38
6.1 Rule types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 State space quantization . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 State generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 Network types and domains . . . . . . . . . . . . . . . . . . . . . . 41
6.5 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.6 Rule quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 RNN-RE, fool’s gold? . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Open Issues and Summary 46
7.1 Goals of RNN-RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 New challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2.1 Tailor-made quantization algorithms . . . . . . . . . . . . . 48
7.2.2 Goal oriented gradually refining rule extraction . . . . . . . 48
7.2.3 RNN comparisons and evaluations . . . . . . . . . . . . . . . 49
7.2.4 RNN debugging . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Some practical recommendations . . . . . . . . . . . . . . . . . . . 50
7.4 Conclusions of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II The Crystallizing Substochastic Sequential Machine
Extractor 52

8 Introduction to Part II 53
8.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2 What is new in CrySSMEx? . . . . . . . . . . . . . . . . . . . . . . . 54
8.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9 Modelling Dynamic Systems 57
9.1 Situated Discrete Time Dynamic Systems . . . . . . . . . . . . . . . 57

9.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.1.2 Collection of data from an SDTDS . . . . . . . . . . . . . . 59
9.1.3 Building a stochastic dynamic model from a quantized SDTDS 60

9.2 Substochastic Sequential Machines . . . . . . . . . . . . . . . . . . 61
9.2.1 Notation of probability distributions as vectors . . . . . . . . 62
9.2.2 SSM definition . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



9.2.3 Translation of an SDTDS into an SSM . . . . . . . . . . . . 63
9.2.4 Parsing an input sequence using an SSM . . . . . . . . . . . 64
9.2.5 SSM determinism . . . . . . . . . . . . . . . . . . . . . . . . 66
9.2.6 Equivalence and nonequivalence of SEs . . . . . . . . . . . . 67
9.2.7 SSM examples and interpretations . . . . . . . . . . . . . . . 71

10 The Crystalline Vector Quantizer 75
10.1 Definition of CVQ graph . . . . . . . . . . . . . . . . . . . . . . . . 76
10.2 Quantizing with a CVQ . . . . . . . . . . . . . . . . . . . . . . . . 77
10.3 CVQ training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10.3.1 The initial CVQ . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.3.2 Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.3.3 Basic splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3.4 Complete splitting . . . . . . . . . . . . . . . . . . . . . . . 82

11 The Crystallizing Substochastic Sequential Machine Extractor 84
11.1 Data selection from Ω . . . . . . . . . . . . . . . . . . . . . . . . . 84
11.2 CrySSMEx main loop . . . . . . . . . . . . . . . . . . . . . . . . . . 84

12 Experiments 88
12.1 An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . 88
12.2 An RNN trained on a context free language . . . . . . . . . . . . . 91
12.3 A large RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
12.4 A chaotic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

13 Summary of Part II 100
13.1 New problem domains handled . . . . . . . . . . . . . . . . . . . . . 100
13.2 New in CrySSMEx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

13.2.1 Integration of RNN-RE ingredients . . . . . . . . . . . . . . 100
13.2.2 Parameter freedom . . . . . . . . . . . . . . . . . . . . . . . 101
13.2.3 Deterministic extraction . . . . . . . . . . . . . . . . . . . . 101
13.2.4 Gradual anytime extraction . . . . . . . . . . . . . . . . . . 101
13.2.5 The handling of missing data . . . . . . . . . . . . . . . . . 102
13.2.6 An SSM is an SDTDS . . . . . . . . . . . . . . . . . . . . . 102
13.2.7 Hierarchically structured state space quantization . . . . . . 103

III From Rule Extraction to Machine Epistemology 104

14 Introduction to Part III 105

15 Future and Related Areas of Research 107
15.1 Fields similar to RNN-RE . . . . . . . . . . . . . . . . . . . . . . . 107
15.2 Theoretical connections . . . . . . . . . . . . . . . . . . . . . . . . 109

16 Possible CrySSMEx Improvements 111
16.1 Critical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
16.2 SSM refinement and analysis . . . . . . . . . . . . . . . . . . . . . . 113

16.2.1 Moore SSMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
16.2.2 Modal logic possibility . . . . . . . . . . . . . . . . . . . . . 113

vii



16.2.3 SE relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
16.2.4 Always deterministic SSMs . . . . . . . . . . . . . . . . . . . 115
16.2.5 Additional information . . . . . . . . . . . . . . . . . . . . . 116
16.2.6 SSM comparisons . . . . . . . . . . . . . . . . . . . . . . . . 117

16.3 CVQ refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
16.3.1 Refined training . . . . . . . . . . . . . . . . . . . . . . . . . 118
16.3.2 Post-training refinements . . . . . . . . . . . . . . . . . . . . 118
16.3.3 Further recursiveness . . . . . . . . . . . . . . . . . . . . . . 119
16.3.4 Intelligible quantizers . . . . . . . . . . . . . . . . . . . . . . 119

17 Possible CrySSMEx Challenges 121
17.1 More interesting SDTDSs . . . . . . . . . . . . . . . . . . . . . . . 121
17.2 An SSM Query-language . . . . . . . . . . . . . . . . . . . . . . . . 122

17.2.1 Querying regarding SSM ignorance . . . . . . . . . . . . . . 124
17.2.2 Querying to achieve control . . . . . . . . . . . . . . . . . . 125
17.2.3 SSM abstraction through queries . . . . . . . . . . . . . . . 125

17.3 User goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
17.4 Robust hierarchical stochastic degree-of-belief model . . . . . . . . . 127
17.5 Higher order extraction . . . . . . . . . . . . . . . . . . . . . . . . . 128
17.6 Relative SDTDS analysis . . . . . . . . . . . . . . . . . . . . . . . . 130

17.6.1 d(sdtds1, sdtds2) . . . . . . . . . . . . . . . . . . . . . . . . 130
17.6.2 A “grammar of mistakes” . . . . . . . . . . . . . . . . . . . 132

17.7 CrySSMEx2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
17.7.1 Meta-SDTDS . . . . . . . . . . . . . . . . . . . . . . . . . . 134
17.7.2 Dual systems . . . . . . . . . . . . . . . . . . . . . . . . . . 136

17.8 Truly parameter free CrySSMEx . . . . . . . . . . . . . . . . . . . . 137
17.8.1 Guessing Λo . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
17.8.2 Generating Ω . . . . . . . . . . . . . . . . . . . . . . . . . . 138

17.9 Gradual removal of SDTDS constraints . . . . . . . . . . . . . . . . 139
17.9.1 Determinism ⇒ Nondeterminism . . . . . . . . . . . . . . . 139
17.9.2 Discrete input ⇒ Continuous input . . . . . . . . . . . . . . 140
17.9.3 Full observability ⇒ Partial observability . . . . . . . . . . . 141
17.9.4 Discrete time ⇒ Continuous time . . . . . . . . . . . . . . . 141
17.9.5 Real environments . . . . . . . . . . . . . . . . . . . . . . . 141

18 Sciences of Simulated Universes 143
18.1 The golden properties of simulated systems . . . . . . . . . . . . . . 143
18.2 Incomprehensibility due to abundance and complexity . . . . . . . . 146
18.3 Models as proxies for queries . . . . . . . . . . . . . . . . . . . . . . 152
18.4 Future direction I: Empirical Machines . . . . . . . . . . . . . . . . 156
18.5 Popper and machine learning . . . . . . . . . . . . . . . . . . . . . 161
18.6 Future direction II: Popperian Machines . . . . . . . . . . . . . . . 167
18.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

19 Summary and Final Thoughts 174
19.1 Contribution highlights . . . . . . . . . . . . . . . . . . . . . . . . . 174
19.2 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

References 177

viii



Appendices 188

A Substochastic vectors 189

B List of abbreviations 191

C Improving Procedures for Evaluation of Connectionist Context-
Free Language Predictors (Jacobsson & Ziemke, 2003a) 192
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
C.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
C.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

C.3.1 The Testing Procedure . . . . . . . . . . . . . . . . . . . . . 194
C.3.2 Architecture & Training Algorithm . . . . . . . . . . . . . . 196

C.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
C.4.1 Training Results . . . . . . . . . . . . . . . . . . . . . . . . 197
C.4.2 Estimated Generalization Abilities . . . . . . . . . . . . . . 197

C.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . 198

D Reducing Complexity of Rule Extraction from Prediction RNNs
through Domain Interaction (Jacobsson & Ziemke, 2003b) 201
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
D.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

D.2.1 Rule extraction through breadth first search . . . . . . . . . 203
D.2.2 Rule extraction in a domain context . . . . . . . . . . . . . 204

D.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
D.3.1 The Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 205
D.3.2 Evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . 206

D.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
D.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . 206

ix



List of Figures

3.1 Functional dependencies in an RNN . . . . . . . . . . . . . . . . . . 15
3.2 Finite state machines . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 A conceptual diagram of spatial representation of semantics (Elman,
1990) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Iterations of DFA extraction of Giles et al. (1991) . . . . . . . . . . 27
5.3 Breadth-first extraction using k-means . . . . . . . . . . . . . . . . 30
5.4 A prefix tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Goals of RNN-RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Execution time, fidelity and comprehensibility . . . . . . . . . . . . 49

9.1 Two SSM examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.2 A big SSM example . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

10.1 A CVQ example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.2 A CVQ state division example . . . . . . . . . . . . . . . . . . . . . 79

12.1 State space of RNN trained on regular grammar . . . . . . . . . . . 89
12.2 Extraction from RNN trained on regular grammar . . . . . . . . . . 90
12.3 Extraction from RNN trained on context free grammar . . . . . . . 93
12.4 Error curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12.5 Extraction from very large RNN . . . . . . . . . . . . . . . . . . . . 96
12.6 SSM prediction of chaotic system . . . . . . . . . . . . . . . . . . . 98
12.7 Number of SEs extracted from chaotic system . . . . . . . . . . . . 99
12.8 Cost of predicting chaotic system . . . . . . . . . . . . . . . . . . . 99

16.1 A genealogy of SSMs . . . . . . . . . . . . . . . . . . . . . . . . . . 115
16.2 Extraction of deterministic SSMs . . . . . . . . . . . . . . . . . . . 116

17.1 CFL extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
17.2 Two SDTDSs is really one SDTDS . . . . . . . . . . . . . . . . . . 131
17.3 CrySSMEx2applied to backpropagation . . . . . . . . . . . . . . . . . 135
17.4 CrySSMEx2for dual system extraction . . . . . . . . . . . . . . . . . 137

18.1 Information explosion for simulated systems . . . . . . . . . . . . . 149
18.2 Outline of an Empirical Machine . . . . . . . . . . . . . . . . . . . 159
18.3 Outline of a Popperian Machine . . . . . . . . . . . . . . . . . . . . 169
18.4 Falsifiability as universality and precision . . . . . . . . . . . . . . . 172

D.1 Internal SRN activation during extraction . . . . . . . . . . . . . . 207
D.2 Ratio of relevant states and substrings . . . . . . . . . . . . . . . . 208

x



List of Tables

3.1 The common “ingredients” of RNN-RE algorithms . . . . . . . . . 17

5.1 Summary of algorithm extracting DFA through searching in an
equipartitioned state space . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Summary of algorithms extracting DFA through searching in a state
space partitioned by vector quantization . . . . . . . . . . . . . . . 29

5.3 A summary of the search-based DFA extracting algorithm proposed
by Alquezar and Sanfeliu for unbiased grammars . . . . . . . . . . . 31

5.4 A summary of the sampling-based DFA extraction algorithm pro-
posed by Watrous and Kuhn (1992) . . . . . . . . . . . . . . . . . . 32

5.5 The sampling-based DFA extractor originally proposed in Fanelli
(1993) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6 Summary of the sampling-based DFM extractor of Tiňo and Šajda
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Chapter 1

Introduction

Computer simulations are conducted for many reasons. Simulations are in many

ways playgrounds for entertainment and education in more or less serious contexts.

Computer games may provide realistic simulated environments that entail an enter-

tainment value as well as the possibility to put yourself in situations in which you

may learn new things. For example, airline pilots, surgeons and military comman-

ders can safely practise their skills in simulated environments where their actions

will not have any fatal consequences. In a similar fashion, scientists can create sim-

ulations in which they can test their theories in ways that are impossible or very

expensive in the real world. They may even test theories by simulating systems

with no obvious counterpart in the physical world. This thesis focuses on these

last types of simulated systems in which there is no human intervention during the

execution of the simulation and where an understanding of the system requires a

systematic analysis of it.

These simulations are in themselves small artificial universes with their own

laws and their own emergent orders stemming from these laws. Many (but far

from all) of these universes are created to reflect phenomena in our own Universe1.

They are then carefully designed so that their laws mimic the natural laws of our

Universe to our best understanding. The emergent dynamics of these simulators are

consequently used to validate our theories of the laws of the Universe. If an emergent

behaviour can be observed in the simulated universe as well as in Reality, the

theories underlying the construction of the simulator become validated. Moreover,

as we are omniscient gods from the perspective of the simulated universe, we can

observe phenomena not readily apparent in the physical Universe.

For example, consider a helioseismologist, a scientist who analyses the interior

of the Sun through observations of the oscillations and sound waves that can be

1Universe (and sometimes Reality) is here written with capital letters to emphasize its impor-
tance and to clearly separate it from simulated counterparts.
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observed on the surface of the Sun. There is of course no direct way to observe the

interior of the Sun. If a detailed theory of the Sun is constructed, however, with

specifications of constituents, densities, magnetic fields, temperatures etc., then this

theory can be the basis of a simulation. The scientist thus may visualize the interior

of the simulated Sun by projecting selected slices of the Sun. These visualizations

may help the scientist to understand the Sun at a significantly deeper level than

would otherwise be possible. The scientist may even become genuinely surprised

by the results of the simulation, despite them being created by the scientist in

the first place. Unforeseen predictions stemming from the simulation may later be

corroborated with observations of the Sun. Observations that without the simulator

would perhaps lack a proper explanation.

The situation for the helioseismologist can be taken as an example of how sci-

entists typically need to study nature only through indirect observations of the

underlying system. The true nature of what is studied may always be hidden.

Plato’s “allegory of the cave” is often used to illustrate this situation in scientific

studies:

Behold! human beings living in a underground den [...]; here they have
been from their childhood, and have their legs and necks chained so that
they cannot move, and can only see before them, being prevented by
the chains from turning round their heads. Above and behind them a
fire is blazing at a distance, and between the fire and the prisoners there
is a raised way; and you will see, if you look, a low wall built along the
way, like the screen which marionette players have in front of them, over
which they show the puppets. [...] And do you see, I said, men passing
along the wall carrying all sorts of vessels, and statues and figures of
animals made of wood and stone and various materials, which appear
over the wall? [...] To them, I said, the truth would be literally nothing
but the shadows of the images. (The Republic - book VII (Plato, 1991),
pp. 253–354)

Just as Plato’s prisoners, scientists can typically only observe secondary phe-

nomena, e.g., the sound waves on the surface of the Sun, stemming from hidden

activity deep within it. The shadows on the wall are clues about the “real” ob-

jects that we may never observe directly. We can try to explain the nature of the

real objects, but not entirely as we please. Scientific methodology strictly gov-

erns what explanations and guesses that are acceptable and the very fact that the

“true” Reality is not directly observed colours the scientific meted. Since Reality

cannot simply be scientifically described just as we immediately perceive it, and

intuitively understand it, we restrict scientific explanations to the ones that can be
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tested. More precisely, we may restrict ourselves to accepting only explanations

that could be falsified through experiments (Popper, 1990). Therefore, scientists

do not entirely comply with the description of Plato’s prisoners since they have an

urge (without taking their eyes of the projection) to indirectly interact with the

objects between the fire and the wall. That is how scientists learn, by active inter-

action through experiments. Based on previous experience, conjectures are born in

the mind of the imprisoned scientists, and further experiments helps to refine the

scientific knowledge by refuting ideas of Reality that are false (Popper, 1990).

In simulated universes, however, we are no longer the prisoners, we are instead

the creators of the cave, the fire, the passage way and the wall onto which images of

objects of our choice are projected. Yet, one may argue that we still put ourselves

in the position of the prisoners once we have constructed the cave. We are still

bounded by our desire to understand the Reality which inspired us to build the cave

in the first place. But we do not belong in our simulated caves such as the prisoners

envisioned by Socrates in Plato’s text. They are imprisoned since childhood and

their entire perception of the universe is the projection. When we analyse our

simulated systems, i.e. when we “enter the cave” of our creation, we bring with

us the experience built from the experience in our own “cave” in which we are

the true prisoners; the Universe. This experience may largely overlap with the

experience of an imagined life-long cave occupant, but the simulator may be entirely

new to us. For example, if the simulator is not designed to encompass any real

phenomena, but is instead an abstract mathematical construction, then it may

become difficult for us to fully interpret any projection. Some simulations, such as

of artificial neural networks, or of artificial life, are not meant to reflect Reality more

than in a very abstract sense. The projection in this case may be visualizations

of the system, or data logs from simulating the system. Since the projection is

chosen by ourselves and our limited understanding of the system, it may not be

the most informative of possible projections. For example, the helioseismologist

may visualize the Sun by slicing it up like an onion whereas he/she could learn

more by other more counter-intuitive projections in space-time that perhaps more

appropriately preserve information about relevant dynamics of the Sun.

We may also take the seat of the prisoner for other reasons than direct and
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aesthetic visualizations of the system. There may simply be a concrete need for

projecting a complex simulated system onto a more comprehensible plane. One

reason for this is that the system may be completely abstract to us. It could also

consist of an enormous number of state variables, changing over long sequences

of simulated time. The system must then typically be projected, through visu-

alizations or otherwise, just to enable us to comprehend it. If, for example, the

dynamically changing simulated Sun is represented by a finite set of elements in a

3D-lattice of 100×100×100 elements of 10 values each (e.g., chemical composition,

temperature etc.) and this system is simulated for 102 time steps, then the amount

of data is on the order of 109. It can be argued that the scientific value of this data

does not emerge until the scientist can put forward statements about the system.

But what if the system is not a Sun? What if it was created for other reasons

than simulating aspects of Reality? The terminology of the scientist, bounded by

his/her perceived Reality, may not be appropriate or rich enough for the task of

describing the 109 data points in a truly meaningful way. It may become difficult

for us to remain the scientific prisoners in our simulated universes/caves. We may

lack the intuition for it.

Moreover, we should not underestimate our ability to create such caves once we

have the means of creating one of them. The helioseismologist may for example

continue to generate hypothetical stars indefinitely, each one representing a new

simulated cave. For each different star, different research questions may be of rel-

evance. Perhaps the acoustics of a red dwarf have a rich variety of self-sustained

harmonic sound waves that are never seen in a larger star? Each such potential

richness of behaviour of each individual system may require the helioseismologist

to assume the role of a scientifically reasoning prisoner in each cave. Even if the

intuition of the helioseismologist may, after years of training, be sufficient to cor-

rectly understand each system, he may for every correctly analysed system create

yet another one, e.g., a little more helium, some more metals, a somewhat younger

star, etc.

In some areas of research the creation of novel systems lies at the very core of

their methodology, especially for artificial neural networks (ANNs), artificial life,

genetic algorithms/programming (GA/GP), etc. For these areas, the creation of
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the system need not be grounded in a sound solid theory of the Universe since

they are not meant to correspond to any reality. The systems are therefore easy

to create. In fact, long sequences of such systems are created constantly, just to

evaluate their fitness in solving the task which they are supposed to solve. And, free

from any basis in our Reality, they are not easy to understand, intuitively. In such

cases we typically put ourselves directly in the prisoner’s position only for a handful

of examples. Instead, the analysis of the projection is typically reduced to a simple

automated data collector, e.g., a numeric performance evaluation. For example, the

results of genetic programming may be a couple of thousand potential systems that

all solve, or partially solve, a particular problem. Typically only the best of these

are further analysed for the purpose of describing and understanding them. But

each one of these systems would require “a scientific prisoner” of its own, in order to

be analysed with scientific methodology. The simple collection of data, in the same

way for each system, corresponds to letting each cave be inhabited by dummy

prisoners, not learning from the experience stemming from each system. Just

as each of the helioseismologist’s hypothetical stars may require its own research

questions to be properly scientifically analysed, automatically created systems may

be widely different from each other despite being created by the same mechanism.

The dummy prisoner we put in our place, may therefore be inadequate.

In this thesis, I will suggest that, in the place of the passive data collecting

prisoners of these caves, put in prisoners that can more actively interact with the

system behind the fire. I suggest that instead of only being the creators of the

cave, fire and projected objects, we should also create the prisoners themselves.

One set of (artificial) prisoners per cave, situated in their own universe, analysing

and interacting to learn about their world. Of course, in this thesis, the set of

potential caves will be very modest. Although I will suggest that their behaviour

is strictly regulated by the same principles of scientific methodology that govern

human scientists, the intelligence of these prisoners will also be modest. However,

the principle could apply in a broader sense: analysis of artificial systems conducted

by artificial scientific intelligence. The “scientific” aspect of these prisoners will be

more accentuated at the end of this thesis where Popper’s falsificationism will be

suggested as a guideline for evaluating statements about simulated universes.
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But how should these prisoners be created? And is it feasible to create them

at all? The problems of artificial intelligence are by no means trivial. However,

as described above, simulated systems typically act as playgrounds for learning

without any risks. Simulated systems are more easily controlled and are already

used many times as development environments when creating artificial intelligences

such as learning systems. For example, robot controllers that should learn from

experience are often trained completely in simulation (e.g. Meeden, 1996; Ziemke,

2000). As will be discussed in Chapter 18, it is a simple matter of fact that simulated

systems are much easier to integrate with AI learning techniques since there is

no noisy Reality which must be indirectly interacted with, through sensors and

actuators. This is also one of the main criticisms of early AI techniques; they

were very successfully applied, but only on simple toy-world problems, e.g., the

blocks world. Simulated systems of today, however, are not necessarily trivial, nor

necessarily sufficiently analysed by human scientists either, since the very same

scientists can easily create more systems than they can ever fully analyse in their

life times. Many simulated systems may therefore both be the perfect playground

for artificial scientific intelligence as well as domains where there is a need for such

techniques.

In this thesis, the Plato caves in question are instantiations of simulated trained

recurrent neural networks (RNNs). For RNNs (e.g. Kremer, 2001; Kolen & Kremer,

2001) it has been natural to analyse them as finite state machines (FSMs), partly

due to their common source of origin (McCulloch & Pitts, 1943), and partly due to

the fact that they have often been trained to perform regular language recognition

(e.g. Cleeremans, McClelland & Servan-Schreiber, 1989; Christiansen & Chater,

1999). This has resulted in the development of algorithms for transforming one

model into another, i.e. from RNNs into FSMs. These transformations are made

through observation of the RNN and the generation of FSM descriptions of these

observations. In other words, the “Plato prisoners” in this case are therefore al-

gorithms that learn to create FSM descriptions of RNNs through observations of

RNN projections. The projections are not indirect in the sense that the perception

of Plato’s prisoners is indirect. Instead, these “projections” typically contain every

single aspect of the RNNs (but limited to the RNN as put in specific contexts).
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The problem for human observers of RNNs is that their behaviour is not a con-

sequence of the physical laws we are used to. They may be counter-intuitive and

complex to understand, even if moderately sized. The FSM descriptions of some

RNNs may indeed be fairly complex too, but they have the advantage of having a

clearly defined syntax and semantics. With a clear formal specification, the FSMs

can be used as a proxy, in place of the actual underlying RNN, for inference of new

(falsifiable, Popper (1990)) statements about the RNNs (cf. Chapter 18).

The broad structure of this thesis is as follows: Part I presents a survey and

critique of rule extraction algorithms that generate FSMs mimicking specific RNNs.

In Part II a novel rule extraction algorithm is suggested and experiments are con-

ducted to establish the efficiency of it. Finally, Part III discusses several, more or

less, speculative future directions based on the connection to scientific methodology.
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Part I

Rule Extraction from Recurrent

Neural Networks - A Survey
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Chapter 2

Introduction to Part I

In this part of the thesis, techniques for extracting rules (or finite state machines)

from discrete-time recurrent neural networks (DTRNNS, or simply RNNs) are re-

viewed. A new taxonomy for classifying existing techniques will be suggested, and

existing techniques will be presented and evaluated. A list of open research issues

that need to be addressed will also be suggested1.

By RNN-RE I refer to the process of finding/building symbolic computational

models/machines that mimic the RNN to a satisfactory degree. The connection

between RNNs and symbolic models of computation is almost as old as the study

of RNNs themselves since the origins of these fields are largely overlapping. The

study of neural networks once coincided with the study of computation in the binary

recurrent network implementations of finite state automata of the theoretical work

on nervous systems by McCulloch and Pitts (1943) (an interesting overview of this

topic is found in Forcada, 2002.) This common heritage has been flavouring the

development of the digital computer although our current computer systems are

very far from being models of the nervous system.

In the early 1990s, the research on recurrent neural networks was revived. When

Elman introduced his, quite well known, simple recurrent network (SRN) (Elman,

1990), the connection between finite state machines and neural networks was again

present from the start. In his paper, the internal activations of the networks were

explicitly compared to the states of a finite state machine.

In theory, RNNs are Turing machine equivalent2 (Siegelmann & Sontag, 1995),

1 Chapters 2–7 have been published in a very similar form in Jacobsson (2005).
2 Actually McCulloch and Pitts (1943) determined this equivalence already in 1943, for discrete

9



and can thus compute whatever function any digital computer can compute. But

we also know that to get the RNN to perform the desired computations is very

difficult (Bengio, Simard & Frasconi, 1994). This leaves us in a state of knowledge

vacuum; we know that RNNs can be immensely powerful computational devices,

and we also know that finding the instantiations of RNNs that perform these com-

putations could very well be an insurmountable obstacle, but we do not have the

means for efficiently determining the computational abilities of our current RNN

instantiations. On a less theoretical level, we can simply evaluate the performance

of different RNNs in order to see to which degree a learning problem is solved for a

specific domain. Such studies are conducted in virtually all papers applying RNNs

on a domain, and in some cases more systematic studies are presented (Miller &

Giles, 1993; Horne & Giles, 1995; Alquézar, Sanfeliu & Sainz, 1997). But even

something as simple as evaluating the performance of an RNN on a specific domain

has some intrinsic problems since implicit aspects of the evaluation procedure can

have a significant impact on the estimated quantitative performance (Jacobsson &

Ziemke, 2003a; Jacobsson, 1999) (cf. Appendix C).

Actually, the analysis problems may lead to the use of too simplistic models, e.g.,

smaller networks and toy problem domains, just to be able to analyse (or visualize)

the results. One may wonder how many published networks with just two or three

state (or hidden) nodes had their specific topology chosen just to make the plotting

of their internal activations possible. Thus, what is required is in-depth analyses of

RNN instantiations to uncover the actual behaviour of RNN instantiations without

the need for “manually” analysing visualizations of the RNN behaviour. An efficient

rule extraction technique may be the best tool for such analyses.

2.1 Topic delimitation

Since the early nineties, an abundance of papers on recurrent neural networks has

been written3, and many of them have dealt explicitly with the connection between

RNNs and state machines. Many contributions have been theoretical, establishing

the connection between (analogue) RNNs (or other dynamic systems) and tradi-

networks (Medler, 1998).
3 Many of these are summarized in Kremer (2001) and Barreto, Araújo and Kremer (2003).
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tional (discrete) computational devices (e.g. Crutchfield & Young, 1990; Servan-

Schreiber, Cleeremans & McClelland, 1991; Crutchfield, 1994; Kolen, 1994a; Horne

& Hush, 1994; Siegelmann & Sontag, 1995; Casey, 1996; Tiňo, Horne, Giles &

Collingwood, 1998; Jagota, Plate, Shastri & Sun, 1999; Omlin & Giles, 2000; Sima

& Orponen, 2003; Hammer & Tiňo, 2003; Tiňo & Hammer, 2003). While these

papers cover a wide spectrum of highly interesting and important theoretical in-

sights, this thesis will not dwell on these theoretical issues. Firstly, because it is not

the focus of the survey-part of this thesis. Moreover, some of these papers already

resemble surveys themselves, summarizing earlier findings.

At a pragmatic level, these are papers describing techniques for transforming

state machines into RNNs (rule insertion) and/or for transforming RNNs into state

machines (rule extraction) (e.g. Omlin & Giles, 1992; Giles & Omlin, 1993; Das,

Giles & Sun, 1993; Alquézar & Sanfeliu, 1994a; Omlin & Giles, 1996a, 1996c;

Omlin, Thornber & Giles, 1998; Omlin & Giles, 2000; Carrasco, Forcada, Muñoz

& Ñeco, 2000; Carrasco & Forcada, 2001). This thesis, however, deals exclusively

with algorithms for performing rule extraction from RNNs.

Unfortunately, there is no space for a discussion of the analysis tools of RNNs

other than just RE. Since there are a multitude of methods used to analyse RNNs, a

survey on this issue should definitely be written as well. A brief (and most probably

inconclusive) list of examples of other analysis tools that have been used on RNNs

includes:

• Hinton diagrams (e.g. Hinton, 1990; Niklasson & Bodén, 1997),

• hierarchical cluster analysis (e.g. Cleeremans et al., 1989; Elman, 1990;

Servan-Schreiber, Cleeremans & McClelland, 1989; N. E. Sharkey & Jack-

son, 1995; Bullinaria, 1997),

• simple state space plots (e.g. Giles & Omlin, 1993; Zeng, Goodman & Smyth,

1993; Gori, Maggini & Soda, 1994; Niklasson & Bodén, 1997; Tonkes, Blair

& Wiles, 1998; Tonkes & Wiles, 1999; Rodriguez, Wiles & Elman, 1999;

Rodriguez, 1999; Tabor & Tanenhaus, 1999),

• activation values plotted over time (e.g. Husbands, Harvey & Cliff, 1995;

Meeden, 1996; Ziemke & Thieme, 2002),

• iterated maps (e.g. Wiles & Elman, 1995),
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• vector flow fields (e.g. Rodriguez et al., 1999; Rodriguez, 1999),

• external descriptive behaviour analysis of RNN based autonomous robotic

controllers (e.g. Husbands et al., 1995; Meeden, 1996),

• weight space analysis (e.g. Bodén, Wiles, Tonkes & Blair, 1999; Tonkes &

Wiles, 1999),

• dynamic systems theory (e.g. Tonkes et al., 1998; Rodriguez et al., 1999;

Rodriguez, 1999; Bodén, Jacobsson & Ziemke, 2000),

• and ordinary quantitative evaluations of RNN performance for different do-

mains (basically every single paper where an RNN is applied).

Unlike previous surveys of rule extraction (Andrews, Diederich & Tickle, 1995;

Tickle, Andrews, Golea & Diederich, 1997, 1998), this thesis deals exclusively with

rule extraction from recurrent neural networks (resulting in quite different evalua-

tion criteria than in previous RE surveys, as Chapter 4 illustrates). In fact, many of

the RE approaches for non-recurrent networks could potentially be used on RNNs,

or at least on non-recurrent networks in temporal domains (e.g. Craven & Shavlik,

1996; R. Sun, Peterson & Sessions, 2001). There are also other symbolic learning

techniques for “training” finite automata on symbolic sequence domains directly,

without taking the extra step of training a neural network, which could be men-

tioned (R. Sun & Giles, 2001; Cicchello & Kremer, 2003). While these techniques

are certainly interesting in themselves and should also be compared to RNN-RE

techniques experimentally, they are not further examined in this thesis.

To summarize, this part of the thesis (i.e. Chapters 2–7) is focused solely on

RNN-RE techniques, but this field is closely related to the above mentioned areas4.

It may also be worth mentioning that, as a review of techniques, the descriptions

are not meant to be tutorials. Thus, for readers interested in implementing the

algorithms, consulting the cited papers should be more helpful.

2.2 Overview of Part I

Firstly, Chapter 3 describes RNNs, finite state machines, and common character-

istics of RNN-RE algorithms. The evaluation criteria underlying the construction

4As well as a number of areas that are related based on coincidental overlap rather than
tradition (cf. Chapter 15).
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of a taxonomy for appropriately classifying and describing RNN-RE algorithms are

described in Chapter 4. The techniques are described in Chapter 5 and are conse-

quently discussed in light of the evaluation criteria in Chapter 6. The open research

issues are summarized in Chapter 7.
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Chapter 3

Background

An RNN processes sequences of data (input) and generates responses (output) in

a discrete time manner. The RNN processes information by using its internal con-

tinuous state space as an implicit, holistic memory of past input patterns (Elman,

1990). In the extraction of rules from an RNN, the continuous state space is ap-

proximated by a finite set of states and the dynamics of the RNN is mapped to

transitions among this discrete set of states.

A brief definition of what constitutes a recurrent neural network in the scope

of this thesis follows. In addition, a concise introduction to finite state machines

(FSMs) will also be provided, since the extracted rules are typically represented as

such. A more detailed description of what RNN-RE algorithms typically constitute

will then follow.

3.1 Recurrent neural networks

To provide a detailed review of the achievements in RNN research and the vast

variety of different RNN architectures is far beyond the scope of this thesis. Instead,

a set of identified common features of most RNN architectures will be described at

an abstract enough level to hopefully not only incorporate most networks to which

the existing RNN-RE algorithms could be applied but also abstract enough to see

the striking similarities of RNN computation with the computation in finite state

machines (see Definition 3.2). Readers with no prior experience of RNNs can find

more detailed descriptions and well developed classifications of RNNs in Kolen and
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Kremer (2001), Kremer (2001) or Barreto et al. (2003).

Only a few of the many RNN architectures have been used at all in the context

of rule extraction, e.g., simple recurrent networks (SRNs, Elman, 1990) and more

commonly second-order networks (e.g., Sequential Cascaded Networks, SCNs, Pol-

lack, 1987). These models differ somewhat in their functionality and how they are

trained. But the functional dependencies are, at some level of abstraction, basically

the same, which is exploited in the definition below.

Definition 3.1 A Recurrent Neural Network R is a 6-tuple R = 〈I, O, S, γs, γo,

s0〉 where, I ⊆ R
ni is a set of input vectors, S ⊆ R

ns is a set of state vectors,

O ⊆ R
no is a set of output vectors, γs : S × I → S is the state transition function,

γo : S × I → O is the state interpretation function, and s0 ∈ S is the initial state

vector. ni, ns, no ∈ N are the dimensionalities of the input, state and output

spaces respectively. �

Often the input, state and output are restricted to hypercubes with all elements

limited to real numbers (or, of course, rational approximations of real numbers

when simulated) between zero and one or minus one and one. When training the

networks, the two functions γs and γo are typically adjusted to produce the desired

output according to some training set. For a sequence of input vectors (i1, i2, . . . , iℓ)

the state is updated according to st = γs(s
t−1, it) and the output according to

ot = γo(i
t, st−1). The functional dependencies are depicted in Figure 3.1.

Note that the weights, biases, activation functions and other concepts typically

associated with neural networks are all hidden in the state transition function γs and

state interpretation function γo. This is because, as far as RNN-RE algorithms are

concerned, the fact that the networks have adaptive weights and can be trained,

is of less importance. An interesting consequence of the abstract nature of this

RNN description, which is also all that is required to continue describing RNN-RE

algorithms, is that it reveals something about the portability of the algorithms1

(cf. Section 4.2). There are simply not many assumptions and requirements of the

underlying RNNs, which means that they are portable to more RNN types than

they would be otherwise. However, there are a few assumptions, e.g., that states

1To ensure high portability in my own suggested technique, a slightly more general definition
will be given in Part II which does not include an initial state (Definition 9.1 on page 57).
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Figure 3.1: The functional dependencies of the input, state and output of an RNN. This
is a Mealy-type RNN, i.e. where the output is determined by state and input together.
For some RNNs it may be more appropriate to describe them as Moore machines where
the output can be determined from the state alone. This can however be achieved in
the Mealy machine by simply letting the input domain’s influence over the output be
possible in theory but non-existent in practice. Therefore the Mealy machines encompass
also Moore machines.

should cluster in the state space as a result of the training (Cleeremans et al., 1989;

Servan-Schreiber et al., 1989). Some, more implicit, assumptions are also the target

of some of the criticisms of RNN-RE (Kolen, 1993, 1994a), which will be discussed

in Section 6.7 (more implicit assumptions are also discussed in Section 6.5).

3.2 Finite state machines

The rules extracted from RNNs are almost exclusively represented as finite state

machines (FSMs). The following description is kept brief. For a full discussion of

what comprises a regular language and other classes of formal languages, interested

readers are referred to Hopcroft and Ullman (1979).

Definition 3.2 A Deterministic Mealy Machine M is a 6-tuple M = 〈X, Y, Q,

γs, γo, q
0〉 where, X is the finite input alphabet, Y is the finite output alphabet, Q is

a finite set of states, γs : Q×X → Q is the transition function, γo : Q×X → Y is

the output function, and q0 ∈ Q is the initial state (note the similarities with the

RNNs in Definition 3.1). �

In cases where the output alphabet is binary the machine is often referred to as

a finite state automaton (FSA). In an FSA, the output is interpreted as an accept or

reject decision determining whether an input sequence is accepted as a grammatical

string or not.
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Figure 3.2: Examples of (non-equivalent) different FSM types with X = {a, b}, Y =
{c, d}, Q = {1, 2} and qo = 1; (A) deterministic Moore machine, (B) deterministic Mealy
machine, (C) nondeterministic Moore machine, and (D) nondeterministic Mealy machine.

There are actually two different models which can describe an FSM; Mealy (as

above) or Moore machines that, although they are quite different from each other,

are computationally equivalent (Hopcroft & Ullman, 1979). Moore machines gener-

ate outputs based only on the current state and Mealy machines on the transitions

between states, i.e. the output function, γo, is for a Moore machine γo : Q → Y

and for a Mealy machine γo : Q × X → Y .

In deterministic machines, an input symbol may only trigger a single transition

from one state to exactly one state (as in the definition above). In a nondetermin-

istic machine, however, a state may have zero, one or more outgoing transitions

triggered by the same input, i.e. the transition function, γs, is γs : Q × X → 2Q (a

function to the power set of Q) instead of γs : Q×X → Q. This means that in a non-

deterministic machine, a symbol may trigger one or more transitions from a state,

or even no transition at all (since ∅ ∈ 2Q). I will denote nondeterministic machines

incomplete if there is at least one q ∈ Q and x ∈ X such that γs(q, x) = ∅. Deter-

ministic and nondeterministic finite state machines are computationally equivalent,

although nondeterministic machines can typically be much more compact (i.e. have

less states) than their deterministic counterpart. Deterministic FSM and determin-
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1. Quantization of the continuous state space of the RNN,
resulting in a discrete set of states.

2. State and output generation (and output classification, if
necessary) by feeding the RNN input patterns.

3. Rule construction based on the observed state transitions.
4. Rule set minimization.

Table 3.1: The common “ingredients” of RNN-RE algorithms.

istic FSA, will be abbreviated DFM and DFA respectively.

In summary, there are four types of FSMs: deterministic Moore machine, de-

terministic Mealy machine, nondeterministic Moore machine, and nondeterminis-

tic Mealy machine, see Figure 3.2 for examples. Moreover, the machines can be

stochastic2 as well if transition probabilities are also encoded in the machine.

For a more detailed description of deterministic and nondeterministic, Mealy

and Moore machines, proofs of equivalence, and a “standard” minimization algo-

rithm, see Hopcroft and Ullman (1979). For the corresponding theory on stochastic

machines, see Paz (1971).

3.3 The basic recipe for RNN rule extraction

The algorithms described in this thesis have many features in common as listed in

Table 3.1.

The continuous state space of the RNN needs to be mapped into a finite set of

discrete states corresponding to the states of the resulting machine. We will refer

to the states of the network as microstates and the finite set of quantized states

of the network as macrostates. The macrostates are basically what the RE algo-

rithm “sees” of the underlying RNN, whereas the actual state of the network, the

microstates, are hidden. The act of transforming the microstates into macrostates

is a critical part of RNN-RE algorithms (ingredient one in Table 3.1) and is called

quantization. One macrostate corresponds to an uncountable set of possible mi-

2Cf. stochastic sequential machines (Paz, 1971), probabilistic automata (Rabin, 1963) or the
substochastic sequential machines as I suggest in Part II.
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crostates (only in theory; in practice the RNN is simulated on a computer with

finite precision). Therefore deterministic sequences of events at the microstate-

level may appear stochastic at the macrostate-level since information is lost in the

quantization, e.g., if two microstates a1, a2 ∈ A deterministically transit to mi-

crostates b1 ∈ B and c1 ∈ C respectively, then, at macrostate level, it cannot be

determined from observing macrostate A whether the next macrostate will be B or

C.

Another common ingredient of RNN-RE algorithms is systematic testing of the

RNN with different inputs (from the domain or generated specifically for the ex-

traction) and the (macro)states and outputs are stored and used to induce the finite

state machine (ingredient two). The third ingredient is the machine construction,

a process often conducted concurrently with the state and output generation.

Many times, the generated machine is then minimized using a standard min-

imization algorithm (Hopcroft & Ullman, 1979), which is the fourth common in-

gredient of RNN-RE algorithms. FSM minimization is however not part of all

algorithms, and can also be considered an external feature, independent of the

actual extraction.
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Chapter 4

Evaluation Criteria and Taxonomy

Several evaluation criteria have been chosen in order to simplify comparisons and to

structure the descriptions of the algorithms in the following chapters. The rule type,

quantization method and state generation method can be considered to constitute

the main distinguishing features of RNN-RE algorithms, and are therefore been

used to structure this survey.

4.1 Main criteria

4.1.1 Rule type

As previously mentioned (in Section 3.2) the rules generated by RNN-RE algorithms

are FSMs that are either deterministic, nondeterministic or stochastic. They can

also be in a Mealy or Moore format. In my classification of rule types I have also

chosen to distinguish whether the machine (and underlying RNN) is producing a

binary accept/reject decision at the end of a string (i.e. like an FSA) or if the task

is to produce an output sequence of symbols based on the input sequence (typically

for prediction).

4.1.2 Quantization

One of the most varying elements of existing RNN-RE algorithms is the state space

quantization method. Examples of methods used include: hierarchical clustering,

vector quantization and self organizing maps (see Section 6.2 for a detailed discus-
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sion).

4.1.3 State generation

Another important criterion is the state generation procedure for which there are

two basic methods: searching and sampling. These are further described in the

descriptions of the algorithms.

4.1.4 Network type and domain

Although not a feature of the extraction algorithm per se, the network type(s) and

in which domain(s) each RNN-RE algorithm is used, are explicitly listed for each

presented technique.

4.2 Criteria from the ADT taxonomy

Andrews et al. (1995) introduced a taxonomy, the ADT1 taxonomy, for RE algo-

rithms which has since been an important framework when introducing new, or

discussing existing, RE algorithms (e.g. Schellhammer, Diederich, Towsey & Brug-

man, 1998; Vahed & Omlin, 1999; Craven & Shavlik, 1999; Blanco, Delgado &

Pegalajar, 2000). The five evaluation criteria in the ADT taxonomy are: expressive

power, translucency, portability, rule quality and algorithmic complexity. However,

for some of their classification aspects all RNN-RE algorithms would end up in

the same class and those aspects are therefore not very informative. The ADT

taxonomy does, however, provide us with some very useful viewpoints discussed

in Chapter 6. Some of the terminology from the ADT taxonomy also appears in

various sections of this survey, therefore a brief description of the ADT aspects

follows.

4.2.1 Expressive power

The expressive power is basically the type of rules generated by the RE and hence

subsumed by our rule type criteria. Taking Tickle et al. (1997) and Tickle et al.

(1998) into account, ADT identifies four basic classes:

1 “ADT” comes from the names of the authors, Andrews, Diederich and Tickle.
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• propositional logic (i.e. if...then...else),

• nonconventional logic (e.g., fuzzy logic),

• first-order logic (i.e. rules with quantifiers and variables), and

• finite state machines.

Almost all rules from RNN-RE algorithms comply with the last category.

4.2.2 Translucency

One of the central aspects in the ADT taxonomy, translucency, described as the

“degree to which the rule-extraction algorithm ’looks inside’ the ANN” is less rel-

evant in this survey since it is not a distinguishing feature of RNN-RE algorithms.

ADT initially identified three types of RE algorithms, (i) decompositional algo-

rithms where rules are built on the level of individual neurons and then combined,

(ii) pedagogical approaches using a black-box model of the underlying network and

(iii) eclectic algorithms with aspects from both previous types. Tickle et al. (1998)

also introduced a fourth intermediate category, compositional, to accommodate for

RNN-RE algorithms that are all (except for one pedagogical algorithm (Vahed &

Omlin, 1999, 2004)) based on analysing ensembles of neurons (i.e. the hidden state

space).

4.2.3 Portability

Portability denotes how well an RE technique covers the set of available ANN

architectures. As for translucency, portability is probably much the same for all

RNN-RE algorithms. It is also a quite complex aspect of RE techniques (tightly

bound with translucency, and, in terms of feasibility, with algorithmic complexity)

and therefore this survey does not distinguish RNN-RE algorithms by this criterion.

4.2.4 Quality

The quality of the extracted rules is a very important aspect of RE techniques, and

perhaps the most interesting for evaluation of the quality of the algorithms. This

aspect differs from the other ones because it evaluates RE algorithms at the level

of the rules rather than at the level of the RE algorithms themselves.
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Based on previous work, such as Towell and Shavlik (1993), four sub-aspects of

rule quality are suggested in the ADT taxonomy;

• rule accuracy, i.e. the ability of the rules to generalize correctly to unseen

examples,

• rule fidelity, i.e. how well the rules mimic the behaviour of the RNN,

• rule consistency, i.e. the extent to which equivalent rules are extracted from

different networks trained on the same task, and

• rule comprehensibility, i.e. readability of rules and/or the size of the rule set.

4.2.5 Algorithmic complexity

The algorithmic complexity of RE algorithms is unfortunately also often an open

question as authors seldom analyse this explicitly (Andrews et al., 1995). Although

Golea (1996) demonstrated that RE can be an NP-hard problem, it is unclear how

existing heuristics affect the actual expected time and space requirements. The

complexity of RNN-RE has not received much attention and the issue itself is quite

complex as the execution time can be affected by many factors, e.g., number of state

nodes, number of input symbols, granularity of the quantization, RNN dynamics

etc.
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Chapter 5

RNN-RE Techniques

In spite of the identified common characteristics of RE algorithms (Table 3.1),

dividing them into groups has been a painstaking task as there are innumerable

ways to do so. The techniques are presented in a primarily chronological order and

when a later technique is similar to an earlier one, it is presented in connection

with its predecessor (although this relation may be constituted by coincidental

similarities rather than a direct continuation of prior work).

Firstly, some early work that laid the foundation for the development of RE

techniques is presented in the following section. The algorithms are subsequently

described in more detail in Sections 5.2-5.7. However, for more comprehensive

descriptions of the algorithms, interested readers should refer to the original papers.

5.1 Pre-RE approaches

To understand the roots of FSM extraction from recurrent networks, it is useful

to recognize that in some early attempts to analyse RNNs, clustering techniques

were used on the state space, and clusters corresponding to the states of the FSM

generating the language were found (clustering, i.e. quantization, is still today one of

the central issues of the research on RE from RNNs). Hierarchical Cluster Analysis

(HCA) was used for analysing RNNs in a few early papers on RNNs (Cleeremans

et al., 1989; Servan-Schreiber et al., 1989; Elman, 1990; Servan-Schreiber et al.,

1991). The authors found that for a network trained on strings generated by a

small finite-state machine, the HCA may find clusters in the state space which
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apparently correspond to the states of the grammar. The clusters of the HCA were

labelled using the labels of the states of the underlying (known) state machine,

making it easy to draw the connection between the RNN and the FSM.

The fact that much of the early research on RNNs was conducted on problem

sets explicitly based on FSMs may have biased subsequent research to look for these

FSMs inside the network. However, for some successful networks (e.g. Servan-

Schreiber et al., 1991), no clusters corresponding directly to the states of the FSM,

which generated the training set language, were found. This meant the network had

an alternative, but apparently correct, representation of the problem, that differed

from the one anticipated. This was probably due to the fact that the clusters of

the internal state of the network did not necessarily have a straightforward one-to-

one relation with the states of the corresponding minimal machine. It was later

shown that non-minimal machines would typically be what is initially extracted by

clustering the state space when RE was used on RNNs (Giles, Miller, Chen, Chen &

Sun, 1992). Therefore FSM minimization is included in most RNN-RE algorithms.

The basic problem of using only clustering (and not recording the transitions)

for analysing RNNs is that there is no reliable way of telling how the clusters relate

to each other temporally1. If the exact same FSM is not found, the clusters may

not be labelled using the original FSM as a source and the temporal ordering of

the clusters is therefore lost. This problem was also observed by Elman (1990):

“the temporal relationship between states is lost. One would like to know what the

trajectories between states [...] look like.”. The solution of this problem led to the

development of FSM extraction from RNNs.

5.2 Search in equipartitioned state space

The algorithm of Giles et al. (Giles et al., 1991; Giles, Miller, Chen, Chen &

Sun, 1992; Omlin & Giles, 1996b) partitioned the state space into equally sized

hypercubes (i.e. macrostates) and conducted a breadth-first search by feeding the

1 There are also other problems of an HCA-based analysis of ANNs in general, as adjacent
states (i.e. hidden unit activations) may be interpreted differently by the output layer and remote
states may have the same interpretation (N. E. Sharkey & Jackson, 1995). For RNNs this becomes
even more problematic as the state is not only mapped into an output but also mapped recursively
to all succeeding outputs through the state transitions. This is one of the issues that is dealt with
in more detail in Part II.
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Figure 5.1: A schematic conceptual diagram of spatial representations in the state
nodes s1 and s2 of an SRN as presented by Elman (1990) (Elman did, however, use an
HCA rather than plotting values directly since his SRN had 150 state nodes). Elman’s
SRN was trained on predicting words in natural language sequences, and it separated
the internal representations of words through their context in sentences. Word classes as
well as semantical grouping were observed. By observing only recorded activations of the
state space, however, there is no information how the temporal relationships of the words
are processed dynamically by the SRN. These dynamics can be analysed using RNN-RE
techniques, however.
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DFA extraction, regular partitioning, breadth first search
(Giles et al., 1991; Giles, Miller, Chen, Chen & Sun, 1992; Omlin & Giles, 1996b)

Rule type: Moore DFA with binary (accept/reject) output.
Quantization: Regular partitioning by q intervals in each state dimension, gen-

erating qN bins of which typically only a small subset is visited
by the RNN.

State generation: Breadth-first search.
Network(s): Predominantly used on second-order RNNs
Domain(s): Predominantly regular languages with relatively few symbols.

Some applied domains, e.g., quantized financial data (Giles,
Lawrence & Tsoi, 1997; Lawrence, Giles & Tsoi, 1998; Giles,
Lawrence & Tsoi, 2001)

Table 5.1: Summary of algorithm extracting DFA through searching in an equiparti-
tioned state space.

network input patterns until no new partitions were visited. The transitions among

the macrostates (induced by input patterns) were the basis for the extracted ma-

chine. The search started with a predefined initial state of the network and tested

all possible input patterns on this microstate, see Figure 5.2. The first encountered

microstate of each macrostate was then used to induce new states. This guaranteed

the extraction of a deterministic machine since any state drift (Das & Mozer, 1994,

1998) was avoided as the search was pruned when reentering already visited parti-

tions. The extracted automaton was then minimized using a standard minimization

algorithm for DFA (Hopcroft & Ullman, 1979). The algorithm is summarized in

Table 5.1.

The central parameter of the algorithm is the quantization degree q of the

equipartition. The authors suggested starting with q = 2 and increasing it until an

automata consistent with the training set is extracted, i.e. the termination criteria

is to have perfect accuracy of the rules. The choice of q is, however, usually not

explicitly described as part of the RE algorithm (one exception is in the description

by Omlin (2001) where the suggested incremental procedure is also part of the

algorithm).

Giles, Miller, Chen, Chen and Sun (1992) found that the generalization ability

of the extracted machines sometimes exceeded that of the underlying RNNs. Since

the networks were trained on regular grammars, if the extraction result was a

DFA equivalent with the original grammar that generated the training/test set,

generalization would also be perfect. Giles, Miller, Chen, Sun et al. (1992) showed
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Figure 5.2: An example of the DFA extraction algorithm of Giles et al. (1991) used
on an RNN with two state nodes trained on a binary language and the quantization
parameter q = 3. The state space is divided into accept and reject regions (gray and
white respectively). The algorithm expands the graph until all nodes have two outgoing
arcs. Note that the macrostate corresponding to node 3 could actually be interpreted both
as an accept and reject state depending on the microstate, but the algorithm used the
interpretation of the first encountered microstate as the interpretation of the macrostate.
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that during successful training of an RNN, the extracted DFA will eventually belong

to the same equivalence class as the original DFA. The existence of equivalence

classes over different degrees of quantization (i.e. different values of q) was used

in Omlin, Giles and Miller (1992) as an indicator of the networks’ generalization

ability, i.e. if the extracted DFAs for increasing values of q collapsed into a single

equivalence class, it was taken as a sign of good generalization ability without the

need for explicitly testing this on a separate test set.

The same algorithm has been used in various other contexts: as part of rule

refinement techniques (e.g. Omlin & Giles, 1992; Giles & Omlin, 1993; Das et al.,

1993; Omlin & Giles, 1996c), as an indicator of an underlying language class (Blair

& Pollack, 1997), as a method for complexity evaluation (e.g. Bakker & Jong, 2000),

as part of a quantitative comparison of different RNN architectures (Miller & Giles,

1993), as a means for FSM acquisition2 (e.g. Giles, Horne & Lin, 1995) or simply

as an analysis tool of the RNN solutions3 (e.g. Giles & Omlin, 1994; Goudreau &

Giles, 1995; Giles et al., 1997; Lawrence et al., 1998; Lawrence, Giles & Fong, 2000;

Giles et al., 2001; Bakker, 2004). The algorithm has also been used in the context

of recursive networks (Maggini, 1998).

An apparent problem with this technique is that the worst-case number of clus-

ters grows exponentially with the number of state nodes N (qN). The time needed

for the breadth-first search will also grow exponentially with the number of possible

input symbols. In practice, however, the number of visited states is much smaller

than the number of possible states.

This, the earliest of RNN-RE methods, is also the most widespread algorithm.

Almost all subsequent papers where new RNN-RE techniques have been proposed

cite Giles, Miller, Chen, Chen and Sun (1992). But often these papers do not

contain citations to each other, implying that the field is less diverse than it actually

is. Consequently there is a surprising variety of RE approaches, some of them

seemingly developed independently of each other.

2Implicitly, however, more or less all papers using RE are in some way on FSM/language
acquisition. This division into RNN-RE usage should be taken with a grain of salt since each
paper has more than one contribution.

3This is also implicitly part of many other papers as well.
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DFA extraction, vector quantifier, breadth first search
(Zeng et al., 1993; Frasconi et al., 1996; Gori et al., 1998)

Rule type: Moore DFA with binary (accept/reject) output.
Quantization: k-means.
State generation: Breadth-first search.
Network(s): Second-order RNNs (Zeng et al., 1993), Recurrent radial ba-

sis function network, (Frasconi et al., 1996; Gori et al., 1998),
RNN with an external pushdown automaton (G. Z. Sun, Giles
& Chen, 1998).

Domain(s): Regular binary languages (Tomita, 1982), context free lan-
guages (G. Z. Sun et al., 1998).

Table 5.2: Summary of algorithms extracting DFA through searching in a state space
partitioned by vector quantization.

5.3 Search in state space partitioned through

vector quantization

An alternative to the simple equipartition quantization was already suggested by

Zeng et al. (1993) where a k-means algorithm was used to cluster the microstates.

The centres of the clusters, the model vectors, were used as the basis for the breadth-

first search, i.e. the RNN was tested with all input symbols for each model vector

state (cf. the equipartition algorithms where the first encountered RNN state is the

basis for further search). See Figure 5.3 for an illustrative example of this algorithm.

A similar approach, also using k-means, developed seemingly independently from

Zeng et al. (1993) was presented in Frasconi, Gori, Maggini and Soda (1996) and

Gori, Maggini, Martinelli and Soda (1998), and a similar SOM-based approach in

Blanco et al. (2000). A summary of these approaches is provided in Table 5.2.

In order to support an appropriate clustering of states, Zeng et al. (1993)

and Frasconi et al. (1996) induced a bias for the RNN to form clusters during

training. Other studies have also followed this approach (Das & Das, 1991; Das &

Mozer, 1994, 1998). RE-RNN algorithms developed on such specialized RNNs may,

however, not work on other networks. RE techniques that can be used on already

existing networks (i.e. typically not designed for easy analysis) are described by

Tickle et al. (1998) as more attractive techniques.

In the presented search-based approaches, the reentering into partitions was the

basis of pruning the search. A different pruning strategy was suggested by Alquézar

30



++

+++

++
++

+
+
+

+

+

+

++

+

1

0
1S

S

0 1

2

++
++

+

+
+
++

+

+ +

+
++

+
+

+
+
+ +

++ +
+

+

++

++
+

+

+ + +
+ +

+

+ + +
++

S1

S

0 1
0

2

4

2

3

5

1
1

A B
2

4

2

1
3

5

b

1

1

0
1S

S

a
b

b

a

a

ba

b

a

0

b

b
b

a

b
a

a

b
a

1

2

3

4

5a

C D

Figure 5.3: An illustrative example of rule extraction through breadth-first search in a
state space clustered by k-means. (A) The states of the RNN are sampled during training,
(B) these states are clustered into a predefined number of clusters, (C) a breadth-first
search (cf. Figure 5.2)conducted based on the model vectors and, (D) the machine is
constructed.
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Figure 5.4: An example of a prefix tree of depth three, created from a language that
only accepts strings containing at least two b’s.

and Sanfeliu (1994a) and Sanfeliu and Alquézar (1995) who chose to use the domain

to determine search depth (the algorithm is summarized in Table 5.3). A prefix tree

(see Figure 5.4) was built based on the occurrences of positive and negative strings

in the training set, i.e. the prefix tree contained only strings present in the training

set. The states of the RNN were generated using only the strings in the prefix tree.

The authors used RE as part of their Active Grammatical Inference (AGI) learning

methodology, an iterative rule refinement technique.

The states generated with the prefix tree were the basis of the initial machine.

The spatially closest pair of these states was then merged iteratively until further

clustering would result in an inconsistency. This RE technique was also used for

a wide variety of regular grammars and two types of networks in Alquézar et al.

(1997). The authors reported that the extracted machines on average performed

significantly better than the original RNNs.

5.4 Sampling-based extraction of DFA

Instead of conducting a search in the quantized state space, the activity of the RNN

in interaction with the data/environment can be recorded. In this way, the domain

can be considered as heuristics confining the states of the RNN to only relevant

states.
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DFA extraction, hierarchical clustering, sampling on domain
(Alquézar & Sanfeliu, 1994a), and (Sanfeliu & Alquézar, 1995)

Rule type: Unbiased Moore DFA. Unbiased means the output is trinary
(accept, reject and unknown).

Quantization: Hierarchical clustering.
State generation: A prefix-tree is built based on the examples of the training set.
Network(s): First-order RNN (not specified in Alquézar and Sanfeliu (1994a)

but in Sanfeliu and Alquézar (1995)).
Domain(s): At least 15 different regular binary languages (Alquézar et al.,

1997).

Table 5.3: A summary of the search-based DFA extracting algorithm proposed by
Alquezar and Sanfeliu for unbiased grammars.

DFA extraction, dynamic interval clustering, sampling on domain
(Watrous & Kuhn, 1992)

Rule type: Moore DFA with binary (accept/reject) decision.
Quantization: Dynamically updated intervals for each state unit. States are

collapsed and split through updating the intervals.
State generation: Sampling the RNN while processing the domain.
Network(s): Second-order RNNs.
Domain(s): Regular binary languages (Tomita, 1982).

Table 5.4: A summary of the sampling-based DFA extraction algorithm proposed by
Watrous and Kuhn (1992).

Already before the development of RE techniques for RNNs, sampling of the

state space using the domain, was the most natural way of conducting analysis of

RNNs (Cleeremans et al., 1989; Servan-Schreiber et al., 1989; Elman, 1990). The

first RE technique based on sampling the RNN was proposed by Watrous and Kuhn

(1992) (see Table 5.4). The quantization of the state space was based on splitting

individual state units’ activations into intervals. They described that these intervals

could be merged and split to help the extraction of minimal and deterministic rules.

The procedure of state splitting, however, is somewhat vaguely described and may

require intervention from the user.

Manolios and Fanelli (1994) chose to use a simple vector quantifier to discretize

the state space. Training from different, randomly initiated, model vectors were

repeatedly conducted until a deterministic machine was found. The termination

of this procedure is, however, not guaranteed. The algorithm is summarized in

Table 5.5.
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DFA extraction, vector quantifier, sampling on domain
(Manolios & Fanelli, 1994), originally in tech. rep. (Fanelli, 1993)

Rule type: Moore DFA with binary (accept/reject) decision.
Quantization: A simple vector quantifier, details unclear.
State generation: Sampling on a test set.
Network(s): First-order RNNs.
Domain(s): Regular binary languages (Tomita, 1982).

Table 5.5: The sampling-based DFA extractor originally proposed in Fanelli (1993).

DFM extraction, SOM, sampling on domain

(Tiňo & Šajda, 1995)

Rule type: Mealy DFM with multiple output symbols.
Quantization: Star topology SOM.
State generation: Sampling on training set.
Network(s): Second-order RNNs.
Domain(s): Regular formal language domains with either two or three input

symbols (not counting the end-of-string symbol) and two or
three output symbols.

Table 5.6: Summary of the sampling-based DFM extractor of Tiňo and Šajda (1995).

A similar approach was suggested in Tiňo and Šajda (1995) where an algorithm

for removing inconsistent transitions was introduced. This algorithm could, how-

ever, fail under certain circumstances so that the extraction of a DFA could not

be guaranteed. A star topology self-organizing map (SOM, (Kohonen, 1995)) was

used to quantize the state space. Tiňo and Šajda (1995) were the first to extract

Mealy instead of Moore machines and also the first who did not confine the output

to binary accept/reject decisions (not counting the unbiased DFA of Alquézar and

Sanfeliu (1994a)). This algorithm is summarized in Table 5.6.

The breadth-first search will reliably find consistent DFMs since the search is

pruned before inconsistencies leading to indeterminism are introduced. The DFM

will also be complete since all symbols are tested on all states. In sampling the

state space, determinism is no longer guaranteed, since two microstates of the same

macrostate may result in transitions to different macrostates (even though these

transitions are triggered by the same input symbol). Two state vectors in the same

partition may also be mapped to different classes in the output. The extracted

machines may also be incomplete since all symbols may not have been tested on
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DFM extraction, vector quantizer, sampling on domain
(Schellhammer et al., 1998)

Rule type: Mealy DFM with a “rescue state” used to make machine com-
plete.

Quantization: k-means.
State generation: Sampling on training set. Inconsistencies solved by discarding

the least frequent of inconsistent transitions.
Network(s): SRN.
Domain(s): Natural language prediction task.

Table 5.7: Summary of the only sampling-based DFM extractor, where inconsistencies
and incompleteness are handled.

all states. Therefore, the DFM extraction, through sampling could fail as in the

above cases of Watrous and Kuhn (1992), Manolios and Fanelli (1994) and Tiňo

and Šajda (1995). It is unclear how incomplete machines were handled in the above

described approaches. Perhaps the extracted machines were small enough and the

domains simple enough that no such problems occurred.

One approach to solving the problem of indeterminism is the use of transition

frequencies to discard the least frequent of inconsistent transitions. This heuristic

should, in most cases, solve the inconsistency without deviating much from the

operation of the underlying RNN in the majority of the transitions. This simple

procedure was proposed by Schellhammer et al. (1998) (summarized in Table 5.7).

They also dealt with the problem of incomplete machines by creating transitions

to a predefined “rescue state” to complete the machine. These simplifications did

not significantly reduce the performance of the DFM and the rescue state enabled

the machines to make “guesses” about inputs that otherwise would not be possible

to parse.

5.5 Stochastic machine extraction

As described in the previous section, the extraction of deterministic FSMs (DFMs)

from RNNs through sampling is hampered by the fact that the quantization of

the state space may lead to inconsistencies in the macrostate transitions. These

inconsistent transitions (and potentially state interpretations) will, however, follow

some patterns and if all such transitions are counted they can be transcribed into
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a stochastic machine, i.e. a machine with probabilities associated with the transi-

tions. The inconsistencies that ruin a DFM extraction may in other words contain

informative probabilities that more accurately describe the RNN.

An algorithm for the extraction of stochastic machines from RNNs was proposed

by Tiňo and Vojtek (1998). These extracted machines were, however, not equivalent

to the stochastic machines defined by Paz (1971) and Rabin (1963) since the the

conditional probability of the output given the state transition was not included in

the model, i.e. the extracted machines did not model the output of the RNN. The

algorithm quantized the state space using a SOM (as did Tiňo and Šajda (1995)).

The generation of states (and state transitions) was divided into two phases; the

“pre-test” phase, where the RNN was domain-driven, and a “self-driven” phase,

where the output of the RNN was used as input in the next time-step (this RNN

was trained to predict a long sequence of symbols). In Tiňo and Köteles (1999)

(further described in Tiňo, Dorffner and Schittenkopf (2000)) the SOM was replaced

with a dynamic cell structure (DCS, Bruske and Sommer (1995)), but otherwise

the algorithm was the same (see the summary in Table 5.8).

The stochastic machines can be analysed in new interesting ways. The authors

(Tiňo & Vojtek, 1998; Tiňo & Köteles, 1999), for example, used entropy spectra

(K. Young & Crutchfield, 1993) to compare the probabilities of strings generated

by the RNNs with the probabilities of the strings in the original source. While

the results were interesting, there were no indications, in that paper, how well

the extracted machines corresponded to the network (i.e. rule fidelity) or how well

they generalized on any test set4 (i.e. rule accuracy). The comprehensibility of the

extracted rules complete also cannot be determined from these papers. The fact

that the extracted machines did not model the output of the RNN also makes it

difficult to evaluate this algorithm in the context of the other ones

Another related approach which may not be rule extraction per se, but can

perhaps, at least, be termed a partial rule extraction algorithm, is the “neural

prediction machine” (NPM) constructed in (Tiňo, Čerňanský & Beňušková, 2004).

The NPM predicts the next symbol given the state of the network, i.e. the state

dynamics are handled by the RNN and not extracted at all (see a summary of this

4Unless the entropy spectra analysis is considered a form of accuracy measurement. This is
something it can be argued to be (P. Tiňo, personal communication, June 27, 2006)

36



Stochastic machine extraction, SOM, sampling on domain
(Tiňo & Vojtek, 1998; Tiňo & Köteles, 1999)

Rule type: Stochastic Mealy finite state machine.
Quantization: SOM (unspecified topology) in Tiňo and Vojtek (1998) and

DCS in Tiňo and Köteles (1999)
State generation: Two phases: Sampling on training set and “self-driven” RNN.
Network(s): Primarily second-order RNNs.
Domain(s): Prediction of (four) symbols generated from continuous chaotic

laser data and a chaotic series of binary symbols generated with
iterated logistic map function.

Table 5.8: Summary of approaches of RNN-RE for extraction of stochastic machines.

Neural prediction machine, vector quantizer, sampling on domain
(Tiňo et al., 2004)

Rule type: A “Neural Prediction Machine” (NPM) predicting the next out-
put based on current state of the RNN. State transitions not
modelled.

Quantization: k-means.
State generation: Sampling.
Network(s): First-order RNN.
Domain(s): Continuous chaotic laser data domain transformed to four sym-

bols and recursive natural language domains.

Table 5.9: Neural Prediction Machines (NPMs) differ from the FSM ordinarily extracted
from RNNs in that state transitions are not incorporated into the model.

approach in Table 5.9).

5.6 A pedagogical approach

All previously described algorithms comply with the category compositional in

ADT’s translucency classification (see Section 4.2). There is, to my knowledge, only

one algorithm that uses a pedagogical approach instead. Vahed and Omlin (1999,

2004) used a machine learning method requiring only the input and the output

to extract the machine, i.e. the internal state is ignored (see the summary in Ta-

ble 5.10). The data used for extraction was based on all strings up to a given length.

The input and output of the network was recorded and fed to the polynomial-time

“Trakhtenbrot-Barzdin” algorithm (Trakhtenbrot & Barzdin, 1973).

It was also reported that this algorithm was more successful in returning correct
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DFA extraction, black-box model
(Vahed & Omlin, 1999, 2004)

Rule type: Moore DFA with binary (accept/reject) output.
Quantization: N/A.
State generation: All strings up to a certain length.
Network(s): Second-order RNN.
Domain(s): One randomly generated 10-state DFA.

Table 5.10: The only RNN-RE algorithm where the internal state of the RNN is not
regarded during the extraction process.

DFAs than clustering-based algorithms (Giles, Miller, Chen, Sun et al., 1992). This

paper actually seems to be the only one that describes an experimental comparison

of different RE techniques at all.

The machine learning algorithm they used is indeed of polynomial time com-

plexity, given that a prefix tree (see Figure 5.4) is available. But the size of the

prefix tree up to a string length L is of complexity O(nL), where n is the number of

symbols. As a consequence, this approach is likely to have some problems scaling

up to more complex problems with more symbols.

5.7 RE-supporting RNN architectures

As previously mentioned, clusters can be induced during training to support RE in

later stages (Zeng et al., 1993; Frasconi et al., 1996). This was originally suggested

in Das and Das (1991) and further developed in Das and Mozer (1994) and Das

and Mozer (1998). Training to induce clusters results, if successfully performed,

in RNNs that are trivially transformed to finite machines. Since the focus of this

survey is on the details of the extraction procedure, more particulars about these

approaches are not be included in this thesis.
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Chapter 6

Discussion

This section summarizes and evaluates the described techniques from the perspec-

tives of the evaluation criteria: rule type, quantization method, state generation,

network type and domain. The two criteria portability and quality of the ADT

taxonomy (described in Section 4.2), are also discussed.

6.1 Rule types

It is quite clear that most of the research described in Chapter 5 focuses on

extracting “traditional” DFA for classification of binary strings as grammati-

cal/ungrammatical (Giles et al., 1991; Giles, Miller, Chen, Chen & Sun, 1992;

Watrous & Kuhn, 1992; Zeng et al., 1993; Alquézar & Sanfeliu, 1994a; Manolios

& Fanelli, 1994; Sanfeliu & Alquézar, 1995; Omlin & Giles, 1996b; Frasconi et al.,

1996; Gori et al., 1998; Vahed & Omlin, 1999, 2004). Only a few DFA extrac-

tion algorithms are used on domains with more than two output symbols (Tiňo

& Šajda, 1995; Schellhammer et al., 1998). It is also interesting that only three

papers (Schellhammer et al., 1998; Tiňo & Vojtek, 1998; Tiňo & Köteles, 1999)

have studied DFA RNN-RE in a prediction domain while prediction of sequences is

quite commonly studied in RNN research in general (e.g. Elman, 1990; Alquézar &

Sanfeliu, 1994b; Jacobsson, 1999; Gers & Schmidhuber, 2001; Jacobsson & Ziemke,

2003a).

The crisp DFA do not model probabilistic properties of macrostate transitions

and macrostate interpretations; that kind of information is lost in the rules, inde-
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pendently of whether search or sampling is used to generate states. Hence, a more

expressive set of rules may be represented in stochastic FSM (Tiňo & Vojtek, 1998;

Tiňo & Köteles, 1999). Furthermore, the fidelity, i.e. the coherence of the rules

with the RNN, of stochastic rules should in principle be higher (given the same

premises, e.g., quantization) than for their deterministic counterparts. The fidelity

can, however, be measured in various ways (since the term is not clearly defined)

and may possibly lead to ambiguous results. If stochastic machines are to be used

for RNN analysis, however, it is important that the extracted machines also model

the output of the RNN. Such stochastic machines (Paz, 1971; Rabin, 1963) have

yet to be extracted and further work is required to realize this (which this thesis

does actually in Part II).

A way of combining “the best of both worlds” may be to advance the method

chosen by chosen by Schellhammer et al. (1998) in which probabilities were calcu-

lated and then used as heuristics for transforming the incomplete and nondetermin-

istic machine into a deterministic and complete machine. Thus the information loss

from transforming the RNN to a deterministic machine could possibly be tracked.

Of course, this will depend on if the RNN robustly emulates a FSM (Casey, 1996).

Whether this would work or not remains an open issue, but the suggested algorithm

in Part II may alleviate some of the problem by extracting stochastic machines until

a deterministic machine possibly will be found (which is not guaranteed since the

RNN may for example be chaotic).

A last, “exotic”, form of rules is the Neural Prediction Machine. The NPM only

predicts the output of the network given the state, and is not concerned with the

internal mappings of states in the RNN (Tiňo et al., 2004).

6.2 State space quantization

Clearly, there is no consensus about how to quantize the state space. Methods that

have been used are (see Chapter 5 for more complete reference lists):

• Regular (grid) partition (Giles et al., 1991),

• k-means (Zeng et al., 1993; Frasconi et al., 1996; Schellhammer et al., 1998;

Tiňo et al., 2004; Cechin, Pechmann Simon & Stertz, 2003),
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• SOM (Tiňo & Šajda, 1995; Tiňo & Vojtek, 1998; Blanco et al., 2000), dy-

namical cell structures (Tiňo & Köteles, 1999),

• “other” vector quantifiers (Manolios & Fanelli, 1994),

• hierarchical clustering (Alquézar & Sanfeliu, 1994a),

• dynamically updated intervals (Watrous & Kuhn, 1992) and,

• fuzzy clustering (Cechin et al., 2003).

This totals eight different techniques, not counting small variations in implemen-

tations. Although only a fraction of the existing clustering techniques have been

tested at all (Mirkin, 1996; Jain, Murty & Flynn, 1999) it is clear that many of

them has been used to approach the quantization problem.

However, the most striking aspect about the use of this multitude of various

techniques is not that there are so many, but that there are no studies comparing

different quantization techniques to each other in the context of RNN-RE.

The two main families of clustering techniques used are vector-quantization

(VQ, e.g., k-means and SOM) and equipartition. The main difference between

these, apart from VQ-partitions not being of equal sizes and shapes, is that the

VQ-clusters are not fixed prior to the extraction but are instead adapted to fit the

actually occurring state activations in the RNN. In principle, vector quantization

should be able to scale up to more state nodes than the equipartition method since

the number of partitions can be arbitrarily selected independent from state space

dimensionality.

6.3 State generation

There are two basic strategies for generating the states in the RNN (see Chapter 5

for more complete reference lists):

• Searching (Giles et al., 1991; Zeng et al., 1993; Frasconi et al., 1996) and,

• sampling (Watrous & Kuhn, 1992; Manolios & Fanelli, 1994; Alquézar &

Sanfeliu, 1994a; Tiňo & Šajda, 1995; Schellhammer et al., 1998; Tiňo &

Vojtek, 1998; Tiňo et al., 2004).

There are almost no studies experimentally comparing searching- and sampling-

based RNN-RE, apart from one preliminary study (Jacobsson & Ziemke, 2003b)
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(cf. Appendix D). In contrast to the situation with clustering techniques however,

it is quite easy to see at least a few of the consequences of the choice of state

generation method.

Firstly, breadth-first search will obviously have problems with scaling up to

larger problems and is especially sensitive to the number of input symbols. There

are also reasons to believe that for prediction networks in domains that are not

completely random, many of the transitions and states generated with breadth-first

search would not be relevant or ever occur in the domain (Jacobsson & Ziemke,

2003b). Machines extracted with search are, however, guaranteed to be determin-

istic, which may very well be desired (see discussion in the previous section). The

extraction is also guaranteed to result in a complete machine where all possible

inputs are tested on all encountered states.

RE through sampling on the domain is not guaranteed to result in determinis-

tic and complete machines. If this is required, there is no guarantee that a certain

state space quantization will result in a solution since inconsistencies might oc-

cur. A heuristic solution to this problem has only been proposed in one paper

(Schellhammer et al., 1998). In summary, sampling-based RE techniques may be a

preferable strategy for extraction of stochastic rather than deterministic machines.

6.4 Network types and domains

The networks that have been studied using RNN-RE are in most cases relatively

small ones with few state nodes. This may be due to the fact that most domains

used were simple enough to allow small networks to be trained.

There are also significantly more second-order than first-order networks. This

is probably an effect of the focus on formal language domains where second-

order RNNs are more commonly used than first-order networks (Goudreau, Giles,

Chakradhar & Cheng 1994).

As mentioned in Section 6.1, the investigated domains mostly require only bi-

nary string classification. More complex domains with many symbols, deep syn-

tactical structures or chaotic behaviour, etc., have not been tested using RNN-RE

(before this thesis, cf. Chapter 12 of Part II). Therefore, the applicability of these
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techniques is largely an open issue. The importance of rule extraction as described

by Andrews et al. (1995), e.g., explanation capability, verification of ANN com-

ponents, etc., is therefore less than it would have been if the techniques had been

demonstrated to work on the state-of-the-art RNNs operating on the most chal-

lenging domains.

6.5 Portability

Even though most RNN-RE algorithms are compositional, (i.e. under the ADT

translucency criteria) and have, in principle, the same requirements on the under-

lying RNN, there are some implicit requirements that could be useful to identify,

especially if the existing RNN-RE algorithms are to be applied on previously un-

encountered RNN architectures (or other dynamic systems) and domains. Current

RE techniques are preferably used on RNNs that:

1. operate in discrete time since continuous-time RNN can not be described

as finite state machines. There is, however, no known study on continuous

time RNNs in the domain of FSM generated languages (Forcada & Carrasco,

2001),

2. have clearly defined input, state and output nodes, i.e. randomly structured

RNNs may be problematic,

3. have a fully observable state, otherwise unobserved state nodes or noise in

the observation process would disturb the extraction process since the state

space would not be reliably quantized,

4. have state nodes that can be set explicitly (for search-based techniques),

5. are deterministic, otherwise the same problem would occur as when the state

is not fully observable,

6. are fixed during RE, i.e. no training of the RNN can be allowed during the

RE process,

7. operate on a preferably discrete domain (or be transformed to a discrete

representation prior to RE (e.g. Giles et al., 1997)) since there are no means

of representing continuous input/output data in the current types of extracted

rules since the transitions of the extracted FSMs must be labeled using input
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and output symbols.

The problem with making a list of implicit requirements is just that they are im-

plicit (i.e. not readily apparent). Hence, there may be other essential requirements

that I have not managed to consider at this stage. Furthermore, the strengths of

these requirements are unclear as well, some of them may actually be quite easily

alleviated with some enhancements of current RNN-RE techniques (this possibility

will be discussed further in Section 17.9).

6.6 Rule quality

As previously mentioned (cf. Section 4.2.4), the quality of RNN-RE techniques is

(or should be) evaluated at the level of the actual rules, rather than at the level

of the algorithms. Extracted rules depend not only on the algorithm but also

on the underlying domain and network. Evaluation of the rule quality therefore

requires extensive studies comparing different RE techniques under similar condi-

tions. Unfortunately, such studies have not yet been conducted for most RNN-RE

algorithms.

There are, in the existing corpus of papers on RNN-RE, a few indirect results

that provide some indications for some of the rule quality sub-categories: accuracy,

fidelity, consistency and comprehensibility.

A number of studies indicate that the extracted machines indeed have high

accuracy since they may even be generalizing better than the underlying RNN

(Giles, Miller, Chen, Chen & Sun, 1992, 1992; Giles & Omlin, 1993; Omlin &

Giles, 1996b). There are, however, unfortunately no studies in which the fidelity

of the extracted rules has been tested separately from the accuracy1. The studies

tend to focus on networks that are quite successful in their domain and under

such circumstances the difference between fidelity and accuracy is very small. For

networks performing badly in their domain, high fidelity would, however, imply low

accuracy since the errors of the network would then be replicated by the machine.

Rule consistency has not been extensively studied, although some papers touch

the subject. Rules extracted from a network during training were found to fall

1There is an interesting discussion about the fidelity-accuracy dilemma in Zhou (2004).
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under a sequence of equivalence classes during training (Giles, Miller, Chen, Sun

et al., 1992). This can be seen as an example of consistency since the extracted

rules after a certain period of training eventually stabilized in the same equivalence

class, i.e. the set of quite similar networks at the later stage of the training re-

sulted in equivalent rules. The consistency over different parameter settings (of the

quantization parameter q in the equipartitioned RNN-RE algorithm) has also been

proposed as an indicator of regularity in the underlying network (Blair & Pollack,

1997). These results on consistency are, however, more or less indirect.

Rule comprehensibility is typically considered an important issue to ensure fur-

ther progress for RNN-RE research. After all, if the goal of extracting rules is to

understand the underlying incomprehensible network, the rules should preferably

be comprehensible themselves. The comprehensibility of extracted rules has not

been directly evaluated. It is, however, clear that in some cases the RNN-RE-

analysis has been informative in qualitative ways. I will, however, argue in Part III

of this thesis that the incomprehensibility of the rules does not render them useless.

6.7 RNN-RE, fool’s gold?

Kolen (1993) showed with some simple examples that some dynamic systems with

real-valued state space (e.g., an RNN) cannot be described discretely without intro-

ducing peculiar results (cf. Kolen and Pollack (1995)). If you want to approximate

the behaviour of a physical system with a real-valued state space as a discrete ma-

chine you will not only risk that the approximation might not be exact. A more

profound effect of the approximation is that induced machines, from the same phys-

ical system, may belong to completely different classes of computational models,

depending only on how the transformation from the real-valued space to a discrete

approximation is conducted2.

This critique strikes at the very heart of RNN-RE, since the quantization of

the state space is a crucial element of these algorithms and RNN-RE was actually

2A potential flaw in Kolen’s argument is, however, that he is not only considering discretization
of the state space, but also the discretization of the time of a continuous time dynamic system
(P. Tiňo, personal communication, June 27, 2006). The underlying problem is, however, there
nevertheless; that discretizing a continuous space will obviously result in something different than
the continuous space in question and that depending on the exact nature of the discretization,
different results may be obtained.
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termed “fool’s gold” by Kolen (1993). He pointed out that RNNs should be analysed

as dynamic systems or more specifically iterated function systems (IFSs) rather than

state machines.

Nevertheless, there are some replies to this critique. One simple approach is to

avoid the problem by not modelling transitions at all (Tiňo et al., 2004), or not

even quantizing the state space (Vahed & Omlin, 1999, 2004). Another response to

Kolen’s critique is that extraction of a state machine from an RNN has been proven

to work if the underlying RNN robustly model a finite state machine (Casey, 1996).

However, this does not alleviate the fact that the language class for unknown RNNs

cannot be reliably recognized. But at least there is a theoretical “guarantee” that

if there is an FSM at “the bottom” of an RNN, it can always be extracted in

principle.

Failure of rule extraction from an RNN could therefore be an indicator that the

underlying RNN is not implementing a finite state machine. One first step in this

direction has been proposed by Blair and Pollack (1997). They used unbounded

growth of the macrostate set under increased resolution of the equipartition quan-

tization method as an indicator of a nonregular underlying RNN.

If we limit ourselves to real world domains, RE will necessarily be operating

on finite domains, making FSM interpretations theoretically possible at all times

(although they may not be the minimal description of a domain-RNN interaction).

In fact, since the focus of RNN-RE research is on FSM extraction, the question

should not be whether a language class is misjudged by an RE algorithm or not

(since extraction at the level of the class of regular languages is one of the premises),

but rather how well the extracted finite machine approximates the network, as

proposed by Blair and Pollack (1997). How to evaluate the fidelity of an FSM and

whether this evaluation may distinguish between errors stemming from a poorly

quantized state space or from a higher language class in the RNN/domain remains

an open issue.

In summary, although Kolen’s critique is justified, there are still reasons for

further research on RE from RNNs: a lack of sophisticated analysis tools that can

handle the complexity of RNNs hampers RNN research. Although there are theo-

retical possibilities that RE may result in ambiguous answers about an RNN, this
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also holds for many other analysis techniques. For any analysis tool to be trustwor-

thy, the disadvantages must be known and taken into account when examining the

results. This is precisely what makes Kolen’s observations valuable for RNN-RE

usage; the exposure of some of the limitations of RNN-RE techniques.
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Chapter 7

Open Issues and Summary

7.1 Goals of RNN-RE

It is clear that the development of the RNN-RE algorithms has been driven by

different goals in the different papers. But what are the possible goals of RNN-RE?

Conceivable answers could be (partly overlapping with Andrews et al. (1995) in

the context of RE in general):

1. to acquire a generic model of the domain, i.e. the RNN is used merely as a

tool in the acquisition process (data mining),

2. to provide an explanation of the RNN,

3. to allow verification/validation of the RNN with respect to some requirements

(cf. software testing) and thus make new, potentially safety critical, domains

possible for RNNs,

4. to improve on current RNN architectures by identifying errors.

The appropriate measure to evaluate the success (or rule quality) of a specific

instance of an RNN-RE algorithm being applied on an RNN (and domain) depends

highly on which of these (or other) goals are desired (see Figure 7.1). For the first

goal, for example, the maximization of accuracy is the prime target. In many of

the papers it is clear that the accuracy is the most important aspect of rule quality.

Accuracy is a satisfactory means for evaluating rule quality as long as the goal for

rule extraction is to find rules that are “as good as possible” in the domain. For

the other goals the maximization of fidelity is likely to be more important. After

all, if the network is tested with an accuracy-maximizing RE method, the result
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EfficiencyAccuracy

Fidelity Comprehensibility

Goal?

Figure 7.1: Four, possibly opposing, goals of RNN-RE that in an ideal algorithm would
simply be chosen by the setting of a few user-defined parameters.

may be rules with a performance better than the network (a result confirmed by

many studies). Therefore, for the purposes of RNN analysis, fidelity should be the

preferred quality evaluation criterion. In some cases, however, comprehensibility

may be more crucial than fidelity and accuracy. In others, it is imaginable that the

efficiency of the algorithm (in terms of execution time or required memory storage)

is the primary objective. There may also be other, more domain specific measures

to evaluate the degree of goal achievement. The details of the resulting RNN-RE

algorithm may depend on which of these goals is the aim. Preferably, however,

the one and same algorithm should be generic enough to allow the user to choose

among the goals.

7.2 New challenges

What should we expect from future RNN-RE algorithms? There are some chal-

lenging applications and requirements for RNN-RE algorithms that are worth sug-

gesting.
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7.2.1 Tailor-made quantization algorithms

The quantization algorithm is perhaps the most critical part of extracting rules

from RNNs. But what characterizes a good quantization in the context of RNN-

RE? It is not necessarily spatial requirements (N. E. Sharkey & Jackson, 1995), as

is usually the case for evaluation of clustering techniques (Jain et al., 1999), but

rather requirements based on properties of the extracted rule set. To have clusters

that are spatially coherent and well separated is of less importance than the fidelity

of the resulting rules. One would prefer a clustering technique in which the clusters

are functionally coherent and well separated rather than spatially1.

7.2.2 Goal oriented gradually refining rule extraction

Methods for controlling the “comprehensibility/fidelity tradeoff” are identified as

an important line of research by Craven and Shavlik (1999). This “tradeoff” issue

may be expanded to include techniques in which the user may, through the set-

ting of a few parameters, not only have the ability to choose between fidelity and

comprehensibility, but also fidelity and accuracy, fidelity and computation time etc.

In an ideal RNN-RE algorithm the relation between execution time, fidelity and

comprehensibility may be as illustrated in Figure 7.2. Rules should be refined grad-

ually over time and the more time available, the higher the possibility of acquiring

rules of high fidelity and/or comprehensibility (“anytime rule extraction” (Craven

& Shavlik, 1999)).

One method for gradually refining rules may be to do “re-extraction” of un-

certain/infrequent but possibly important rules by querying the network (Craven

& Shavlik, 1994). This can, for example, be achieved by directly setting states in

the network to be in the vicinity of the model vector (or something equivalent) of

the macrostate of interest and then testing the effect of feeding the RNN various

possible inputs. In Part III of this thesis, such reextraction is discussed in more

detail due to of the results of Part II.

1Which is precisely what the RNN-RE method presented in Part II does using the Crystalline
Vector Quantizer (cf. Chapter 10).
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Fidelity

Comprehensibility

Execution time

Figure 7.2: The relation between execution time, fidelity and comprehensibility for
ideal RNN-RE algorithms with possible gradual refinement of the rules. The more time
available, the more the degree of freedom in choosing between high fidelity and compre-
hensibility.

7.2.3 RNN comparisons and evaluations

A distance metric between RNNs could be defined by comparing rules extracted

by RNN-RE. RNNs are otherwise difficult to compare directly since completely

different weights can yield equivalent behaviour and small differences in weights

may result in very different behaviours. This sort of distance metric could possibly

be favourable if constructing heterogeneous RNN ensembles (Krogh & Vedelsby,

1995; A. J. C. Sharkey, 1996).

The concept that RNN-RE can be used as an indication of the complexity of

the underlying RNN (or some other dynamic system) and domain could be further

developed. Previous studies seem to show promising results (Crutchfield & Young,

1990; Blair & Pollack, 1997; Bakker & Jong, 2000) with regard to complexity esti-

mations that go beyond Shannon entropy (Cover & Thomas, 1990) and minimum

algorithmic description length complexity (Chaitin, 1987) (a.k.a. Kolmogorov com-

plexity).
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7.2.4 RNN debugging

The underlying task of the RNN (e.g., prediction) can be integrated with the rules

in order to identify more exactly when and how erroneous behaviour occurs in

the network. This can be achieved simply by marking which of the states in the

extracted machines are involved in the errors. These errors can then perhaps be

further retraced, in the rules, to the actual erroneous behaviour. This can possibly

be further integrated with the training of the network by updating the weights only

in situations identified by the rules as being part of an erroneous behaviour (cf.

Schmidhuber (1992)).

7.3 Some practical recommendations

Since this thesis is, in part, aimed at attracting more researchers to the field it is

perhaps beneficial to not only identify open issues, but also to provide some prac-

tical recommendations about how things should be done. These recommendations

are partly a repetition of Craven and Shavlik (1999), but they are nevertheless

important enough to be repeated.

Firstly, when developing a new RNN-RE algorithm, strive for generality (i.e.

high portability). The usefulness of the algorithm developed will directly corre-

late with how easily it can be used on existing RNNs, originally implemented and

tested without the intention of making them suitable for RE. Craven and Shavlik

(1999) even suggest that the RE algorithms should be so general that not even the

assumption that the underlying system is a neural network is necessary. Actually,

there are indications that this is already a fact for most RNN-RE algorithms, con-

sidering the very limited assumptions of the underlying RNN (cf. Definition 3.1 or

Definition 9.1).

Another good piece of advice is to seek out collaborators who already have

RNNs they want to analyse (Craven & Shavlik, 1999). It is highly unlikely that

there will be enough time to develop both state-of-the-art RNNs and state-of-the-

art RNN-RE algorithms at the same time. Finding willing collaborators should not

be too difficult since researchers applying novel RNNs on new domains will most

likely benefit from the knowledge acquired through rule extraction.
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Another important ingredient for enhancing the attraction of a technique is to

make its implementation publicly available2 (Craven & Shavlik, 1999). After all,

accessibility of use by researchers who are quite busy pursuing their own line of

work is the aim of the techniques.

7.4 Conclusions of Part I

Ideally, if the RNN-RE techniques developed so far had been really successful,

they would have been among the first analysis techniques used when new RNN

architectures were developed or a new domain was conquered. No other analysis

tools seem to promise a more detailed and profound understanding of RNNs. But

we are not there yet.

Despite numerous achievements, there seems to be no apparent common direc-

tion (or well defined goals) in previous RNN-RE research3. In most cases, developed

algorithms are seemingly not built on the basis of previous results and there seems

to be very slow (if any) progress towards handling more complex RNNs and do-

mains with RNN-RE algorithms. In fact, only one algorithm has been used to any

wide extent in the follow-up work, and moreover, it is the first RNN-RE algorithm

developed (Giles, Miller, Chen, Chen & Sun, 1992). Surprisingly, it has not been

replaced by anything significantly better in the years since then. Actually, more

recent algorithms may very well be better, but they are still not used as frequently

as the first one, and there are almost no comparative studies.

In the following part of this thesis, a novel RNN-RE algorithm is presented. The

key to this algorithm was precisely the development of a tailor-made quantizer as

suggested above (Section 7.2.1). Many of the practical recommendations mentioned

above were, of course, central in the development of the algorithm, to make it

portable and anytime extracting. In the final part of the thesis, more ambitious

and speculative goals are stated for the field as RNN-RE is reinterpreted as a

computational scientific process applied to simulated dynamic systems.

2An open source distribution of my own algorithm, presented in Part II, is under preparation
on cryssmex.sourceforge.net.

3One of the goals with this thesis and with Jacobsson (2005) is to suggest such goals.
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Part II

The Crystallizing Substochastic

Sequential Machine Extractor
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Chapter 8

Introduction to Part II

A number of techniques for extracting rules from RNNs were described in the

previous part of the thesis. The common ingredients of most of these were identified

(in Table 3.1 on page 17) as (1) the quantization of state space, (2) generation

of data, (3) rule construction and (4) rule minimization. Although the presented

techniques constituted a wide variety, their one common aspect is the separability of

these ingredients from each other. These four constituents have not been integrated

in these approaches and the quantization of the state space of the RNN has been

treated as any Euclidean space with clusters of data, without accounting for the

fact that the points in state space are part of a dynamic system in interaction with

a domain.

This part of the thesis1 presents a novel RNN-RE algorithm; CrySSMEx2 (Crys-

tallizing Substochastic Sequential Machine Extractor), which is parameter free,

handles missing data, generates approximative rules if the underlying system is

chaotic, and returns results at “any-time” (Craven & Shavlik, 1999), i.e. coarse

models are initially created and then iteratively refined. The underlying concept

of CrySSMEx is to observe the state and output of an RNN, quantize the state

space, and refine the quantization of the state space such that the resulting ma-

chine typically is minimal, deterministic, and equivalent to the RNN. CrySSMEx is

able to extract rules from RNNs in domains where other techniques cannot. At

least, earlier techniques seem not to be feasible in these domains.

1Which is largely based on Jacobsson (2006).
2To be pronounced somewhat like “Christmas”. An open source distribution of the algorithm

is also under preparation at the time of preparation of this thesis (cryssmex.sourceforge.net).
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8.1 Aim

CrySSMEx differs from many earlier approaches in that it strives for fidelity rather

than accuracy of the rules. Fidelity is the degree to which the rules mimic the

network, whereas accuracy is related to how well the rules generalize when applied

to unseen examples (Andrews et al., 1995). When fidelity is the goal and the

underlying network makes errors, the machine extracted from the network should

also replicate those mistakes. Some earlier approaches have also focused on fidelity

(e.g. Vahed & Omlin, 2004), but most work has had accuracy as the prime goal

for the rules (e.g. Giles, Miller, Chen, Chen & Sun, 1992; Zeng et al., 1993). This

is logical if the network is used as an intermediate step for acquiring symbolic

knowledge from data, e.g., for grammar induction. In some cases this approach has

been very successful when the extracted rules were equivalent to the symbolic data

generator (e.g. Giles, Miller, Chen, Chen & Sun, 1992; Giles, Miller, Chen, Sun et

al., 1992).

The strive for fidelity is beneficial because it makes the rules useful for analysing

erroneous RNNs. One could compare an erroneous RNN to a sick patient and an

RNN-RE algorithm to an instrument a doctor uses to diagnose the patient. The

doctor would gain little from an accuracy-seeking instrument that describes the

condition of the patient if completely healthy, which is basically what accuracy-

optimizing methods strive for. Instead, the analysis tool should generate an analysis

that reflects the actual condition of the patient.

Another difference between accuracy and fidelity is that the latter does not

presuppose the existence of any task in which errors can be defined. Instead, the

quality of extraction is measured on how well the extracted model mimics the

underlying system. This allows for the analysis of simulated systems other than

just RNNs. Therefore, in this thesis, the extraction of rules from RNNs is treated

as an interesting special case of extraction from a broad range of dynamic systems

(defined in Section 9.1).
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8.2 What is new in CrySSMEx?

The three main criteria in the taxonomy of RNN-RE methods in Part I (Jacobsson,

2005) are: (1) the means of state observation, (2) the type of rules extracted, and

(3) the state space quantization method.

The observation of states in CrySSMEx, as in many other approaches (e.g. Wa-

trous & Kuhn, 1992; Manolios & Fanelli, 1994; Tiňo & Vojtek, 1998; Tiňo &

Köteles, 1999; Tiňo et al., 2004), is solely based on sampling the system as it

behaves in its domain. The novel components of CrySSMEx are: the rule type

(Section 9.2), and the quantization method (Chapter 10). But what really dis-

tinguishes CrySSMEx from all earlier methods, is the integration of the four basic

elements found in previous methods (Jacobsson (2005), p. 1230):

• quantization of state,

• observation of the underlying system,

• rule construction and

• rule minimization.

These four subprocedures have typically been quite separable in RNN-RE algo-

rithms. In earlier approaches, the quantization of the state space was achieved by

traditional clustering techniques with no sensitivity to, nor any integration with,

the dynamics of the RNN. Also, the minimization of the rules (when conducted at

all) was just a postprocessing of the rules. In CrySSMEx, all four constituents are

tightly integrated into one system resulting in an empirical loop of model refinement

through model based data selection (cf. Chapter 11).

8.3 Overview

This part of the thesis is structured to enhance the understanding of the main

loop of the algorithm (in Section 11.2). The algorithm should, however, be under-

standable, at an abstract level, without knowing all the details of the constituents.

Therefore readers are recommended to briefly look at Algorithm 11.2 (on page 87)

of Section 11.2, the point of convergence of this part of the thesis, before continu-

ing to read Part II. To further aid readers, important abbreviations are listed in

Table B.1 of Appendix B.
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The remaining chapters of this thesis part is otherwise organized as follows: in

Chapter 9 the specific class of dynamic systems that are analysable with CrySSMEx

is defined together with a discrete stochastic model of these systems. A novel

vector quantizer is described in Chapter 10. As mentioned, Chapter 11 connects

the constituents of CrySSMEx into one coherent algorithm. While remaining chap-

ters contain experiments, discussion and conclusions, future work suggestions and

discussion are covered mainly in Part III.
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Chapter 9

Modelling Dynamic Systems

This chapter introduces a class of dynamic systems (Section 9.1), a finite stochastic

model of these systems (Section 9.2) and a means of transforming the dynamic

system into the stochastic model through system observation (Section 9.2.3). The

translation process of the system into a model is refined by other parts of CrySSMEx

(Chapters 10–11) so that more precise translations can be made.

9.1 Situated Discrete Time Dynamic Systems

The target domain for CrySSMEx is a general class of dynamic systems which in-

cludes RNNs. Therefore, only properties of RNNs that are of importance for rule

extraction are included. Other properties typically associated with neural networks,

such as weights, activation functions and learning, are simply omitted.

The targeted class of systems is referred to in this thesis as situated discrete time

dynamic system, incorporating state, input, output and dynamics of the system.

The system is situated in the sense that it has a defined interface with a domain

with which it interacts. Henceforth in the thesis, the extraction of rules from such

dynamic systems rather than only from RNNs will be considered, but the underlying

problems are precisely the same (cf. Definition 3.1).

9.1.1 Definition

Definition 9.1 A situated discrete time dynamic system (SDTDS), is a

quadruple 〈S, I, O, γ〉 where S ⊆ R
ns is a set of state vectors, I ⊆ R

ni is a set of
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input vectors, O ⊆ R
no is a set of output vectors, γ : S × I → S × O is the

transition function, and ns, ni, no ∈ N are the dimensionalities of the state, input

and output spaces respectively. �

Interpretation: If the system, at time t, occupies a state ~s(t) and is fed an input

~ı(t), then the resulting next state and produced output is determined by [~s(t +

1), ~o(t + 1)] = γ(~s(t),~ı(t)). The current and initial state of the system are not

included in the SDTDS model since it is something imposed on the system (the

SDTDS specifies the framework and behaviour for any arbitrary initial state just

as a function specifies the image of any arbitrary member of the domain of the

function). To simplify descriptions, the transition function, γ, can be subdivided

into two functions γs : S × I → S and γo : S × I → O.

It should be noted that the functional dependencies are those of a Mealy system

rather than a Moore system in that the output is determined by state and input

rather than a function of state alone (Hopcroft & Ullman, 1979). The reason for

this choice is that a Mealy model can subsume a Moore model but not necessarily

vice versa1 (if we only consider finite state machines, however, they are completely

equivalent (Hopcroft & Ullman, 1979)).

In its current implementation, CrySSMEx also requires the set of input vectors

to be finite, which for example is the case for any symbol processing RNN. This

restriction is not included in the definition since it applies more to what is used as

input to the SDTDS, rather than a restriction of the system itself. Other than that,

there are no theoretical restrictions on the SDTDS as defined above for CrySSMEx

to analyse it.

There are also some other “implicit requirements” (cf. Section 6.5) , made by

a rule extraction algorithm of the underlying SDTDS, that cause some systems of

general interest not to comply with the above definition (Jacobsson, 2005). For

example, the state, input and output must be distinctly separable as well as fully

and unintrusively observable. Moreover, γ must be a noise-free function, i.e. the

observed system is assumed to be completely deterministic.

1A Moore model, and a Moore machine extraction version of CrySSMEx has also been imple-
mented, but is not presented here since it involves small changes in many different parts of the
descriptions.
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9.1.2 Collection of data from an SDTDS

An RNN-RE algorithm should transform an RNN into a discrete model mimicking

the RNN to a satisfactory degree. To do this, a compositional approach has typically

been adopted where data is gathered from the internal activations of the RNN and

a model is subsequently built from this (Tickle et al., 1998). Within the RNN-RE

field, two sub-types of the compositional approach exist; one where the RNN-RE

algorithm interacts directly with the RNN while performing a breadth first search,

and another where the data is collected from the RNN during interaction with the

domain in which it was trained (cf. Section 6.3). In CrySSMEx, the latter is chosen

for three reasons: (1) the data (and hence the extracted model) will only contain

aspects of the RNN relevant for the domain, (2) it is far more efficient since, in

effect, the domain is used as a heuristic when searching among all the possible

models that describe the behaviour of the system (Jacobsson & Ziemke, 2003b) (cf.

Appendix D), and (3) it is possible to do the extraction off-line, i.e. pregenerated

data can be used in CrySSMEx since no direct interaction between extractor and

underlying system is needed.

When the SDTDS is set to hold a certain initial state and is then fed a sequence

of input vectors from a domain it will generate a sequence of states and outputs as

a result. This domain interaction is the basis for the data collection and the result

is recorded as a sequence of transition events.

Definition 9.2 An SDTDS transition event at a time t, ω(t), is a quadruple

〈~s(t),~ı(t), ~o(t + 1), ~s(t + 1)〉 ∈ R
ns × R

ni × R
no × R

ns where ~s(t + 1) is the state

vector reached after the SDTDS received input ~ı(t) while occupying state ~s(t),

and ~o(t + 1) is the output generated in the transition. �

Definition 9.3 A transition event set, Ω, consists of selected transition events

recorded from the SDTDS with a given set of input sequences. �

The reason that Ω is defined to consist of selected events is that it is quite possible

that some events are not wanted in the model, e.g., when the user has made an

explicit reset of the state with no wish to model the transition caused by this. The

user may also want to let the system “settle in” before starting data collection. The

fact that the user is allowed to choose a subset of available events to work with, may
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give the notion that the biases of the user may affect the results. However, such

selection requirements are always part of any empirical process and the selection of

data will necessarily affect the results. The initial state are also omitted from the

definition SDTDS for this reason; possibly several initial states should be selected

by the user to be appropriate for the aspects of the SDTDS the user wants to model.

9.1.3 Building a stochastic dynamic model from a quan-

tized SDTDS

The most essential part of CrySSMEx, and all earlier RNN-RE algorithms, is the

quantization of the state space. The set of possible states in the state space of the

SDTDS is uncountable and must be transformed to a finite domain to make the

extraction of a finite machine possible.

Definition 9.4 A quantizer Λ : R
n → {1, 2, . . .m} is a function that separates an

n-dimensional real space into m uniquely labelled disjoint subspaces. The

maximum number of subspaces, m (i.e. the cardinality of the codomain of

function Λ), will, for pragmatic reasons, be denoted |Λ|. �

Although not explicitly stated in most RNN-RE papers, all three spaces of RNNs

(input, state and output) are actually labelled using some form of quantization

function. The quantization of the state space is, of course, a central concern, but

also the input and output need to be labelled into a finite set of symbols to produce

the extracted finite machine. The state, input and output quantizers will be denoted

Λs, Λi and Λo respectively.

The SDTDS is in itself, of course, capable of reacting according to any of the pos-

sible input vectors (since the SDTDS definition includes the whole vector spaces in

the domains of the transition function), but in its current implementation CrySSMEx

requires the input domain to be finite (and Λi must be invertible).

The frequencies of quantized transitions in the transition event set, Ω, are trans-

formed into a joint probability distribution that will later be used to build a dynamic

model which mimics the SDTDS (Section 9.2.3):

Definition 9.5 A stochastic dynamic model of an SDTDS is a joint probability

mass function induced from a transition event set Ω and quantizers Λo, Λi and Λs
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is defined as a function pΩ : [1, |Λs|] × [1, |Λi|] × [1, |Λo|] × [1, |Λs|] → [0, 1] where

pΩ(i, k, l, j) denotes the probability, that if one picks a random transition event

from Ω, it would be a transition from a state enumerated i by Λs, over an input

vector enumerated k by Λi, which generated an output enumerated l by Λo, and a

new state enumerated j by Λs
2. �

9.2 Substochastic Sequential Machines

Stochastic machines have been extracted earlier (Tiňo & Vojtek, 1998; Tiňo &

Köteles, 1999), but without modelling the output of the system explicitly. In

CrySSMEx, however, the output of the system will be modelled as well.

The stochastic dynamic model (pΩ in Definition 9.5) collected from the SDTDS

in interaction with its domain provides information about the estimated probabili-

ties of the effect and outcome of transitions in the system as “viewed” through the

quantizers. These probabilities are used to build a finite stochastic machine model

of the SDTDS. This type of machine resembles stochastic sequential machines (Paz,

1971) or probabilistic automata (Rabin, 1963) but has some distinguishing features

since there is a realistic possibility of model “incompleteness” due to a finite ob-

served set of transition events. This is due to the fact that the sample of input

sequences in Ω will not necessarily provide examples of all possible input symbols

in all possible enumerations of the quantized SDTDS space. The choice here is to

make a “closed world assumption”, and consequentially, only what is observed in

Ω will be included in the model.

Missing data must therefore be handled when the model is built from Ω. This

causes the probabilistic model to become a substochastic sequential machine (SSM)

rather than the stochastic sequential machines of Paz (1971). As a consequence, this

incompleteness of the model implies that probability can “leak” out from the state of

the machine during parsing of input sequences, causing the probability distributions

to become substochastic (see Appendix A). The details of what this entails are

clarified in the following sections. First, however, some additional definitions and

notational conventions are introduced, followed by the full SSM definition.

2The awkward order of i, j, k, and l is due to other contexts of the variables of pΩ later in this
thesis.
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9.2.1 Notation of probability distributions as vectors

Sometimes a probability distribution over a finite domain is preferably denoted

as a vector (cf. Paz, 1971). The probability mass function over a discrete finite

stochastic variable X, is denoted p(X = xi), or p(xi) for short. p(xi) is interpreted

as the probability of X having the value xi. If we want to express this probability

as a vector it is convenient to just write p(xi) as ~xi. The full vector, representing

the full distribution over X is denoted ~x, i.e. with no index. The vector and

probability notation of distributions will be used interchangeably since they are

more conveniently expressed as one or the other depending on context. Important

types of substochastic vectors and operations on them are defined in Appendix A.

9.2.2 SSM definition

Definition 9.6 A substochastic sequential machine (SSM) is a quadruple

〈Q, X, Y,P = {p(qj , yl|qi, xk)}〉 where Q is a finite set of state elements (SEs), X

is a finite set of input symbols, Y is a finite set of output symbols, and P is a

finite set of conditional probabilities (cf. explanation of Equation 9.3) where

qi, qj ∈ Q, xk ∈ X and yl ∈ Y . �

The terminology is here somewhat different from that of conventional finite state

machines. The input and output domains of the SSM will still be considered alpha-

bets of symbols, whereas the Q of the SSM will instead be denoted state elements

or SEs3 to not confuse them with the state of the SDTDS. Also, the actual state

of the SSM is more properly described as a (sub)stochastic distribution over these

elements. The interpretation of p(qj, yl|qi, xk) is that it is the probability of the

machine entering the SE qj and in this transition producing symbol yl given that

it occupied only SE qi and was fed input symbol xk. A more detailed description

of the SSM interpretation is given in Section 9.2.4 where the use of an SSM as a

parser of input symbols is described. But first, the construction of an SSM from a

model of the SDTDS will be described.

3See Table B.1 for a list of abbreviations.
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9.2.3 Translation of an SDTDS into an SSM

It is quite straightforward to see the similarities of the SDTDS and the SSM (cf.

definitions 9.1 and 9.6). The difference lies mainly in the discreteness of the in-

put, state and output domains of the SSM versus the uncountable domains in

the SDTDS. In practice, however, the SSM can be seen as a subclass of the set

of SDTDSs since a substochastic SE distribution can be subsumed as an SDTDS

state and correspondingly for input and output.

When transforming an SDTDS into an SSM-model, the uncountable domains S,

I and O of the SDTDS are reduced to the finite domains, Q, X and Y respectively.

The SSM is created from a quantized SDTDS so that the domains of the SSM are

isomorphic to the codomains of the respective quantizers. In other words, Q of

the SSM is isomorphic to [1, |Λs|] and correspondingly for the input and output

symbols. In the following text, an SE denoted qi ∈ Q corresponds to the portion of

the state space of the SDTDS enumerated i by the Λs-quantizer.

The joint probabilities of observed and quantized SDTDS transitions (pΩ), are

translated into joint probabilities of SSM transitions according to:

p(qi, xk, yl, qj) =

pΩ

(
Λs

(
~s(t)

)
= i, Λi

(
~ı(t)

)
= k, Λo

(
~o(t + 1)

)
= l, Λs

(
~s(t + 1)

)
= j

) (9.1)

i.e. the joint probability of SSM transitions are defined so that they correspond to

the observed frequency of transitions in the SDTDS. The conditional probability

of the SSM, p(qj , yl|qi, xk), is calculated from the joint probability according to

equations 9.2 and 9.3.

p(qi, xk) =

|Q|∑

j=1

|Y |∑

l=1

p(qi, xk, yl, qj) (9.2)

p(qj , yl|qi, xk) =





p(qi, xk, yl, qj)
p(qi, xk)

if p(qi, xk) > 0

0 if p(qi, xk) = 0
(9.3)

Although conceptually appealing, the distribution P = {p(qj, yl|qi, xk)}, is per-

haps a bit haphazardly termed conditional probabilities since a conditional proba-

bility p(a|b) traditionally is undefined if p(b) = 0. But in the SSM these need to be
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defined since there might actually be cases where there is no transition from a SE

qi over a specific symbol xk, simply because there are no observations in Ω of any

such event.

Definition 9.7 If p(qj, yl|qi, xk) = 0 for all qj ∈ Q and yl ∈ Y , then the transition

from qi over input xk will be referred to as a dead transition. �

Definition 9.8 The procedure of transforming an SDTDS from Ω, through the

stochastic dynamic model, pΩ of Definition 9.5, into an SSM as defined above in

equations 9.1–9.3 will in pseudo-code be denoted as

ssm = create machine(Ω, Λs, Λi, Λo) where Λs, Λi and Λo are the state, input

and output quantizer respectively, and ssm the resulting SSM. �

When an SSM is created with create machine, the SDTDS from which Ω

was sampled is referred to as the underlying system of the SSM. Next, the exact

calculations of state and output of the SSM are described. The SSM processes

input such that its distributions over Q and Y correspond to the degree of belief of

the occupied state and output enumeration of the underlying system.

9.2.4 Parsing an input sequence using an SSM

Unlike a “standard” discrete Mealy machine where exactly one state is occupied at

a time (Hopcroft & Ullman, 1979), the complete description of the state occupied

by an SSM is the substochastic distribution over zero, one, or more SEs. Likewise,

the transitions generate substochastic distributions of output symbols rather than

individual symbols.

The exact calculations of distributions are as follows: Let ~q(t) = (~q1(t), ~q2(t), . . . ,

~qn(t)) be a substochastic vector denoting the distribution over Q at time t and

xk(t) ∈ X be the input symbol fed to the machine in that time step. The resulting

distribution vector over Q, ~q(t + 1), is calculated by4

~q(t + 1) = Pq(~q(t), xk(t)) (9.4)

4Note that this is a case where the notational choice of letting p(qi) = ~qi comes into play (cf.
Section 9.2.1), i.e. it is implicit that ~qi(t + 1) and p(qi(t + 1)) refer to the probability p(Q = qi)
at time t + 1.
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where each element ~qj(t + 1) of ~q(t + 1) (corresponding to a probability of a SE) is

calculated by

~qj(t + 1) =

|Q|∑

i=1


~qi(t) ·

|Y |∑

l=1

p
(
qj(t + 1), yl

∣∣qi(t), xk(t)
)

 (9.5)

and concurrently, the distribution of output symbols ~y(t + 1) over Y is generated

in the transition by

~y(t + 1) = Py(~q(t), xk(t)) (9.6)

where each element ~yl(t+1) of ~y(t+1) (corresponding to a probability of an output

symbol) is calculated by

~yl(t + 1) =

|Q|∑

i=1


~qi(t) ·

|Q|∑

j=1

p
(
qj , yl(t + 1)

∣∣qi(t), xk(t)
)

 (9.7)

Note that if the transition from qi(t) over xk(t) is dead and ~qi(t) > 0, then the

respective sum of the probabilities of distribution ~qj(t + 1) and ~yl(t + 1), will be

less than 1. In such cases, distributions of the machine will become substochastic

(cf. Appendix A).

Another possibility of parsing is to, when possible, divide the probabilities with

the sum of the probabilities after each symbol. This mode of parsing is referred to

as normalized parsing.

P̂∗(~q(t), xk(t)) = normalize(P∗(~q(t), xk(t))) (9.8)

where the ’∗’ is either q or y (normalize is defined in Appendix A).

One may argue that instead of the notion of substochastic probabilities and state

“leaking” from the machine, it would be better to add an additional state element

qdead to which all dead transitions are then made (producing an additional “dead”

output symbol, ydead)5. This can work, and it would also, as far as I can judge,

create a machine equivalent to the machines of Paz (1971). It would, however,

destroy the otherwise complete semantic connection between underlying system

and SSM since there will be no corresponding elements in S and Y of the SDTDS

5This can be compared with the “rescue state” of Schellhammer et al. (1998) (cf. Table 5.7).
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for qdead and ydead respectively.

To illustrate the parsing of symbol sequences with SSMs, some examples are

examined in Section 9.2.7. But first some important types of SEs must be intro-

duced. There are a number of properties of SSMs and SEs that can be used for a

deeper analysis of the machines. In this thesis only the ones that are crucial for

CrySSMEx are mentioned: deterministic and equivalent SSM SEs.

9.2.5 SSM determinism

An SSM will always be deterministic in the sense that the state element and out-

put symbol distributions are always deterministically calculated. Therefore, the

determinism of an SE is instead defined to reflect the degree to which the SSM

determines the succeeding occupied state enumerations and output symbols of the

underlying dynamic system. For this purpose entropy and, especially, conditional

entropy (Cover & Thomas, 1990) are suitable (see Definition A.5 in Appendix A).

A conditional entropy H(Y |X = x) can be interpreted as the remaining uncer-

tainty of variable Y given that variable X would be known to have the value x.

Here, the conditional SSM-based entropy of the output given an SE qi and input

xk in an SSM ssm will be denoted Hssm(Y |Q = qi, X = xk) and is defined by

Hssm(Y |Q = qi, X = xk) = H(Py(~q, xk)) (9.9)

where ~q is here the degenerate (see Appendix A) SE distribution vector with ~qi =

1.0. The conditional entropy of the SE given the previous SE and input symbol is

likewisely denoted Hssm(Q|Q = qi, X = xk) and is here defined by

Hssm(Q|Q = qi, X = xk) = H(Pq(~q, xk)) (9.10)

with ~q degenerate as in equation 9.9.

The interpretations of the entropies in equations 9.9 and 9.10 are that given

a distribution over Q, concentrated to only qi, and the input then is xk, they

return the degree of uncertainty of the SSM regarding the succeeding output symbol

and occupied state enumeration of the underlying SDTDS, respectively. This is

an idealized interpretation due to the substochastic nature of the model. The
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conditional entropy will be zero also when the SSM has another type of uncertainty

when transition from qi over xk is dead. In this sense, the conditional entropies

of equations 9.9 and 9.10 are not entirely compatible with how the concept of

entropy is typically used (cf. discussion after Definition A.5 and after Equation 9.3

in relation to the conditional probabilities).

Definition 9.9 An SE qi ∈ Q of an SSM ssm is deterministic iff

Hssm(Y |Q = qi, X = xk) = 0 and Hssm(Q|Q = qi, X = xk) = 0 for ∀xk ∈ X. �

A deterministic SE has exactly zero or one outgoing transition for each input sym-

bol.

Definition 9.10 An SSM is deterministic iff all SEs qi ∈ Q are deterministic. �

If a machine is deterministic, and its initial SE distribution is degenerate, then all

subsequent SE and output distributions will both be either degenerate or exhausted

(cf. Appendix A). This definition of a deterministic machine differs somewhat from

that of traditional deterministic finite automata (Hopcroft & Ullman, 1979), in

which states (corresponding to the state elements of the SSM) must have transitions

to exactly one state for all input symbols.

It is quite straightforward to see that a deterministic SSM, in which there are

no dead transitions, is equivalent to the nonstochastic standard Mealy machines

as defined in Hopcroft and Ullman (1979), if a degenerate distribution over Q is

defined as initial state. Such a machine must always occupy only one SE at a time

and generate one single output symbol at a time.

SSM determinism is used as a termination criterion in CrySSMEx (see Algo-

rithm 11.2). The conditional entropies are also used as a basis for selection of the

most informative state vectors of Ω in order to perform optimization of the SDTDS

state quantizer (see Algorithm 11.1 on page 85).

9.2.6 Equivalence and nonequivalence of SEs

The second important property of SEs is equivalence. In automata theory, two

states qi and qj of a machine are equivalent if, and only if, the output of the

automata would be the same for all possible future input sequences independent of
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which of the two possible states that are occupied initially. This can be tested quite

efficiently in traditional nonstochastic automata (Hopcroft & Ullman, 1979), but

for stochastic machines it is somewhat more difficult. In fact, it is even impossible

in general for substochastic machines since the model would not “know” what

the outcome of dead transition would be in the underlying system. It would, for

example, be impossible to determine what other state elements an SE with no

outgoing transition is or is not equivalent to since the outcome of any possible future

input sequence is undefined in the model. The only way to determine equivalence

of such an SE, to other SEs, is to return to the underlying SDTDS to record the

missing transitions, and thereby make it part of the SSM model. However, since

this would break the closed world assumption, it is not considered. Rerecording

of Ω is however considered an option in the future work sections of the thesis (cf.

Section 18.4).

It is, however, possible to determine that two SEs are not equivalent if they,

in their outgoing transitions, share some input symbols and transitions over these

lead to discrepancies in the future output of the SSM. Therefore, an algorithm that

returns true if and only if two SEs are not decisively inequivalent (NDI-equivalent

for short) is provided6. For example, an SE which has no outgoing transitions will

be NDI-equivalent with all other SEs since there will be no decisive evidence of the

opposite. Two SEs with no input symbols in common in their outgoing transitions

will also always be NDI-equivalent.

To determine the NDI-equivalence of SEs qi and qj , the recursive function

NDI equivalent(ssm, ~u,~v, ∅) (described in Algorithm 9.1) is called, where ~u and

~v are the corresponding degenerate SE distributions for qi and qj respectively (the

need for the empty set is clarified in Algorithm 9.1), and the result is true or false

depending on whether the SE distributions ~u and ~v are NDI-equivalent or not. The

algorithm is highly recursive and uses a “trick” based on the support sets (see Ap-

pendix A) of the SE distributions to avoid infinite recursions that otherwise could

occur. If we allow ourselves to jump ahead to a later example, consider the testing

of equivalence between SEs q5 and q6 in Figure 9.2 (on page 74). When starting in

6It is also possible to test if SEs are decisively equivalent as well, i.e. when all subsequent SEs
have the same symbols for outgoing transitions. But preliminary studies have shown that more
interesting results are achieved using NDI-equivalence simply because dead transitions are quite
common.
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SE q5 and the SSM is fed symbol b, the SE distribution is gradually approaching

a pure SE q6, but it will never quite reach it. The algorithm would not stop if it

were not for the use of reencounters of SE support sets as a termination criteria.

Since there is just a finite set of possible support sets (2Q), this guarantees that the

algorithm will terminate.

What is currently lacking, is formal proof that NDI equivalent functions as

intended for all possible SSMs under all possible conditions. Formal proof of a

method for equivalence testing of states in stochastic sequential machines, however,

does exist (Paz, 1971). In that proof, strong similarities with this algorithm do

occur, but a formal 1:1 connection is yet to be achieved. For now, the experiments

of Chapter 12 are the only indication that the algorithm as a whole functions

for the presented cases. In addition to these experiments, the algorithm has been

successfully tested in a number of hand-made SSMs, with properties that make them

interesting to analyse with respect to SE equivalence, e.g., the SSM of Figure 9.2.

For three SEs qi, qj and qk of an SSM it may very well hold that qi and qj

are NDI-equivalent and likewise for qj and qk while qi and qk are not. In other

words, the relation is not transitive. It is required, by other parts of CrySSMEx (see

Algorithm 11.2) that states can be grouped into disjoint equivalence sets, which is

not possible if the equivalence relation is not transitive (and symmetric and reflexive

as well).

Definition 9.11 Let π(qi) denote the set of SEs with which qi is NDI-equivalent.

Two SEs qi and qj are defined as universally NDI-equivalent (UNDI-equivalence,

for short) if π(qi) = π(qj). �

UNDI-equivalence is a transitive relation (symmetry and reflexiveness is inherited

from the NDI-equivalence) and therefore can be used to define non-overlapping

equivalence sets. There is, however, more than one way of translating the NDI-

equivalence into a transitive relation and this issue is again mentioned in Sec-

tion 16.1.

Definition 9.12 A set of UNDI-equivalence sets, E, consists of disjoint sets of

SEs, e ∈ E where e ⊆ Q (with all es together covering all SEs in the SSM) and for

all qi, qj ∈ e, qi and qj are UNDI-equivalent. In the pseudo-code notation, the

71



NDI equivalent(ssm, ~u,~v, H)
Input: an SSM ssm, SE distributions ~u and ~v, and history of state support

sets H .
Output: returns true if ~u and ~v are not decisively inequivalent given

possible future input sequences.
begin

if ∃xk ∈ X : (P̂y(~u, xk) 6= P̂y(~v, xk) ∧ sup(Pq(~u, xk)) 6= ∅∧1

sup(Pq(~v, xk)) 6= ∅) then return false;
/*i.e. the output must be the same for both SE distributions for all

possible input symbols. */
else if ~u = ~v then return true;2

/*i.e. if the distributions are identical, they are equivalent. */
else if 〈sup(~u), sup(~v)〉 ∈ H then return true;3

/*i.e. a loop has been encountered. Eventual inequivalence will be
encountered in another branch of the recursion tree. */

else4

/*If the equivalence/inequivalence cannot be asserted, then subsequent
inputs must be tested. */

R := true;
k := 1;
while R = true ∧ xk ∈ X do

/*As long as no inequivalence has been shown . . . */

~u ′ = P̂q(~u, xk);

~v ′ = P̂q(~v, xk);
if sup(~u′) 6= ∅ ∧ sup(~v′) 6= ∅ then5

/*. . . continue testing recursively. */
H ′ = H ∪ 〈sup(~u), sup(~v)〉;
R := NDI equivalent(ssm, ~u ′, ~v ′, H ′);

end
k := k + 1;

end
return R;

end

end
Algorithm 9.1: The recursive function NDI equivalent(ssm, ~u,~v, ∅) returns true if
and only if there is no evidence that the future ssm output could differ depending on
which of SE distributions ~u or ~v are occupied in the SSM. The if-statement on line 2 can
actually be logically omitted, since line 3 will catch the equivalence in subsequent levels
of recursion (line 4), but it makes the algorithm considerably more efficient in most
realistic cases. The empty support set tests on lines 1&5 together with the normalized
parsing (P̂q and P̂y) cause the algorithm to return true when assessment of inequivalence
cannot be performed.
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function call E = generate UNDI equivalence sets(ssm) is be used to denote

the generation of a set of UNDI-equivalence sets E from an SSM ssm. �

A machine with equivalent SEs can be collapsed to a smaller machine by col-

lapsing all equivalent sets into new, individual SEs. This collapsing, or merging, is,

however, part of another subalgorithm (the merge cvq-function of Definition 10.7).

9.2.7 SSM examples and interpretations

Example 9.1 Consider an SSM with Q = {q1, q2}, X = {a,b}, Y = {c,d} and

transition probabilities P = {p(q2, c|q1, a) = 1.0, p(q2, c|q1,b) = 0.1, p(q1, c|q1,b) =

0.9, p(q1, c|q2, a) = 0.8, p(q1,d|q2, a) = 0.2, p(q2,d|q2,b) = 1.0} (SSM A in

Figure 9.1). All zero probabilities are omitted from the descriptions, e.g., that

p(q1, a|q1, a) = 0.0. If we let the initial SE vector be ~q(0) = (1.0, 0.0) (i.e. that

p(Q = q1) = 1.0 at time t = 0) and then parse the string aabbba with the

machine, the sequence of SE and output symbol distribution vectors (where the

two elements of vector ~y correspond to probabilities of symbol c and d

respectively) would be as follows:

(a) ~q(1) = (0.0, 1.0), ~y(1) = (1.0, 0.0),

(a) ~q(2) = (1.0, 0.0), ~y(2) = (0.8, 0.2),

(b) ~q(3) = (0.9, 0.1), ~y(3) = (1.0, 0.0),

(b) ~q(4) = (0.81, 0.19), ~y(4) = (0.9, 0.1),

(b) ~q(5) = (0.729, 0.271), ~y(5) = (0.81, 0.19),

(a) ~q(6) = (0.271, 0.729), ~y(6) = (0.9458, 0.0542). �

Note that, since the SSM of Example 9.1 has no dead transitions, the sums of

the SE and output probabilities are always one, respectively. In the next example

an SSM that has some dead transitions is shown.

Example 9.2 Consider an SSM with Q = {q1, q2}, X = {a,b}, Y = {c,d} and

transition probabilities P = {p(q2, c|q1, a) = 1.0, p(q1, c|q1,b) = 0.9, p(q2, c|q1,b) =

0.1, p(q1,d|q2, a) = 1.0} (SSM B in Figure 9.1). Note that the machine has dead

transitions since q2 has no outgoing transition over symbol b. SE q2 is also an

example of a deterministic SE. If ~q(0) = (0.0, 1.0) and the SSM is fed symbol b as

input the probabilities of all SEs and outputs would therefore immediately reach
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2 b:d

a:c:0.8

a:d:0.2

b:c:0.1
a:c

b:c:0.9 1

A

b:c:0.9

a:c
b:c:0.1

a:d

1 2

B

Figure 9.1: The two SSMs of examples 9.1 (A) and 9.2 (B) (with qi denoted by i). A
transition label x:y:p should be read as a transition with x as input and y as output and
p as the probability of this transition. For example, the transition label “b:c:0.1” from q1

to q2 corresponds to the conditional probability p(q2, c|q1,b) = 0.1. If the p is 1.0, then
the probability is omitted from the label.

zero. In other words, the possibility of being in SE q2 is eliminated by the symbol

b, and as a consequence of the SSM “observing” b, the probability of this

impossibility vanishes from the machine. If we instead let ~q(0) = (1.0, 0.0) and

then parse a sequence of t bs, the sum of SE probabilities would be 0.9(t−1) when

t ≥ 1. �

As the example illustrates, the the SSM acts as an observer of inputs, from

which it derives a modelled degree of belief of what the actual enumeration of the

state and output of the underlying system would be, given the same input sequence.

Typically, if an SSM is given a uniform initial SE distribution, the SE distribution

will, for each input symbol, gradually become more and more focused towards a

small number of possible SEs (and output symbols). In a way, the SSM can be seen

to “condense”, or “crystallize” to a minimal hypothesis of the factual (knowable)

state of the underlying system.

An SSM can be quite different and counter-intuitive compared to state machines

typically encountered in the literature which is illustrated in the next example.
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Example 9.3 The SSM of Figure 9.2 represents a more complex SSM. This

machine is not fully connected and also contains a “dead SE” (cf. Definition 9.7)

from which there are no transitions (q10). This is a perfectly correct form of SSM

and, if provided with an initial SE distribution, this machine can process input

sequences just as the SSMs of the previous examples. In this machine, many

properties of the UNDI-equivalence become clear. The set of equivalence sets

returned by generate UNDI equivalence sets is

{{q1}, {q2, q3, q4}, {q5, q6, q7}, {q8}, {q9}, {q10}}. State element q10 will, since it has

no outgoing transition, be NDI-equivalent with all other SEs. However, since it is

the only element with this property, it is not UNDI-equivalent with anything but

itself. q8 is, on the other hand, the only one NDI-equivalent with only itself. One

can easily see that the SEs of the equivalence sets {q2, q3, q4} and {q5, q6, q7} have

the output symbols in common, respectively. q3 is special since it has no outgoing

transition over symbol b, whereas q2 and q4 have. q3 is, however, NDI-equivalent

with SEs q2 and q4 since it cannot be decided that symbol b should result in any

different output given any of these three SEs. Then, for the same reason, why is

not q9 UNDI-equivalent to q5, q6 and q7, although it too, is constantly giving c as

output? The reason is that SE q9 is also NDI-equivalent with q1, which none of q5,

q6 and q7 are, therefore it is not UNDI-equivalent with them the way q3 is with q2

and q4. If one added q11, NDI-equivalent with q3, but not with q2 and q4, then this

situation would change (even though q11 may seem completely unrelated to q3).

Another aspect to notice is that the transition from the equivalence set

{q2, q3, q4}, from q2 to q10, makes no difference for the assessment of the

equivalence of q2 with q3 and q4 since the transitions is to a dead SE from which

no decisive inequivalences can be derived. �

The format of the extracted rules of CrySSMEx has now been described. The

next step is to define a vector quantization function which is later orchestrated to

work in conjunction with these rules.
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a:c:0.1

a:c:0.9

b:c:0.01
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b:d:0.3 a:d:0.4
a:c

9
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b:d:0.2

b:d:0.8

1 10
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a:d

4

a:d,b:d

Figure 9.2: A more complex SSM example where UNDI-equivalence sets have been
grouped together. See discussion in text of Example 9.3.
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Chapter 10

The Crystalline Vector Quantizer

The observation and quantization of the state space of the underlying SDTDS is

perhaps the most signifying constituent of RNN-RE algorithms. In previous work,

quite traditional clustering algorithms have been used to partition the state space

of the RNN (Jacobsson, 2005), e.g., self-organizing maps and k-means clustering

(cf. Section 6.2). The problem with these clustering algorithms is that they parti-

tion the state space solely according to spatial properties, e.g., so that datapoints

have low intracluster distances and high intercluster distances (Everitt, Landau &

Leese, 2001). In the case of RNNs and other dynamic systems, however, the spatial

requirements should give way to functional requirements. The spatial (e.g., Eu-

clidean) proximity of two states of the SDTDS is of less importance for deciding if

they belong to the same cluster, than the invariance of the apparent behaviour of

the SDTDS with respect to these states. Similar problems also exist when cluster-

ing internal activations of feedforward networks (N. E. Sharkey & Jackson, 1995).

This means, among other things, that the quantizer may need to have varying

granularity in different regions of the state space.

A partitioning that is completely guided only by the dynamics of the SDTDS is,

however, an idealization (Casey, 1996; Blair & Pollack, 1997; Jacobsson & Ziemke,

2003b). Instead we will have to be content with partitions that are equivalent for

a specific and finite set of input sequences (in the finite Ω of Definition 9.3).

To satisfy the functional requirements, a quantizer that allows generation of a

division of the state space based on spatial properties is needed, as well as splitting

and merging regions into new ones when the functional requirements are not satis-
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fied (details of when exactly when it is appropriate to split or merge are covered in

Chapter 11). For this purpose, a novel quantizer is suggested, the Crystalline Vec-

tor Quantizer (CVQ). The CVQ has some resemblance to the hierarchical decision

tree representation extracted from feed-forward networks by Craven and Shavlik

(1996), but differs in the details.

The CVQ is built upon a graph which is defined below. How the information of

this graph is used to quantize a vector space is described in Section 10.2 and CVQ

training in Section 10.3.

10.1 Definition of CVQ graph

Definition 10.1 A CVQ graph is a quadruple

CV Q = 〈NLeaf , NV Q, NMerged, nroot〉 where nroot ∈ NLeaf ∪NV Q is the root node of

the CVQ graph, in which the constituents are defined as in definitions 10.2–10.4.

�

The CVQ graph is a directed graph and could thus be described as a set of

vertices and edges, but for notational reasons it is easier to omit the edges from the

description and instead of edges let nodes have explicit references to other nodes.

The first node type, however, has no explicit references to any other nodes.

Definition 10.2 A leaf node in a CVQ graph n ∈ NLeaf has only one

constituent, n = 〈ID〉, where ID ∈ N is a unique enumeration of the leaf nodes

within the CVQ and 1 ≤ ID ≤ |NLeaf |. �

Definition 10.3 A Vector Quantizer (VQ) node in a CVQ graph, n ∈ NV Q is a

tuple n = 〈M, C〉 where M is a list of K model vectors, [~m1, ~m2, . . . , ~mK ] where

[~m]i ∈ R
d, and C is a (nonrepetative) list of child nodes [c1, c2, . . . , cK ] where

ci ∈ NLeaf ∪NMerged ∪NV Q. d ∈ N is the dimensionality of the vector space which

the CVQ will be used to quantize. �

Definition 10.4 A merged node in a CVQ graph, n ∈ NMerged, contains only a

“link”, n = 〈ngroup〉, where ngroup ∈ NLeaf ∪ NMerged ∪ NV Q. �
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The interpretation is clarified in the next section where the use of a CVQ as

quantization function is described in which all CVQ node constituents are of rel-

evance. The example of Figure 10.1 is also beneficial for understanding the inter-

pretation of the CVQ nodes.

The constituents of a CVQ are simply as defined above, but there are, of course,

a number of constraints for how the CVQ graph can be constructed, e.g., that there

may be no cycles in the graph. These constraints cannot be simply formalized, but

are quite intuitive. Therefore, instead of a lengthy formal description, an example

illustrates a typical CVQ topology in Figure 10.1. Also, the way the CrySSMEx

algorithm builds the CVQ defines the constraints in exact detail (Chapter 11).

Firstly, however, some useful implicit properties of CVQ nodes should be de-

fined.

Definition 10.5 The parent set of a node n is denoted1 n.Parent and refers to

the set of all nodes where N ∈ NMerged or N ∈ NV Q where N.ngroup = n or

n ∈ N.C for merged and VQ node parents respectively (nroot.Parent = ∅). �

A node, n, can have two types of parent sets; either it has a set of merged nodes

that are linked to n, or it has just one VQ node (as illustrated in the example of

Figure 10.1).

Definition 10.6 The level L ∈ N of a node n is denoted n.L. The level of the

root node is 0 and of all the other nodes n.L = max
np∈n.Parent

(np.L) if

n.Parent ⊂ NMerged and n.L = np.L + 1 if n.Parent = {np} and np ∈ NV Q. �

The level of a node reflects how many VQ nodes, or splits, are maximally required to

reach the node from nroot (see Sections 10.2 and 10.3 for more details on CVQ graph

interpretation and splits). The example in Figure 10.1 illustrates the structure of

a typical CVQ graph.

10.2 Quantizing with a CVQ

When a CVQ is used as a quantizer (Definition 9.4) the corresponding quantization

function is denoted Λcvq and is in turn defined by the recursive function winner :

NLeaf ∪ NMerged ∪ NV Q × R
d → {1, 2, . . .m} as defined in equation:

1An object orientation like notation is adopted here, where X.Y means “The Y of X”.
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 C = {                    }
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Figure 10.1: Example of a CVQ with NLeaf = {n2, n5, n6}, NMerged = {n1, n4},
NV Q = {n0, n3} and nroot = n0.

Λcvq(~v) = winner(nroot, ~v) (10.1)

where winner is recursively defined as

winner(n,~v) =





n.ID if n ∈ NLeaf

winner(n.ngroup, ~v) if n ∈ NMerged

winner(n.cw, ~v) if n ∈ NV Q

(10.2)

where w, the index of the winning child of a VQ-node, is determined according to

w = argmin
1≤i≤|n.C|

‖~v − n.[~m]i‖ (10.3)
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Figure 10.2: How a two-dimensional space would be quantized if the example CVQ in
Figure 10.1 had model vectors n0.M = [(0.25, 0.75), (0.75, 0.75), (0.5, 0.25)] and n3.M =
[(0.30, 0.20), (0.55, 0.35)].

where ‖~v − n.[~m]i‖ denotes the Euclidean distance between the vector to be quan-

tized and the ith model vector of the VQ-node. If two model vectors have equal

distance to the data vector, the smaller of the indices will be returned.

Example 10.1 If a vector ~v is classified by the CVQ of Figure 10.1, the

classification starts with the root, which is a VQ node. ~v is compared to the

model vectors and the closest such is chosen as a winner. If ~m1 is the closest, then

the merged node (n1) is entered from which the leaf node (n6) with ID = 3 is

immediately entered and 3 is returned. In briefer terms:

Λcvq(~v) = winner(n0, ~v) = winner(n1, ~v) = winner(n6, ~v) = n6.ID = 3. The

division of a two-dimensional state space using the CVQ of Figure 10.1 with

exemplified instantiated model vectors is illustrated in Figure 10.2. �

10.3 CVQ training

The training of the CVQ in CrySSMEx is tightly connected with operations of the

SSM and sampling of the SDTDS (as discussed in Section 8.2). Here, however, the
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operations that are later used to refine the CVQ are defined as independent of their

role in CrySSMEx (see Chapter 11 for this context).

The training consists of replacing leaf nodes with either merged nodes or VQ

nodes, add new leaf nodes, and then reenumerate the IDs appropriately. Replace-

ment of a leaf node with a VQ-node results in a larger number of leaf nodes and is

referred to as CVQ splitting. Replacement of several leaf nodes with merged nodes

results in a smaller number of leaf nodes and is referred to as CVQ merging. After

completion of each of these operations, leaf nodes will be reenumerated.

Firstly, merging is described, followed by basic splitting, then an operation called

complete splitting. “The user” which is mentioned in the following descriptions, is

another part of the CrySSMEx algorithm, but it should of course be possible to use

CVQ in other contexts.

10.3.1 The initial CVQ

The initial CVQ, denoted cvq0, is the simplest possible CVQ consisting of only one

leaf node (nroot) with ID = 1. All vectors will thereby be quantized as nroot.ID = 1

by the initial CVQ.

10.3.2 Merging

The merging of nodes in a CVQ corresponds to merging regions in the quantized

space. This is conveniently described with an example:

Example 10.2 In the example of Figure 10.1, nodes n1 and n4 have been merged

into n6. Before this merge, n1 and n4 were two separate leaf nodes, but then the

“user” discovered that the corresponding regions should not be separated, for

some reason. The merge was subsequently conducted by creating a new leaf node,

n6, and then replacing the leaf nodes n1 and n4 with merged nodes connected to

n6. �

In principle, any number of leaf nodes can be merged simultaneously. The merge

is an operation on the CVQ graph, not necessarily related to any spatial properties

of the quantized space, i.e. disconnected regions can be merged. The decicion of
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which subset of leaf nodes to merge is also entirely independent from their position

in the CVQ graph.

Definition 10.7 The merging of one or more groups of leaf nodes will be

denoted cvq′ := merge cvq(cvq, E) where E is a set of disjoint sets of IDs

covering all leafs of the CVQ. The result, cvq′, is the CVQ where leaves have been

merged into one new leaf node per set in E (trivial sets in E, with only one

member, are simply ignored). The leaf nodes are also re-enumerated before

returning the resulting CVQ. �

E is later (in Algorithm 11.2) connected to the set of equivalence sets gener-

ated from SSMs by the function generate UNDI equivalence sets (described in

Definition 9.12).

Example 10.3 If cvq′ = merge cvq(cvq, {{1, 3, 5}, {2, 4}, {6}}) is called, it will

replace leaf nodes with IDs 1, 3 and 5 with merged nodes connected to a new leaf

node, and correspondingly for 2 and 4. The leaf node with ID = 6 will be left

unaltered. CVQ-based quantization function Λcvq′ will then quantize vectors into

the range [1, 3] whereas Λcvq quantized into the range [1, 6]. �

10.3.3 Basic splitting

When a CVQ leaf node is split, this amounts to splitting the corresponding region

enumerated by that leaf. It is simpler to also describe this mechanism with an

example:

Example 10.4 A set of two-dimensional data vectors V are quantized as in

Figure 10.2. Now, the user has discovered that there are actually two types of

vectors quantized as 1 (let us call the set of these vectors V1). The user wants the

two classes to be correctly separated by the CVQ. To do this the user collects all

data vectors V1 = {~vi : Λcvq(~vi) = 1} and separates this set into two sets V +
1 and

V −
1 corresponding to the two classes. The node with ID = 1 (i.e. n2 in

Figure 10.1) would then be replaced with a VQ node with two model vectors and

two new leaf nodes as children. The model vectors of the VQ node is then set to

be the average of the vectors in sets V +
1 and V −

1 respectively. �
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In the above example, a leaf was only split into two new leaves, but in general,

a leaf’s corresponding region in the quantized space can be split into any number

of regions.

10.3.4 Complete splitting

It is possible that the model vectors will not perfectly separate the data vectors after

a basic split, since they might be linearly inseparable or the average vectors of the

data sets may not be the perfect model vectors for separating the data2. In such

cases, CrySSMEx would typically re-split the resulting region again automatically

(see Chapter 11 where CrySSMEx is described in detail). It is however possible

that an imperfect split may cause a non-minimal machine to be extracted and also

that CrySSMEx will not terminate due to spurious SEs. Therefore a “perfect”, or

complete, split mechanism has also been devised.

To perform a complete split, the splitting is first conducted as in Example 10.4.

But if the enumerated data vectors are still not separated, then the new leafs will

be re-split using the corresponding subsets of the data vectors until the data vector

class can be uniquely inferred from the identity of the involved leaf nodes. After

this, all involved leaf nodes “belonging” to the same class are merged.

Definition 10.8 The complete split of several VQ nodes using a number of data

sets at once will be denoted cvq′ := split cvq(cvq, D) where cvq is the CVQ to

be split and D = [D1, D2, . . .D|Λcvq|] is a list of data sets where Di is the data set

for splitting the leaf node with ID = i (if the node should not be split, then

Di = ∅). The elements of a data set are pairs 〈~v, ℓ〉 where ~v ∈ R
n is the data

vector and ℓ ∈ N is label, or class, of the data vector. The leaf nodes of cvq′ are

also re-enumerated immediately after the completion of all splits. �

There is also a possibility that the averages of two or more classes are exactly

the same, in which case the splitting will fail completely. It is very unlikely this

will occur by chance and no fixes are included in the definition of the algorithm.

2 In fact, it can be quite inefficient to use the average as model vectors. The reason that
model vectors are chosen as such is basically that it is simple, deterministic and does not require
any parameters. Other, more sophisticated methods, such as resource allocating learning vector
quantization (Everitt et al., 2001), have also been tested, but it does not really make a big
difference apart from longer computation times and somewhat smaller CVQ graphs.
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It has not occurred in any of the experiments (Chapter 12), and if it did, the

implemented algorithm (cryssmex.sourceforge.net) would abort execution and

generate a warning. It is of course also very important that there is no pair of

differently classified but identical data vectors. This should not happen in the

context of CrySSMEx due to the way data is collected from a deterministic machine,

but it should be kept in mind if the CVQ is to be used in another context.
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Chapter 11

The Crystallizing Substochastic

Sequential Machine Extractor

11.1 Data selection from Ω

Perhaps the most important point of convergence of the various constituents de-

scribed so far, in this thesis, is where subsets of Ω are selected and classified based

on properties of the extracted SSM. The goal of CrySSMEx is to generate a deter-

ministic SSM from the underlying deterministic SDTDS by dividing the state space

into a minimal set of enumerated regions that can be used to describe the SDTDS

perfectly in the context of Ω. To do this, indeterministic SEs of the SSM are

targeted for splitting in the corresponding CVQ using selected state vectors from

Ω. The basis for the selection of state vectors is to choose the set which should

convey the most information, primarily of the output of the SSM and secondarily,

the next state element of the SSM. The entropies Hssm(Y |Q = qi, X = xk) and

Hssm(Q|Q = qi, X = xk) (definitions 9.9 and 9.10 respectively) are used for this

selection. This basis for selection is not the only one possible, however, and this is

mentioned again in Section 16.1. The entire selection procedure is contained in the

function collect split data, described in Algorithm 11.1.

11.2 CrySSMEx main loop

The ingredients for CrySSMEx have now been presented:
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collect split data(Ω, ssm, Λi, Λs, Λo)
Input: A transition event set, Ω, an SSM, ssm, an input quantizer, Λi, a

state quantizer, Λs, an output quantizer, Λo.
Output: A list of data sets D, one data set per q ∈ Q. The element of each

data set is a pair 〈~v, ℓ〉 where ~v ∈ R
n is a data vector and ℓ ∈ N is

the assigned label of the vector.
begin

D := [∅, ∅ . . .∅];
for ∀〈~s(t),~ı(t), ~o(t + 1), ~s(t + 1)〉 ∈ Ω do

qi := Λs(~s(t));
xk := Λi(~ı(t));
yl := Λo(~o(t + 1));
qj := Λs(~s(t + 1));
/*If qi is indeterministic, the state vector should be stored in D with

an appropriate labelling. */
if ∃xm : Hssm(Y |Q = qi, X = xm) > 0 then

xmax := argmax
xm∈X

Hssm(Y |Q = qi, X = xm);

if xk = xmax then
/*If output indeterministic with respect to qi and xk, label the

state vector with the output symbol, yl. */
Di := Di ∪ 〈~s(t), yl〉;

end

else if ∃xm : Hssm(Q|Q = qi, X = xm) > 0 then
/*If output is uniquely determined from qi, but next state is not,

label state vector using next SE, qj. */
xmax := argmax

xm∈X

Hssm(Q|Q = qi, X = xm);

if xk = xmax then
Di := Di ∪ 〈~s(t), qj〉;

end

endif

end
return D;

end
Algorithm 11.1: collect split data selects state vectors from Ω and labels them
according to either Λo or Λs such that they are suitable for use in splitting CVQ nodes.
The resulting list of data sets, D consists of one data set of labelled state vectors for
each SSM SE, i.e. Di corresponds to the data set for splitting state qi.
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• the SDTDS which represents the class of specimens for CrySSMEx to analyse

(Definition 9.1),

• the data set, i.e. the SDTDS transition event set Ω (Definition 9.3),

• SSMs, which can be viewed as a subtype of SDTDSs (Definition 9.6),

• quantizers, e.g., Λi, Λs and Λo (Definition 9.4),

• SDTDS translation into SSM through quantization of input, output and state

(Definition 9.8),

• the SSM transition functions Pq and Py (Equations 9.4 and 9.6) and P̂∗

(Equation 9.8),

• the generation of UNDI-equivalence sets of SEs in SSMs (Definition 9.12),

• the CVQ (Definitions 10.1 to 10.3), used as a quantizer of vectors through

the function Λcvq (Equation 10.1),

• merging and splitting of CVQ leaf nodes (Definitions 10.7 and 10.8),

• a mechanism for selecting and labelling state vectors of Ω based on properties

of the SSM (Algorithm 11.1).

These constituents are integrated into the CrySSMEx-algorithm as described in

Algorithm 11.2. The principle behind the algorithm is that the SSM should be kept

as small as possible through the merging of SEs that are UNDI-equivalent while

at the same time splitting indeterministic SEs. It is important to decide before

an SE is deemed to be indeterministic, that it is not so because it, over one input

symbol, transits to two or more SEs which are really equivalent (or at least UNDI-

equivalent). If the machine was not minimized through the merging of equivalent

state elements, it would risk resulting in an explosion of SEs due to unjustified

splits.

If the algorithm does not converge in due time, additional termination criteria

could be added. For example, one may want to limit the number of possible itera-

tions, or put a limit on |Q|. The extracted, then possibly indeterministic, SSM will

still be a model of the underlying SDTDS, and moreover, the more computational

resources dedicated to iterate CrySSMEx, the better a model the SSM will be of the

SDTDS, in terms of fidelity.
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CrySSMEx(Ω, Λo)
Input: An SDTDS transition event set, Ω, and an output quantization

function, Λo.
Output: A deterministic SSM mimicking the SDTDS within the domain Ω

as described by Λo.
begin

let Λi be an invertible quantizer for all I in Ω;
i := 0;
ssm0 := create machine(Ω, Λi, Λcvq0 , Λo);
/*ssm0 has Q = {q1} with all transitions to itself. */
repeat

i := i + 1;
D := collect split data(Ω, ssmi−1, Λi, Λcvqi−1 , Λo);
cvqi := split cvq(cvqi−1, D);
ssmi := create machine(Ω, Λi, Λcvqi, Λo);
if ssmi has UNDI-equivalent states then

/*Merge SEs if possible. */
E := generate UNDI equivalence sets(ssmi);
cvqi := merge cvq(cvqi, E);
ssmi := create machine(Ω, Λi, Λcvqi , Λo);

end

until ssmi is deterministic;
return ssmi;

end
Algorithm 11.2: The main loop of CrySSMEx.
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Chapter 12

Experiments

The main purpose of the experiments in this thesis is to show that CrySSMEx man-

ages to extract machines in contexts previously unsolved using RNN-RE algorithms.

Another goal is to identify weaknesses of CrySSMEx by running it on notoriously

challenging SDTDSs. A deeper analysis of how and why CrySSMEx behaves as it

does, as well as of the resulting SSMs and CVQs will, however, have to be post-

poned for future work (discussed more in Chapter 16). Other relevant experiments

are also presented in Jacobsson and Ziemke (2003a) and Jacobsson and Ziemke

(2003b), which are both included verbatim in appendices C and D respectively.

Jacobsson and Ziemke (2003a)1 demonstrated how seemingly minor differences in

testing procedure had significant effects on estimated results in the anbn-domain

used in Section 12.2. Jacobsson and Ziemke (2003b) compared breadth first search

RNN-RE with a sampling based RNN-RE.

12.1 An illustrative example

Most previous work on RNN-RE algorithms has been experimentally tested on regu-

lar language domains (cf. Section 6.4). The aim of this experiment is to demonstrate

that this kind of domain is trivial and at the same time illustrate the extraction

process. It has already been proven that if an RNN is robustly performing a reg-

ular language recognition task, then this model can always be extracted (Casey,

1996). But no technique can warrant that such an extraction is possible in practice:

1Which in turn was an extension of the work in Jacobsson (1999).
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Figure 12.1: The state space of the RNN in the “badiiguuu”-domain. The states (∗)
and transitions between states are shown and the decision hyperplanes (N. E. Sharkey &
Jackson, 1995) for each output unit are plotted (only three are visible).

there is no guarantee for CrySSMEx either, of course, but it does seem to be quite a

straightforward process.

Elman (1990) used a simple regular language to train a simple recurrent network

(SRN). The domain consisted of three subsequences ba, dii and guuu repeated in

random order, e.g., babadiibaguuudiiguuu.... The task for the RNN was to do

next-symbol prediction. In essence, only the vowels were at all predictable. In this

thesis, an SRN with two hidden nodes was trained on this domain with the symbols

represented as six dimensional vectors with one node active for respective symbol.

To generate Ω, a string of 105 randomly ordered substrings was used on the

trained RNN. The state space of the RNN is shown in Figure 12.1. Three iterations

completed the extraction and the sequence of state space divisions, the CVQ graphs

and the SSMs are illustrated in Figure 12.2. The breadth first technique of Giles,

Miller, Chen, Chen and Sun (1992) has also been tested on this domain, and it

resulted in a large number of states never visited by the RNN when predicting the

actual strings (Jacobsson & Ziemke, 2003b) (cf. Appendix D).

Most essential features of CrySSMEx are exemplified in this extraction. In the

initial SSM, ssm0, it can be seen that input symbol i generates the maximum

amount of uncertainty regarding the output symbol (the output symbol C here
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and all subsequent iterations of CrySSMEx.

92



corresponds to the non-symbol generated by the RNN when it predicts a consonant,

with no possibility of predicting the exact symbol due to the random ordering of

substrings). For that reason, collect split data will select state vectors which

the RNN occupied when it received i as input and label them according to the

output label as determined by Λo. The CVQ is then split according to the selected

data, resulting in cvq1. The same procedure is repeated again with ssm1, and an

SSM of three SEs, of which two are UNDI-equivalent, is generated (not shown) This

results in two merged nodes in cvq2. As can be seen in the state space division,

cvq2 merges two (locally) disconnected subspaces. From both SEs of ssm2, the

output can now be deterministically predicted, but q2 is still indeterministic since

transitions from it over symbol u is ambiguously mapped to q1 and q2. Therefore,

collect split data selects those RNN state vectors in Ω enumerated 2 by Λcvq2

from which a transition induced by symbol u was made, and labels them according

to the Λcvq2-enumeration of the subsequent state vector. After the split of cvq2,

CrySSMEx terminates since the resulting SSM is deterministic and will fully mimic

the underlying RNN within Ω.

Note that there are some dead transitions in ssm3, e.g., for symbol g in q3. If the

underlying RNN is fed a g while occupying a state in the corresponding subspace,

it will certainly react in some manner, but since that event was not recorded in Ω,

the resulting SSM does not model it. Also, the resulting SSM is not a model of the

input source; for example, although not supported in Ω, ssm3 models the outcome

of infinite sequence of symbols i and u. This is due to the fact that CrySSMEx does

not build a model of the domain, it builds a model of how the underlying system

interacts with its domain without guarantees of generalization to situations outside

Ω (again, a consequence of the closed world assumption).

12.2 An RNN trained on a context free language

The prediction of symbols in the context free language anbn is a challenging domain

for RNNs that has been studied quite intensely (e.g. Wiles & Elman, 1995; Bodén

& Wiles, 2000; Gers & Schmidhuber, 2001). In my study, CrySSMEx was used to
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analyse 100 successfully trained2 SRNs (of one input node, two state nodes and one

output node) to predict the predictable symbols of randomly ordered anbn-strings

(1 ≤ n ≤ 10). Ω was here generated by exposing the RNN to exactly 200 anbn-

strings of each length (1 ≤ n ≤ 10) in random order. For all 100 RNNs, extraction

was successful, resulting in SSMs of eleven SEs. An example of an extracted ma-

chine, together with the CVQ-quantized state space, is shown in Figure 12.3.

The regular grid lattice quantizer of Giles, Miller, Chen, Chen and Sun (1992)

was also tested, and it typically never found any SSM with the same behaviour as

the RNN until the state space was divided into at least 40× 40 grids. The number

of SEs was then between 25 and 70. If the breadth first search of that paper is

employed, the number of states becomes even higher (Jacobsson & Ziemke, 2003b)

because then many states which would not have been visited when processing anbn-

strings are also included (cf. Appendix D).

In this domain, some problems for CrySSMEx are exposed. Firstly, although

all extracted SSMs had the same |Q|, and all SSMs generated exactly the same

outputs as the RNNs (within the sampled domain), actually two types of SSMs

were extracted: 90 SSMs of one type and 10 of the other. This is probably due

to different forms of dynamics of the underlying RNNs (Tonkes et al., 1998). If

the deviance of the extracted SSMs from the RNN is plotted as error curves, they

follow two exact and distinctly separate curves (see Figure 12.4). The extraction

also took either nine or ten iterations depending on the underlying RNN. Clearly,

CrySSMEx is sensitive to the internal properties of the RNN that give rise to these

differences3. This may be a problem, but it may also be a key to a window of

analysis of the dynamics of the underlying RNN.

A more serious problem arose when Ω was too small, e.g., with just ten occur-

rences of each string length, CrySSMEx could get stuck in loops where an ssmi would

be exactly equal to ssmi−n, where n ≥ 1. This was due to the merging and splitting

of SEs cancelling each other over one or more iteration. The mechanisms behind

these loops are not entirely clear and the issue definitely requires more targeted

experiments. It seems, however, to be linked with some kind of data starvation

2Using a genetic algorithm, see Jacobsson and Ziemke (2003a) (or Appendix C) for further
details and a more comprehensive list of references.

3Why exactly these results were obtained remains an open issue.

94



211
a:a,b:a

b:b:0.80b:a:0.18,b:b:0.82

a:a

a:a:0.22,b:b:0.20

a:a:0.78

11

b:b

b:a

b:b,a:a

a:a

b:b

a:a

10543
b:b

a:a

b:b

2

1

a:a

b:b

a:a

b:b

...
a:a

...

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 12.3: The first two machines (ssm0 and ssm1) and the last (ssm10) in the
sequence of machines extracted by CrySSMEx in the anbn-domain. The state space of
the RNN and its cvq10-division of the state space is also shown below the machines.
Note that some distant states belong to the same region, while, at the same time, some
nearby states are divided due to the functionally driven quantization strategy employed
in CrySSMEx. Some of the disjoint regions are also actually merged in the CVQ (which
cannot be seen in the diagram).
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Figure 12.4: The error curves (where error here corresponds to the ratio of output
symbols of the SSM not congruent with the RNN) of the extracted SSMs from 100 SRNs
evolved to predict in the anbn-domain. For 90 of the networks, the error curve followed
the flatter line, and for the others it followed the steeper line. All 100 error curves are
overlaid in the diagram and there are no deviances from the error curves since CrySSMEx

is deterministic.

since it has only occurred for smaller Ωs. To circumvent this problem, CrySSMEx is

now implemented to abort execution, by default, if a loop is encountered. Another,

also implemented, option is to skip the merge completely if it should result in a

loop. This approach is successful in that CrySSMEx terminates with a deterministic

SSM equivalent with the RNN, but unfortunately with more SEs than the eleven

otherwise extracted.

A third problem sometimes occurred when Ω was generated with longer anbn-

strings. In some cases, when the RNN generalized to longer strings perfectly, this

posed no problem. In others, an erroneous prediction of the RNN was successfully

modelled in the SSM, e.g., that it predicted an a prematurely if n = 11. However,

in other instances, the temporal dependencies of the errors are quite complex, and

the SSMs seem to grow indefinitely (without ever exceeding the size of Ω, of course).

It is known that RNNs with weights in the vicinity of the correct solution have a

seemingly chaotic error gradient distribuition which makes training using gradient
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descent difficult (e.g. Bodén & Wiles, 2000). Perhaps a chaotic RNN may also

explain the difficulty for CrySSMEx (cf. Section 12.4).

12.3 A large RNN

An SRN of one input node, one output node and 103 state nodes (i.e. more than

106 weights) was created to test the feasibility of extracting rules from SDTDSs

of high dimensionality. The weights were initiated in the interval [−0.01, 0.01]

and the network was then exposed to a sequence of 104 randomly ordered inputs

(I = {(0), (1)}). The output quantizer used in this case gave three symbols, +,

− and 0, corresponding to whether activation of the output node increased, de-

creased or remained the same. The input symbols a and b corresponded to the

binary activation of the single input unit. The continuous activation function of all

nodes, 1/(1 + exp(−net)), makes it typically impossible for the output to stabilize

completely, i.e. there should be no need for symbol 0, but limits in machine preci-

sion made it necessary. This kind of network, with small random weights has been

theoretically studied earlier and has been proven to implement definite memory

machines (Hammer & Tiňo, 2003). This is, however, the first time a large scale

network of this type has been studied using RNN-RE.

The extracted machine, with |Q| = 19, is illustrated in Figure 12.5. The machine

emulated perfectly the behaviour of the SRN within Ω as “viewed” through Λo. It

may be of interest to mention that the generated data required over 230MB of

storage, yet CrySSMEx required only six iterations in the main loop to extract a

machine of 19 states with the same apparent behaviour as the significantly larger

RNN. The ease to extract from these networks is not surprising since the small

weights force the network to have contracting transition maps, essentially causing

the network to “forget” long term dependencies. It is, however, interesting to note

that the CVQ does not seem to have any problems scaling up with respect to state

space dimensionality.

Some more preliminary experiments were carried out with the same RNN ar-

chitecture but with larger random weights. For smaller weights, |Q| decreased, and

for larger ones, the extraction may become impossible in the sense that the SSM
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Figure 12.5: An SSM extracted from an RNN with 103 state nodes and random weights.
To save space, numbering is omitted and repetitive transition labels are bundled.

size seemed to grow indefinitely. SSMs were of course still extracted, but no deter-

ministic SSM were found within reasonable time. A high dimensional state space

is not needed to make the extraction of deterministic SSMs impossible, however, as

the following experiment demonstrates.

12.4 A chaotic system

To do rule extraction from a chaotic system may be considered unreasonable. If

a system is chaotic it means that it will never repeat its trajectory in state space

and that infinitesimal differences of two states will grow over time (Devaney, 1992).

These properties make the system impossible to describe deterministically with a

finite set of states. Any attempt to group two distinct SDTDS states into the same

subspace will fail since their future trajectories will inevitably diverge if the system

is chaotic.

It is, however, possible to use CrySSMEx to extract indeterministic SSMs from

chaotic systems. An iterated quadratic map is used to demonstrate this :

s(t + 1) = a · s(t) ·
(
1 − s(t)

)
(12.1)

The constant a, in the interval [0, 4], determines whether the attractor of the system

is a fixed point, cyclic or chaotic (Devaney, 1992). This system conforms with the

SDTDS definition, but with I = ∅ and O = ∅. A similar experiment, in the same
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domain, was conducted by Crutchfield and Young (1990), but their approach was

quite different from CrySSMEx because a fixed (unknown) translation from state

space into a discrete set of observations was assumed. In CrySSMEx, it is precisely

this translation that is the target for refinement.

The data was generated by running the system for 105 time steps, after an

initial 105 unmonitored steps to let the system “settle in” on its attractor. The

output symbols were, as in the last example, +, − and 0 corresponding to whether

the state increased, decreased or remained unchanged respectively4. This choice

of output symbols is just one of many possible Λo, which is why it is part of the

input parameters of CrySSMEx. Some readers might protest that this contradicts

earlier claims in this thesis that CrySSMEx is parameter free. The subtle difference

here is that although CrySSMEx requires the output quantization as a parameter,

this quantization is for RNN applications typically defined a priori as a direct

consequence of the symbolic domain of the RNN. In the above case, however, a

number of output quantizations are conceivable.

The resulting machines are trivial when a is set so that the attractor is fixed

or cyclic. If it is fixed, an SSM with one SE, and a transition generating symbol

0 are enough to describe the dynamics. If the system is cyclic, a finite set of SEs

suffice to describe the system deterministically, e.g., if a = 3.5 (having a period four

cycle) two SEs is enough, since the system, as “viewed” through Λ0, generates the

output sequence · · · + − + − . . .. If a = 3.839, the system has a 3-cycle attractor

(Devaney, 1992) and generates the sequence · · · + + − + + − . . . and consequently,

the SSM had three SEs.

If a is chosen so that the system is chaotic, CrySSMEx will not terminate (at

least not until the finite set of Ω is fully accounted for). But the extracted SSMs

can nevertheless be argued to account for some of the dynamics of the system.

To test the fidelity of the SSM, the extracted machines were initialized with the

Λs-enumeration of an initial state (chosen within the attractor) of the underlying

system, and both the SSM and the system were run in parallel until the SSM failed

to predict the output symbol of the system. This tests also the generalization of

4A more common way to discretize this state space is to split the space into two parts with 0.5
as a delimiter (e.g. Crutchfield & Young, 1990). These experiments should therefore be repeated
with a more standard approach to ensure comparability.
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Figure 12.6: Some results of CrySSMEx modelling chaotic systems from extracted ssm0

to ssm20. The diagram illustrates the average number of correctly predicted symbols
before the SSM failed to predict the output symbol of the system. When a = 4.0, the
extraction was aborted at iteration 15 due to limited memory resources.

the SSM since previously unseen sequences are used in the test.

Six quadratic map systems, with a = 3.7, a = 3.75, a = 3.8, a = 3.9, a = 3.95

and a = 4.0 respectively, were analysed. The quality of extracted SSMs, in terms of

the average time until SSM output deviates from the underlying system, typically

increased for higher iterations of CrySSMEx (see Figure 12.6). The number of SEs

grew exponentially for all systems, and grew faster for higher values of a (see

Figure 12.7). The number of SEs in relation to the number of correctly predicted

symbols reveals that the “cost”, in terms of SSM size, for each correctly predicted

symbol also increases exponentially (see Figure 12.8). It is however interesting to

note that invested computational time clearly gives a gain in terms of SSM fidelity

even when the underlying system is chaotic.

Other values of a were also tested, but if a = 3.85, for example, only three SEs

were needed to predict the system indefinitely. Therefore, the seemingly monotonic

relation between a and the number of SEs and prediction difficulty is merely an

illusion.
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Figure 12.7: The the number of SEs of the SSMs extracted from the chaotic systems
(cf. Figure 12.6).
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Figure 12.8: The diagram shows the number of states divided by the average number
of correctly predicted symbols in the chaotic domain, thereby indicating the “cost” of
predicting the system in terms of how many states each prediction needs (cf. Figures 12.6
and 12.7).
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Chapter 13

Summary of Part II

13.1 New problem domains handled

The extraction of deterministic SSMs using CrySSMEx has now been shown to be

possible for a number of challenging domains. The possibility of extracting stochas-

tic SSMs from chaotic systems was also demonstrated. The domains on which ear-

lier approaches have been tested were, almost exclusively, relatively simple binary

regular grammars (cf. Part I or Jacobsson (2005)). Arguably, the context free do-

main, the high dimensional SRN and the chaotic system tested in this thesis, all

constitute significantly more difficult problems.

13.2 New in CrySSMEx

Compared to the RNN-RE techniques presented in Part I, CrySSMEx introduces a

number of novel features.

13.2.1 Integration of RNN-RE ingredients

As discussed in Chapter 8, there are three main differences between CrySSMEx and

earlier approaches: the SSM, the CVQ and the integration of quantization, observa-

tion and minimization. These three ingredients make CrySSMEx more efficient than

earlier algorithms simply because CrySSMEx performs a directed and deterministic

search for a minimal quantization of the state space. Earlier approaches have relied

on quantizers to find this minimal quantization without any information about the
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underlying dynamic system context of the state space.

13.2.2 Parameter freedom

Another difference to most earlier approaches is that CrySSMEx is parameter free1

This is quite an advantage, since in the use of the algorithm as an analysis tool,

the results are guaranteed not to be affected by the choice of parameters.

13.2.3 Deterministic extraction

CrySSMEx is deterministic and will result in the exact same extraction every time a

data set is presented to it. Consequently, there is no need to run it more than once

on the same data. The determinism stems from the determinism of the quantizer.

This is not entirely novel, the regular lattice quantizer used by Giles et al. (cf.

Section 5.2) is also deterministic, but the technique has problems scaling up and

cannot be as precisely refined as the CVQ. Determinism is essentially the same as

having no random seed parameter as input to the algorithm.

The determinism and parameter freedom should be essential if CrySSMEx is to

be used as part of a larger system (as suggested in Part III of this thesis). As

the component of a system, a parameter infested and indeterministic rule extractor

would pass on these properties, in an amplified form, to the system of which it is

part. If, for example, a rule extractor can give 10 possible separate rules as a result,

a system of n such rule extractors would provide 10n possible results.

13.2.4 Gradual anytime extraction

Another main feature is that the algorithm quickly creates an initial coarse stochas-

tic model which it then gradually refines until a deterministic model is found (if

possible). This “anytime rule extraction” possibility was considered by Craven and

Shavlik (1999) to be an important aspect with respect to the scalability of the

algorithms.

The advantage is that the more computational resources invested in running the

1Given that the output quantizer, Λo, is seen as derivable from the domain, which it always
has been in the symbolic domains studied in the field of RNN-RE. It is not necessarily the case
for SDTDSs in general, though.
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algorithm, the more accurate the result will be. At the same time it will generate

results on which can be based the decision of whether or not you want it to have

more resources. For example, when very large SSMs were extracted from chaotic

systems (Section 12.4), the diminishing performance gain of SSMs as predictor of

the underlying system could be used as a termination criteria.

13.2.5 The handling of missing data

The algorithm can also handle missing data due to the substochastic nature of the

extracted model. This is important since it uses the observation of a system to

build models2. Observations that may, or may not, include all relevant aspects of

the underlying system. For example, dead transitions are allowed, i.e. when the

effect of an input symbol for a specific macrostate of the SDTDS is unknown, the

corresponding transition in the SSM is undefined.

In effect, it means that the SSM partly models the ignorance that follows from

Ω being a finite sample of the system. Furthermore, the entropies used to refine

the CVQ are chosen so that the ignorance stemming from an imperfect state quan-

tization can be redressed with no regards to dead transitions. A deeper discussion

of this topic is found in Section 18.4.

13.2.6 An SSM is an SDTDS

Another distinguishing feature of CrySSMEx in comparison to most other RE al-

gorithms is that the hypothesis space includes the system space, i.e. that the set

of SSMs is a subset of the SDTDSs. I believe this is something quite unusual for

RE algorithms (Andrews et al., 1995; Jacobsson, 2005). A finite state machine

typically does not fit well into the framework of RNNs.

This relationship could be very fruitful. I have already used this feature for some

verification of CrySSMEx; two SSMs, one SSM extracted from another deterministic

SSM should generally be equivalent to each other. Further utilization of this rela-

tionship is suggested in Section 16.2.4, where it is proposed that the extraction of

2It remains to conduct experiments in different domains to evaluate the relative importance
of this and to which extent dead transitions occur in extracted SSMs. Although not reported
explicitly in the experiments of this thesis, however, dead transitions seem to be very common,
which is especially obvious in the badiiguuu-domain (cf. Section 12.1).
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SSMs from SSMs be automated within the rule extraction framework.

13.2.7 Hierarchically structured state space quantization

Last, but not least, the extraction results not only in a machine, but also in a

hierarchically structured geometrical organization of the state space of the under-

lying system. This should be contrasted with the pure black box model of Vahed

and Omlin (2004) where none of the internal dynamic state space is used in the

extraction. Intuitively, the relation between the structure of the CVQ graph, the

topology of SDTDS state space, and the SSM should contain important seeds for

the further development of CrySSMEx and deeper analysis of the underlying system.

Some such future prospects are discussed in Chapter 17.
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Part III

From Rule Extraction to Machine

Epistemology
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Chapter 14

Introduction to Part III

In Parts I and II of this thesis the field of RNN-RE is surveyed in detail and a

novel technique, CrySSMEx, is suggested and tested. In this final part of the thesis,

potential future work is discussed in detail and new ambitious goals are suggested.

Some of these goals may be immediately realizable and others may be considered

more speculative. The suggestion of these goals is meant to serve as a catalyzer for

the field, rather than suggesting a concrete agenda.

RNN-RE techniques previous to CrySSMEx are of a wide variety in terms of

the format of the rules as well as how the rules are extracted. Common to all,

however, is that their constituent parts (quantization, observation, generation and

minimization) are not integrated to work in conjunction to solve the problem of rule

extraction. The development of these techniques appears to have been focused on

one or two of these constituents at a time. In CrySSMEx, however, the constituents

are brought together for the first time and a number of novel features, discussed

in Section 13.2, is the consequence of this. Furthermore, during the development

of CrySSMEx, it has been assumed RNNs should not be considered the only system

susceptible to the kind of automated analysis that RNN-RE constitutes. In this part

of the thesis (Chapters 14–19), the specific assumptions underlying the development

of CrySSMEx, the novel features of CrySSMEx and its possible improvements are

further discussed, extrapolated and motivated. Hopefully, many of the issues are

relevant also for techniques other than CrySSMEx, current or future ones.

The fields of RNN-RE and of RE in general, are for natural reasons traditionally

associated with connectionism and neural computation. If, however, the underlying
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system is not restricted to neural networks only, then associations with other fields

will become more obvious. This issue is referred to in the next chapter, where some

of these related fields are identified and briefly surveyed.

In Chapter 16, some flaws of CrySSMEx are identified and possible enhance-

ments suggested. These enhancements are primarily based on the novel SSM and

CVQ, and should be fairly straightforward to implement and test. Such possible

improvements lay the basis for Chapter 17, in which future challenges are sug-

gested; challenges stemming from the novelties introduced by CrySSMEx, but which

are also intended for the field as a whole. Several of these challenges are also con-

nected to and potentially partially solved in some of the related fields referred to

in Chapter 15.

Since the fidelity of extracted rules is the primary objective for CrySSMEx, rules

may precisely describe the underlying system at the expense of comprehensibility.

The virtue of rule extraction, however, does not have to be solely in terms of imme-

diate comprehensibility of the rules. The extracted rules are models of simulated

systems that may be employed just as scientists employ mathematical models to

describe physical systems. In Chapter 18, this connection is further extrapolated

and future goals are suggested for RNN-RE in lines of active learning and compu-

tational scientific discovery (Chapter 15).
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Chapter 15

Future and Related Areas of

Research

In this thesis I have followed the argument of Craven and Shavlik (1999), who

claim that when developing a rule extractor one should not assume the underlying

system is necessarily a neural network. The consequence is that the potential class

of underlying systems will then encompass systems which are typically under study

in other fields of research. This chapter briefly reviews a number of such fields and

discuss how the RNN-RE-field may potentially benefit from studying some them

more closely.

In some cases, techniques have been developed that could be used in RNN-RE

contexts, and in others well developed fields could help by introducing a richer and

more detailed terminology. As the title of this chapter implies, these related fields

should be incorporated into RNN-RE research in the future.

15.1 Fields similar to RNN-RE

If we accept that RNN-RE techniques can be used on more types of systems than

just RNNs, then I would argue RNN-RE should not be considered a field of neural

computation, but rather a field of machine learning applied to models of neural

computation (cf. Craven and Shavlik (1994)). The consequence is that related

algorithms are not primarily found in the literature of neural computation (apart

from the “classical” RNN-RE algorithms).
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One important field, not immediately associated with machine learning, is con-

trol theory. Especially with regard to the system identification aspect of control

theory, one suggested definition could as well apply to RE: “System identification

deals with the problem of building mathematical models of dynamic systems based

on observed data from the system” (Ljung (1999) p. 1). In control theory(e.g. S.

Young & Garg, 1995; Marculescu, Marculescu & Pedram, 1996; Garg, Kumar &

Marcus, 1999; Kumar & Garg, 2001), and especially for discrete event systems, sim-

ilar problems as those for RNN-RE-algorithms have been dealt with for a long time.

There are, however, some distinguishing features that separate CrySSMEx from algo-

rithms of control theory, for example, the assumed full observability, discrete time

and determinism of the underlying system.

In order to mature, however, the RNN-RE field needs to take into account the

well developed theory of this related field. But once the connection to control theory

is made, there is an abundance of other (some partly overlapping) fields that also

needs to be taken into account:

• inductive logic programming (e.g. Muggleton & Raedt, 1994),

• grammar induction (e.g. Moore, 1956; Gold, 1967; Lang, 1992; de la Higuera,

2005),

• computational learning theory (e.g. Valiant, 1984; Angluin, 1987, 2004),

• symbolic dynamics (Crutchfield, 1994),

• computational scientific/mathematical discovery (e.g. Simon, 1995/96; Lan-

gley, 1998, 2000; Colton, Bundy & Walsh, 2000; Langley, Shrager & Saito,

2002; Langley, 2002),

• closed loop discovery (a.k.a. active learning) (e.g. MacKay, 1992; Cohn, Atlas

& Ladner, 1994; Bryant, Muggleton, Page & Sternberg, 1999),

• belief revision (Friedman & Halpern, 1999),

• software testing (Bergadano & Gunetti, 1996),

• data mining, etc.

Taken together, these fields form an almost insurmountable abundance of literature

(only very few examples are cited here). There are probably also other fields that

are important to consider (cf. next section).

Some of the goals of these fields differ widely. For example, the goal for system

110



identification is to better facilitate control of the underlying system whereas for

software testing, it is to find errors. The terminology is also very diversified; the

underlying systems may be called plants, machines and dynamic systems in control

theory, an abstract teacher in computational learning theory, or an interactive

user in inductive logic programming. The process is about system identification,

model induction, scientific discovery or data mining, etc. The hypothesis space of

the induced models also varies from differential equations, finite state machines,

statements about systems and ad hoc representations of engineering problems.

After a brief review of the leading papers and books of the field, it becomes

obvious from the lack of cross-referencing that the potential connections are not

fully exploited. Yet all these fields have one thing in common with rule extraction;

one of their central goals is to automatically induce models, conjectures, concepts

and predictions based on observations.

The exact nature of the similarities and differences of these fields to each other

and to RNN-RE is out of the scope of this thesis, however. But since the goals of

these fields overlap with science in general, I would suggest that a natural way of

bringing these fields closer together could be to build an encompassing theory by

taking advantage of the deep insights philosophers of science have already provided

us with (e.g. Simon, 1973; Williamson, 2004).

15.2 Theoretical connections

There are, at this point, no mathematical proofs that CrySSMEx will always pro-

vide the expected results, and clearly, some of the experiments demonstrate that

it will not. A proof should distinguish the set of problems that can be solved by

CrySSMEx from the ones that cannot. Therefore, a proof, or at least a deep theo-

retical analysis of the algorithm, is important. But such an analysis will arguably,

since the parts are tightly integrated, require a merge of theories surrounding all

CrySSMEx-constituents, combines ideas from areas such as:

• automata theory (Hopcroft & Ullman, 1979),

• stochastic machines (Paz, 1971),

• information theory (Cover & Thomas, 1990), and
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• cluster analysis (Everitt et al., 2001).

There are, of course, also strong connections with the highly developed mathemat-

ical field of dynamic systems theory (Devaney, 1992), especially within the context

of symbolic dynamics (Crutchfield, 1994). And the whole procedure of generating

minimal algorithms (i.e. in this case SSMs) to explain a source of data (i.e. Ω) is of

course related to algorithmic information theory (Chaitin, 1987).

The algorithmic complexity also remains an open issue. The experiments clearly

show how evasive this issue is. For example, the analysis of an RNN of 103-

dimensional state space resulted in a very modest SSM (simply because the weights

were small enough, cf. Section 12.3) whereas chaotic one-dimensional autonomous

systems generated enormous SSMs (Section 12.4). The SSM size for modelling

chaotic systems will be bounded by |Ω|, but such an answer is quite unsatisfactory

since the algorithm should typically be terminated before it memorizes the entire

data set. Given that the system is not chaotic, however, the computational com-

plexity issue will be arguably more interesting, but at the same time very difficult to

analyse since there are some arguably malicious factors to include, e.g., properties

of γ (of the SDTDS) in combination with the selected input sequences.
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Chapter 16

Possible CrySSMEx Improvements

During the development of CrySSMEx, many dead ends were encountered. The

algorithm is presented in Part II just as it is (since it arguably works quite well).

Therefore many details may seem to be “out of the blue”. However, the algorithm

has been implemented in such a way so that it will be easy for users to change some

of these constituents in order to also try out the refuted alternatives1. The many

dead ends and tried out alternatives to the specifics of CrySSMEx as it is presented

in Part II, represent past issues in that these alternatives, based on preliminary

experiments, have not been selected for use in CrySSMEx. But they also represent

possible open issues since their assessment as dead ends is neither fully tested nor

documented.

In this chapter a number of possible CrySSMEx-enhancements is presented. Many

of these suggestions are already partly or fully implemented, but would require more

attention and testing before their full integration with CrySSMEx is feasible.

16.1 Critical issues

Perhaps the most critical current issue concerns the theoretical understanding of

the algorithm. There are at least two central decisions in the algorithm that have

been made on heuristic grounds:

• NDI-equivalent SEs are now grouped using UNDI-equivalence (Definition

9.11). There is, however, more than one way to group NDI-equivalent SEs if

1See cryssmex.sourceforge.net for more details.
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the relation is non-transitive. The chosen solution is only one possible, quite

restrictive, way. For example, if SE pairs q1 and q2 and q2 and q3 are NDI-

equivalent respectively while q1 and q3 are not, then hypothetical equivalence

sets are {{q1}, {q2}, {q3}}}, {{q1, q2}, {q3}}} or {{q1}, {q2, q3}}, of which only

the first, which results in no merge, is generated by UNDI-equivalence. The

equivalence set {{q1, q2, q3}} would, however, not be reasonable since it groups

non-equivalent q1 and q3.

• When data is collected in collect split data (Algorithm 11.1) a single input

symbol is selected based on conditional entropy. It is, however, possible that

another symbol should be selected, or that more than one symbol should be

included. The selected symbol very strongly affects what the model vectors

will be, and even if the seemingly most informative symbol is selected, the

selection mechanism includes no heuristics about the underlying geometrical

consequences of the decision. Moreover, it is not entirely selecting the the

output symbol over next SE when labelling data is the optimal strategy.

The solution to both of these issues should involve more than just finding al-

ternatives to UNDI-equivalence and entropy-based selection of input symbols. I

suspect that it may involve systematic testing of merging and splitting in a breadth

first search manner. This is due to the simple fact that the suitability of a split or

merge operation may not become clear until after actually performing the operation

and testing the effect of using the quantizer to generate a new SSM. It may even

be necessary to split one SE at a time instead of, as now, splitting a number of SEs

simultaneously.

In this respect, it is perhaps reasonable to consider CrySSMEx a promising first

step towards a more generic approach, rather than a final solution to the problem

of RNN-RE. Moreover, the fact that the algorithm performs quite well on complex

domains while there are still obvious ways to improve it can also be considered

quite valuable. It could be regarded a motivation that would justify an effort of

mathematically proving the correctness of the algorithm, or at least critical parts

of it, such as NDI equivalent (Algorithm 9.1).
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16.2 SSM refinement and analysis

The SSM definition and operations on SSMs barely scratch the surface of what can

possibly be accomplished with these kinds of dynamic stochastic models. Relations

to other similar models, such as Bayesian Networks and Hidden Markov Modelsmay

be identified and utilized for further analysis and refinement. Some refinements and

possible analyses of SSMs that were encountered and sometimes implemented dur-

ing the development of CrySSMEx, are briefly presented in the following subsections.

16.2.1 Moore SSMs

The algorithm is also implemented (cryssmex.sourceforge.net) with the possi-

bility of extraction SSMs on Moore format rather than Mealy (cf. Figure 3.2) as

presented in Part II. In a Moore SSM, the output is determined from a SE distri-

bution rather than in the transition between state distributions. The experiments

conducted in this thesis could therefore be repeated with extraction of Moore SSMs

instead. Since the whole description of SSMs and the algorithms would have to be

translated and repeated in Moore format, it is left for future work, however.

16.2.2 Modal logic possibility

The testing of equivalence of state elements of SSMs currently returns only in

true or false (cf. Algorithm 9.1) depending on whether the two elements are NDI-

equivalent or not. The NDI-equivalence is however more adequately answered with

“true” (T), “false” (F) or “possible” (P). The answer P then refers to the cases

where full equivalence could not be asserted due to dead transitions. The use of

modal logic could potentially help in generating equivalence sets since two SEs that

are truly equivalent must be merged, whereas possibly equivalent SEs can possibly

be merged. It could thus be easier to systematically test all combinations of possible

merges (cf. Section 16.1).

16.2.3 SE relations

When CrySSMEx currently extracts a sequence of SSMs, the SEs of an ssmi is not

traced from its predecessor ssmi−1. There is however a potential relation of every

115



SE in ssmi to the SEs in ssmi−1, e.g., relations as “is-split-from”, “is-merged-from”

or “is-not-split-from”. Since these relations can be formed between any succeeding

SSMs they could be used to generate something that resembles a genealogy of SEs

(cf. Figure 16.1). Such a genealogy could be used in many ways, e.g., to define

the integrity of SEs as the number of CrySSMEx iterations (of the main loop in

Algorithm 11.2) in which it has not been part of any merge or split operation. In

Figure 16.1, for example, the q4 of ssm4 has an integrity of 2 whereas q5 has an

integrity of 1. Another example is the purity of SEs in terms of whether or not it

is the result of any merges. SEs {q4, q5, q6, q7} of ssm4 in Figure 16.1, are examples

of pure SEs.

A genealogy can also be used to define the “relatedness” of SEs. Since the

genealogy of SSM state elements involves multiple parents, the relatedness can be

defined in several ways, for example, by counting how many CrySSMEx-iterations

since two states belonged together in one and the same SE. In Figure 16.1, for

example, q6 and q7 are then more related than q5 and q6. Relatedness could also

be based on the number of parents in common in the last SSM. For example, q1

and q2 of ssm4 has q1 and q2 of ssm3 in common as parents but q2 and q3 (of

ssm4) also have q3 (of ssm3) in common. The CVQ graph could also be used

in a similar way, of course, but the multiple splits due to the complete split (see

Definition 10.8) may obscure the SE relations. The relatedness of two SEs could

possibly be used as heuristics when forming equivalence sets to be used for merging

by prioritizing the merging of related SEs over relatively unrelated SEs (cf. the

discussion in Section 16.1).

Derived properties can possibly be quite informative. Properties such as re-

latedness, integrity, purity and others defined over the genealogy graph, could po-

tentially be fruitful windows into the dynamics of the underlying system or the

input sequence with which the system interacts. Perhaps the prevalence of pure

SEs is, for example, correlated with a certain form of dynamics in the underlying

system? Or, perhaps, states of lower integrity are typically more sensitive to noise?

If nothing else, issues such as these could quite simply be investigated further.
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Figure 16.1: A genealogy of SSM SEs. The SSMs are shown without transitions and qi

is simply written as i. Since SEs are created from one or more SEs of the preceding SSM,
through splitting and merging, there is a rich variety of possible genealogy relations and
properties. For clarity, the transitions within the machines are not shown.

16.2.4 Always deterministic SSMs

Since an SSM strictly speaking is an SDTDS, it is possible to extract SSMs from

other SSMs. One way to utilize this could be to automatically extract deterministic

descriptions of the sequence of SSMs extracted by CrySSMEx. The sequence of

(mostly) nondeterministic SSMs generated by CrySSMEx, ssm0 . . . ssmn, could then

give rise to a sequence of deterministic SSMs, ŝsm0 . . . ŝsmn. To generate ŝsmi from

ssmi, the inputs of Ω is quantized by Λi and fed as symbolic input to ssmi (using

normalized parsing) and the substochastic state vectors are read as the state of the

SSM (viewed as an SDTDS). The resulting data sequence, Ωssmi is then used as

input to CrySSMEx. The suggested procedure is depicted in Figure 16.2.

The output quantizer in this case could be chosen to be maximum likelihood,

i.e. the output symbol distribution of ssmi is quantized such that the symbol with

the highest probability “wins”. CrySSMEx should then generate an ŝsmi semi-

equivalent to ssmi over Ω. It will not be fully equivalent, however, since ssmi

needs to be initialized prior to generating Ωssmi and this initialization may, or may

not, correspond to the internal activation of the underlying system of ssmi under

its corresponding initialization.
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Figure 16.2: The possibility to derive SSMs from SSMs could be used to extract de-
terministic SSMs from the nondeterministic intermediate SSMs during extraction. From
every ssmi, a transition event set Ωssmi is created (based on input events in Ω) and a
deterministic SSM ŝsmi is extracted from it.

16.2.5 Additional information

The SSM is in its current form quite free from information regarding the underlying

system since only the conditional probabilities are stored. One could, however,

easily imagine that it could be desirable to add some more information to the SSM.

For example, each SE in the SSM corresponds to an enumerated region in the

SDTDS which in Ω has a certain visitation frequency. Therefore each SE can be

associated with a frequency. This information could be added to the SSM which

then would then convey information about, for example, which situations have only

very rarely occurred in Ω. Such information could be vital to refine Ω (cf. discussion

in Section 18.4).

Another possibility, if the underlying SDTDS, for example, is an RNN trained

within a domain, is that the information of the error frequency of the RNN could

also be stored for each SE or transition. The SSM would then hold information

regarding the situations in which the RNN produces errors. This information could
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be used to pinpoint the error of the RNN in order to, for example, refine the training

set (cf. discussion in Section 17.6.2).

The average state vector associated with each SE could also be saved, for ex-

ample. SEs then could be associated with their corresponding “typical” SDTDS

states. Other contextual information could also be added to accentuate certain as-

pects of the underlying SDTDS, e.g., if the state of the SDTDS has a temperature

variable, the average temperature could be highlighted for each SE.

16.2.6 SSM comparisons

How big is the difference between two SSMs? This question may not have one

unique answer. There are a number of possible ways to define difference measures.

One could, for example, base it on relative entropy of the output distributions of

the two systems2 (a.k.a. Kullback-Liebler divergence) (Cover & Thomas, 1990).

Relative entropy is used as a kind of distance measure between probability dis-

tributions. By using relative entropy over the output distributions of two SSMs

one could measure the divergence of the machines from each other under various

sequences of input symbols. The question is, which input sequences? Furthermore,

how should the results be weighed if summed up for many input sequences?

The issue is problematic and may not have any satisfactory answers. But, if the

distance measure between SSMs has a specified purpose, then possibly some domain

specific way of measuring the distance could be appropriate. For example, if the

underlying RNNs are used as predictors of critical events in a plant, the difference

between them could be defined in terms of the difference in the situations for which

they predict the critical event.

For example, if the distance is measured for the purpose of guaranteeing that

RNNs in a large set exhibit diversity (e.g., if they are to be used as an ensemble

(Krogh & Vedelsby, 1995)), then perhaps some fairly simple analytic procedure

could be adequate.

Another, perhaps more generic, method is to extract the difference between

SSMs by using CrySSMEx as suggested in Section 17.6.1.

2Many thanks to André Grüning for all the inspiring discussions regarding ways to do this.
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16.3 CVQ refinement

16.3.1 Refined training

One aspect which has received little attention in this thesis is the CVQ graph and

the CVQ as a quantization function (Chapter 10). The model vectors of the VQ-

nodes are, for example, selected simply as the average of the data vectors without

any further refinement. This, and other unoptimized aspects of the CVQ may

result in CVQ graphs that are larger than necessary to quantize the state space of

the SDTDS properly. The CVQ can be optimized in many ways; one is to refine

the model vectors using LVQ- or SOM-techniques (Kohonen, 1995). This kind of

optimization would be conducted in the learning phase of VQ-node creation. The

currently suggested method of just choosing the average of each class of vectors

(cf. Section 10.3) was actually originally chosen because it was the least optimal in

order to show that CrySSMEx was not sensitive to the quality of the quantization

made through the model vectors. To my surprise, replacing a fairly sophisticated

resource allocating vector quantization training algorithm with a straightforward

initialization, using averages, did not reduce the quality of the extracted machines

at all. If model vectors were selected more carefully, however, the CVQ graph could

in many cases be reduced.

16.3.2 Post-training refinements

Another improvement, given a trained CVQ-graph which corresponds to quantiza-

tion function Λcvq, would be to attempt to generate a smaller CVQ graph with a

quantization function Λcvq′ equivalent to Λcvq. I would like to separate two levels of

such CVQ graph reduction: analytical and empirical. The analytical CVQ graph

reduction would require the postcondition Λcvq(~v) = Λcvq′(~v) for all ~v in domain of

quantizer. The empirical, however, needs only postcondition Λcvq(~v) = Λcvq′(~v) for

all ~v that are sampled state vectors in Ω (or any other sample space of interest).

The empirical compression can be likened to a lossy compression, which should be

more efficient, but less accurate, than the analytical approach.
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16.3.3 Further recursiveness

Apart from optimizing the CVQ graph, one could develop it further in other direc-

tions. The CVQ graph is a recursive organization of vector quantizers in which one

or more of these are used to generate an enumeration of data vectors. But there is no

reason why this recursive organization should be over vector quantizers explicitly.

The VQ-nodes could instead contain any kind of quantizer (cf. the abstract descrip-

tion of quantizers in Definition 9.4). Let us call these nodes Quantization-nodes

(Q-nodes) and the graph corresponding to the CVQ graph a Crystalline Quantizer

graph (CQ graph). The Q-nodes could, for example, consist of decision trees, feed-

forward artificial neural networks or simple if-then-else-functions that replaces the

VQ in Equation 10.3. An interesting possible Q-node would have a quantizer which

in itself is a CVQ- or CQ-graph.

Another recursive possibility would be to let a quantizer consist of several con-

jugated quantizers, i.e. multiple quantizers applied simultaneously and where the

resulting quantization is a vector of enumerations in which each vector corresponds

to the result of one quantizer. These vectors will then in turn be enumerated to gen-

erate a single enumeration in the end results. For example, if quantizers Λ1 . . . Λm

are used to quantize a vector ~v, the result would be a vector (n1 . . . nm) where

ni = Λi(~v). This vector is then stored and enumerated in a look-up table of all

such encountered vectors.

The reason for suggesting conjugated quantizers is that they could be used

when splitting an SSM state element using multiple symbols (cf. discussion in Sec-

tion 16.1). Each split-symbol would generate one CVQ (or CQ) which could then

be conjugated.

16.3.4 Intelligible quantizers

The intelligibility of CVQs could be improved considerably. The CVQ can be vi-

sualized using Voronoi-diagrams (as in Figure 12.3 on page 93) if it is used only

for two-dimensional vector spaces. But for higher-dimensional spaces, the under-

lying geometrical properties of the CVQ-quantized space becomes intractable. If,

however, a CQ is based on quantizers with simple textual explanations, e.g., “if

v4 > 0.56 then return 1 else return 2”, then the textual interpretation of each
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such quantizer could possibly be used to generate a textual interpretation of the

whole CQ graph. Such textual descriptions can, for example, be generated from

decision trees as nested if-then-else-statements. In the CQ case, however, it may

become more complex as merged nodes allow several possible paths to the same

leaf-node. Each leaf-node can therefore correspond to more than one explanation.

For example, the leaf node n6 of Figure 10.2 (page 79) could be explained as “if

~m1 of n0 is the winner then return ID = 3” or as “if ~m3 of n0 is the winner and

~m1 of n3 the winner then return ID = 3”. The concept of winning model vectors

is not entirely easy to grasp since they are potentially multidimensional and the

resulting quantization is a result of testing all these model vectors against the data-

vector. Therefore, vector quantization may not be the way to generate “readable”

quantizers, whereas CQs tailor-made for this purpose could.

If readable CQs can be generated, another form of CVQ optimization could

therefore be to do an empirical translation (cf. the empirical graph reduction dis-

cussed in Section 16.3.2) from the “unreadable” CVQ to a more readable CQ.
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Chapter 17

Possible CrySSMEx Challenges

In this chapter a number of possible challenges for the further development of

CrySSMEx are suggested. This chapter is built on the previous one since some of the

presented challenges would require significant improvements of CrySSMEx. However,

the future work suggested in this chapter is more speculative and also intended as

potential challenges for more RNN-RE algorithms than only CrySSMEx.

17.1 More interesting SDTDSs

The most obvious possibility of future work is the application of CrySSMEx to more

problems. In this thesis, only a handful of systems are analysed using CrySSMEx.

The applicability of CrySSMEx to more complex models remains an open issue. The

SDTDS definition is broad enough to apply to a large number of interesting neural

network models. The experiments also demonstrate that high dimensionality of

the state space poses no immediate limits. Hence, it could be possible to extract

rules from the otherwise hard-to-analyse networks such as, for example, Echo State

Networks (ESN) (Jaeger, 2003; Jaeger & Haas, 2004). The ESNs are a rare species

of RNNs because a large number of state nodes are interconnected in a random

fashion (and not trained). These state nodes then exhibit a wide range of input-

driven dynamic behaviours. The output neurons tap into these dynamics by using

simple linear optimization techniques. In a network of several hundred state nodes,

some may have the dynamics required to solve the task. Although remarkably

simple, this architecture has proven to be quite successful. But it should, however
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be notoriously difficult to analyse since it has a highly multidimensional state space.

Another promising architecture is the Long Short-Term Memory architecture

(LSTM) (Hochreiter & Schmidhuber, 1997). The LSTM has been used on the anbn-

domain with remarkably better results than, for example, simple recurrent networks

(Schmidhuber, Gers & Eck, 2002). Although the testing procedure is somewhat

unclear and can be questioned (Jacobsson & Ziemke, 2003a) (or perhaps because of

this), the results invite further analysis: (a) partly to gain deeper understanding of

how LSTMs represent the anbn-problem as compared to SRNs, but also, (b) to see

how CrySSMEx scales up to very deep grammar structures. The anbn-experiments

of Section 12.2 show extraction from RNNs with a deeper structure than to which

any previous RNN-RE technique has been applied, but analysis of LSTM would

increase the depth even further.

The most ambitious network architectures from which to extract rules, however,

may be the ones that build on models of biological neurons. RNN-RE has so far been

restricted to simple mathematically oriented RNNs rather than more biologically

realistic models, possibly due to the problem of scaling up. The promising CrySSMEx

results, however, imply that the analysis of some of these systems may be possible

(as long as they fit into the SDTDS definition).

Apart from various neural network architectures, there is an abundance of other

simulated models to choose from. As long as a system complies with the SDTDS

definition, then it has the potential of being analysed by CrySSMEx. If some of the

requirements of the SDTDS can also be alleviated bit by bit (cf. Section 17.9), the

descendants of CrySSMEx could be applied to an even broader range of systems.

17.2 An SSM Query-language

The issue of comprehensibility has often been the central driving force in rule ex-

traction research (Andrews et al., 1995; Tickle et al., 1998). Rule extraction has

been seen as a means of helping researchers better understand their networks and

therefore the comprehensibility of the rules is important. I would like to challenge

this view, however. I find it problematic if comprehensibility becomes a required

post-condition of rules not yet extracted. What if the underlying system cannot
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be described by a small set of rules? Should this impinge on the fidelity of the

rules? Instead of establishing the sacrifice of fidelity in favour of comprehensibility

as a basis for the algorithm, I would argue for the extraction being optimized for

fidelity, but that the rules should be at least partly comprehensible through the

possibility of querying them (cf. Chapter 18).

For CrySSMEx this preference for fidelity over comprehensibility, means that a

large SSM, which more accurately describes a system than a smaller one, will be

preferred. But if the larger SSM could be post-processed such that smaller-SSM

“views” or “derivatives” of the underlying system can be extracted from it, then

comprehensibility would be partly re-acquired. For example, in the anbn-SSM of

Figure 12.3, one could ask the question: “What sequences of inputs will generate

a prediction of an a after the input of a b?” and receive a number of arguably

comprehensible examples.

The possible number of queries for a single SSM is unbounded, e.g.:

• “What SEs precede a as output?”

• “What input sequences will take the SSM from q1 to q2 without passing q3?”

• “What are the 100 alphabetically first sequences that are not modelled in the

SSM?”

• “What is the shortest input sequence that will exhaust the SSM SE distribu-

tion from a uniform SE distribution?”

• “What is the probability of generating output sequence ccdd given given

input sequence aabb and an initial uniform SE distribution?”

• “What is the probability that the p(q3) > 0.9 five time steps ago, given the

input history aabab if currently p(x5) = 1.0?”

• etc.

A fairly complex query language would have to be developed to handle these

questions. The query language (both in the question and answer spaces) would

likely need to represent and handle elements of the following kind of data:

• probabilities,

• probability distributions,

• entropies,
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• ranges of probabilities, entropies etc.,

• symbols,

• symbol sequences,

• sequences of probability distributions,

• sets of symbols, states, probabilities etc.,

• SSMs,

• quantizers,

• CVQs,

• vectors,

• SDTDS data,

• Modal logic (cf. Section 16.2.2)

• SSM genealogy (cf. Section 16.2.3)

• etc.

Moreover, some of the additional information suggested in Section 16.2.5 could

be added, e.g., visitation frequency, error rates, or ad hoc information. Multiple

SSMs and relations based on SE genealogy could also be part of the queries (cf.

Section 16.2.3) A brief outline of the potential of such a language follows, but the

examples are kept in English, as the syntax and semantics of such a query language

would require much additional work.

17.2.1 Querying regarding SSM ignorance

If, for example, the information about how frequently states and state transitions

are in Ω is added to the SSM (cf. Section 16.2.5), then questions regarding “SSM

ignorance” could be asked. For example:

• “Disregarding dead transitions, what are the 20 transitions least frequently

used?”

• “Generate a sequence of inputs that according to the latest available SSM

will generate observations of the SDTDS that, if added to Ω, should make all

SEs nearly equally frequently visited.”

• “Remove all SEs that are visited only 10 times or less in Ω!”

• “Generate an input sequence that maximizes certainty of SSM knowledge of

the underlying system!”
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The “ignorance” of the SSM refers simply to what aspects of the underlying system

it has little or no information about. Questions such as those above could therefore

be used to resample a new Ω in order to reduce the overall ignorance of the SSM.

The usefulness of such questions will be highlighted in Section 18.4.

17.2.2 Querying to achieve control

The SSMs are models of the underlying systems that could potentially be used to

control the underlying SDTDS. The SSM could be interacted with simultaneously,

as with the underlying SDTDS, using the same inputs sequences. The difference

is that the SSM can be used for planning the estimated outcome of the underlying

system. One could therefore consider questions such as:

• “What is the best sequence of input symbols to generate an output symbol b

with highest possible likelihood within 10 time steps?”

• “Take system into one of SEs q1 or q2 as soon as possible!”

• “Get the system to generate an output sequence which in the following (ad-

ditional) SSM would generate symbol 1 after the last input symbol.”1

If CrySSMEx is used to extract a model of the environment of a robot, for ex-

ample, then these kinds of queries could be the foundation for the robot to take

advantage of its induced SSM model as a basis for planning.

17.2.3 SSM abstraction through queries

To increase the comprehensibility of SSMs, an SSM could be abstracted through

queries that result in derivatives of the original SSM in which certain aspects are

accentuated and others ignored. For example, if a large SSM predicts letters, a

question resulting in a more abstract SSM would be: “Generate an SSM in which

vowels are separated from dconsonants in the output, but the individuality of output

symbols is otherwise ignored.”, i.e. all vowels are grouped into one single output

symbol and vice versa for consonants.

One way to resolve queries is to do it analytically, i.e. by processing an existing

SSM based on the query. Another way is to extract one SSM from the other by

1The additional SSM is here thought of as a description of acceptable (i.e. grammatical) input
strings.
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using CrySSMEx and a more abstract output quantizer with fewer possible symbols

(cf. discussion of how SSMs are SDTDSs in Section 16.2.4).

If queries make abstraction of the kind described above possible, then it could

feasibly automate the abstraction process further. For example, “Generate a set of

the smallest possible SSMs that explain at least 90% of the output symbols in Ω!”.

The abstraction of SSMs can thus be viewed as a lossy compression of the

underlying SSMs. In the same way, the SSM is a lossy compression of the underlying

SDTDS.

17.3 User goals

As suggested in Chapter 7 (cf. Figures 7.1 and 7.2), the possibility for the user to

choose between fidelity, efficiency or comprehensibility in the manner of a parameter

of the RNN-RE algorithm should be considered a much desired feature.

In CrySSMEx, the extraction by default goes from small models to larger. The

comprehensibility thereby decreases2, whereas the fidelity increases. The fidelity

versus efficiency tradeoff is thus trivially chosen by the user in the possibility to

abort CrySSMEx at any time. More time means higher fidelity and less comprehen-

sibility.

The query language, automated abstraction and automated extraction of deter-

ministic SSMs during extraction could, however, help to boost comprehensibility

at the cost of efficiency. If the SSMs can be queried as suggested above, there will,

however, not necessarily be any tradeoff between comprehensibility and fidelity.

Comprehensible answers will be generated from a model of high fidelity and these

answers (possibly SSMs themselves) may coexist with the original high-fidelity SSM.

With regard to accuracy (Section 4.2.4), however, I would argue that this is

an ill-defined measurement. If there is a domain in which the network has been

trained, it is perhaps likely that a small SSM would generalize better than a larger

one (according to the principle of Occam’s razor). There will also be a fidelity-

accuracy tradeoff (Zhou, 2004). The accuracy of rules is, nevertheless, a feature

that depends on the definition of generalization ability which is not always obvious

2Supposing that we make the crude assumption that larger rules are necessarily less compre-
hensible.
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in these temporal domains (Jacobsson & Ziemke, 2003a) (also in Appendix C). It

is, for example, not obvious whether the rules should generalize towards only longer

anbn-strings or perhaps even balancing parenthesis languages (i.e. if you replace a

with ’(’ and b with ’)’ and enforce that the parenthesis are balanced at the end of

the string).

The potential fidelity-accuracy tradeoff could nevertheless be exploited as sug-

gested in the following section.

17.4 Robust hierarchical stochastic degree-of-be-

lief model

Since there are reasons to believe that smaller SSMs should be more adequate

for generalizing to unseen examples, according to the Occam’s razor argument,

the CrySSMEx-iterations should progressively generate less and less accurate SSMs

simply because they become gradually larger. They will, however, also be of in-

creasingly higher fidelity.

In other words, ssmn has a more robust stochastic information regarding the

underlying system than has ssmn+m (if m > 0). The first SSM, ssm0, for ex-

ample, has an extremely robust model of the underlying system which is almost

guaranteed to be correct since it can only produce very vague answers regarding the

actual state (and output) of the underlying system. Later SSMs will have higher

probabilities with regards to generalizing incorrectly about the actual state of the

underlying system. In other terms, the more developed SSMs become brittle since

they will generate more specific output predictions. For example, ssm0 will alway

be correct regarding the state of the underlying SDTDS since all microstates are

modelled as one macrostate. It will also give a vague probability distribution over

the output symbols. After a few CrySSMEx-iterations (cf. Algorithm 11.2), however,

the SSM will be described as consisting of several SEs and will attempt predicting

the macrostate of the underlying system, a prediction that may be erroneous if the

SSM does not generalize correctly.

The SSMs are thus progressing from robustness to brittleness3. Moreover, the

3They are also progressing from unfalsifiable SSMs towards more easily falsifiable SSMs, i.e.
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CVQs will also divide the state space into increasingly smaller regions. If one

considers the possibility of noise in the state of the system, then the smaller the

region, the higher the possibility of misclassifying the state space. In other words,

the CVQ also progresses from robustness to brittleness during the extraction, or

put another way, when CrySSMEx extracts a sequence of SSMs from Ω, they will

cover a spectrum from robust-but-stochastic to brittle-but-high-fidelity models.

Consider a situation where an SDTDS has been analysed using CrySSMEx, then

the SSM and CVQ can be used to continuously monitor and predict the system

(which we can assume to be noisy). In other words, the SSM is used for the

prediction, whereas the CVQ is used to justify and adjust the SSM state as a

correct stochastic representation of the SDTDS state. In this situation, the robust-

brittle-spectrum could be very fruitful. The whole range of SSMs and CVQs can

be run simultaneously on the same input for a robust and high-fidelity prediction

of the system.

Potentially, if correctly implemented, one could achieve the best of both worlds.

The spectrum could potentially be exploited by using the genealogy of SEs (cf.

Section 16.2.3). An SSM SE or CVQ-observation of the SDTDS state will provide

information regarding the state of a more brittle SSM. For example, if the CVQ

cvqn observes in the SDTDS that the SE (of the corresponding SSM) should be

qi this can be used to infer the states of subsequent, more brittle, SSMs through

genealogical relations (together with conditional probabilities of how SEs of one

SSM explain SEs of other SSMs).

17.5 Higher order extraction

As mentioned in Section 13.2, CrySSMEx differs from earlier RNN-RE-algorithms

by adapting the state space quantizer to generate better rules. This, together with

the fact that the adapted quantizer has a graph-like structure, could possibly be

exploited for the extraction of higher-order rules. Specifically, the extraction of

context-free grammars is a possibility. A finite state recognizer of a context-free

grammar requires an external memory in the form of a stack. For example, the

the possibility of making observations which contradict the SSM increases with its fidelity. This
is an important feature and its further explotation is suggested in Section 18.6.
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Figure 17.1: A partial example of how the level of CVQ nodes (cf. Definition 10.6)
could be used to infer context free grammars. The SE-pairs of each level are equivalent of
all other similar pairs in that symbols a and b trigger the same response in the output as
well as the same relative changes in the CVQ level. The level information is to the right
abstracted and replaced with an operation on a variable L. L := L + 1 corresponds to a
push onto the stack and L := L−1 corresponds to a pop. The example is simplified since
there must also be an initial value of L and special considerations for when L reaches its
minimum and/or maximum (for both the left and right machine).

anbn-problem is a CFL (Context Free Language) where the number of as needs to

be stored, possibly by “storing” the as themselves. An FSA approximation of a

CFL is always an illusory abstraction, since, in principle, there is no upper limit on

the length of the strings (i.e. n is unbounded).

To induce a CFL grammar using CrySSMEx, the CVQ-level (cf. Definition 10.6)

could be imposed on the SEs of the SSM. It may then be possible to identify a

subset of SEs, Q ⊂ Q such that another subset of SEs, Q′ ⊂ Q can also be found

in the same SSM and the SEs of Q′ are semi-equivalent to the SEs of Q apart from

that their levels always differ by the same amount. If a sequence of such subsets

can be formed, it may be possible to replace transitions between the subsets by the

pop and push operations of a stack. The hypothesis is that the levels of the CVQ

may possibly correspond to the levels (i.e. amount of stored data) of the external

stack. Figure 17.1 depicts a simplified example of a possible situation.

In the anbn-domain, this would correspond to a simple machine connected to
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a stack which takes care of the counting of as and bs. Of course, this extracted

CFL would be a hypothesis that an unbounded number of as can be counted by the

underlying system although no observations of this can be made. In other words,

this kind of extraction would relax the closed world assumption of CrySSMEx.

The CVQ is not only holding the information about the level which could be

used as suggested above, the graph is itself a data structure that may hold infor-

mation of the underlying domain. For example, Elman (1990) trained an RNN to

recognize simple sentences. His analysis of the state representation revealed that

the RNN had grouped related words in a fairly semantically oriented hierarchical

structure (cf. Figure 5.1). For example, the RNN separated, in its state, animates

from inanimates and humans from animals etc. The study was conducted by the

use of hierarchical cluster analysis, which does not take into account the dynamic

properties of the RNN at all (Elman’s paper was written before any RNN-RE paper,

cf. Section 5.1).

With CrySSMEx, it is possible for both the semantical and syntactical infor-

mation to be extracted simultaneously. It would be very interesting to replicate

Elman’s analysis by using CrySSMEx to investigate to which degree semantical in-

formation can be traced in the CVQ graph4. Further interest lies in the sense that

it would replicate a scientist’s analysis using an automated analyser.

17.6 Relative SDTDS analysis

17.6.1 d(sdtds1, sdtds2)

Consider two SDTDSs, sdtds1 and sdtds2 with an identical input and output do-

main, but with different state spaces and transition functions. It could, for example,

be two RNNs trained on the same domain. From these two systems, it is possible to

create a third SDTDS, sdtds1+2, in which the state and output domains are simply

augmented and the corresponding transition functions of the systems handle their

part of the augmented state and output space. In other words, it is possible to

describe several SDTDSs as one larger SDTDS. There is nothing strange in doing

this, as the SDTDS state and output vector spaces are not bounded (see Figure 17.2

4Many thanks to Nick Chater for inspiring this idea.
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Figure 17.2: An illustration of how two systems really constitute one system. The
two SDTDSs to the left, with an identical input domain, can instead be described as one
larger SDTDS where both of them are fully preserved.

for an illustration).

The system sdtds1+2 describes both systems sdtds1 and sdtds2 simultaneously.

Therefore, CrySSMEx applied to sdtds1+2, corresponds to applying it to both systems

at once. If Λo is subsequently chosen to reflect the difference of the output of

the two systems, then the extracted SSM would also describe this difference. Λo

could, for example, correspond to the sign of the result of a simple elementwise

subtraction of the output vectors. Another possibility, when the output has a

symbolic interpretation, is to let Λo result in 1 if there is a difference, and 0 if

not. Or one could have unique enumeration per each observed combination of

simultaneous outputs of the two systems. However Λo is chosen, as long as it

reflects the divergence of the two systems from each other, the extracted machine

should also reflect this difference.

The extracted SSM will be an abstraction of the differences between the two

systems since the SSMs extracted from the individual systems are abstractions

of their corresponding systems. The consequence is that the difference between

two systems is a third system. In the same sense as the difference between two

vectors could be a third, difference vector, (if elementwise subtraction is used), the

difference of two systems is not necessarily described using a simple scalar. If Λo is

chosen properly, however, two “similar” sdtds1 and sdtds2 should result in a small

SSM extracted from sdtds1+2. If the difference of the systems is big, then the SSM

extracted from sdtds1+2 should, consequentially, also be big.
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Thereby, one could define a distance measure between systems by using the

extracted SSM as a measure. It basically means that the difference between two

systems is described by an SSM that defines a finite state grammar of differences

between the two systems.

The SSM could be used as it is to describe the details, or the SSM could be

the basis of a quantitative difference measure. For example, log |Q| (where |Q| is

the number of SEs in the SSM extracted from sdtds1+2) could be used. If there is

no difference between the systems, or if this difference is only in terms of a direct

one-to-one translation of output symbols, and the resulting SSM thereby only has

one SE, then this results in a distance of 0. This is appealing since the difference

between two identical things should be zero (cf. that d(x, x) = 0 if d here denotes

the difference between two real numbers). All more complex differences between

the systems will return a higher number. The distance from a non-active SDTDS

(always producing the same output) to an active SDTDS would be isomorphic to

the latter. This is also appealing if we consider the non-active system a point zero

from which the deviation should only be a consequence of the active system (cf.

d(x, 0) = x).

If any of the underlying systems are chaotic, however, this kind of difference

measure could become problematic since CrySSMEx will not terminate at a deter-

ministic machine. However, it could be possible to generate one distance measure

per each SSM of the CrySSMEx iterations, especially if the automatic extraction of

deterministic SSMs is implemented (cf. Section 16.2.4).

Every kind of distance measurement comes with weaknesses, however. Not

even the typical choice of Euclidean distances between vectors is entirely obvious

(for example, city block distance is sometimes more appropriate). However, while

pitfalls are kept in mind, this kind of distance measure between dynamic systems

could turn out to be quite useful in many contexts. For example, to ensure diversity

in sets of RNNs that are to be used as ensembles (Krogh & Vedelsby, 1995).

17.6.2 A “grammar of mistakes”

One possible usage for the difference between two systems as a basis for Λo is to

extract a “grammar of mistakes”. If the underlying system is an RNN trained
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to perform in a domain, the output of the network typically deviates from the

desired target output. Then Λo could be chosen to reflect this discrepancy (as it is

suggested to reflect the divergence of two SDTDSs in the previous section). It could,

for example, result in 1 every time there is an error and 0 if not. Alternatively it

could be a more detailed enumeration of each possible error, e.g., one unique symbol

for the specific error corresponding to “the output was a but it should have been a

b”.

The resulting machine would not describe the output of the RNN, but only the

ways in which the RNN conducts errors. This description of the RNN mistakes

could be used as guidance for generating more data on which to train the RNN. It

could potentially also be used in other ways to refine the RNN training procedure.

For example, it was sometimes possible to see exactly when some of the anbn-RNNs

performed mistakes for longer strings based on the extracted SSMs, e.g., the RNN

predicted eleven bs after twelve as but was otherwise correct.

A problematic issue, however, is that Λo would not be a function purely of the

output of the system, but also of the external domain. This would mean that Λo

cannot necessarily be described as a function of the output domain of the SDTDS.

For example, the exact same output vector of the system may at one instance be

correct and at another erroneous. This would corrupt some of the assumptions

required for CrySSMEx to extract rules. Whether or not this poses a problem in

realistic cases, and if so, if this problem and others can be alleviated, remain open

issues. One possible way to circumvent the problem could be to extract the SSM

as normal and then apply it, instead of the RNN, to the domain and record when

and how the SSM performs errors (cf. Section 16.2.5). From an SSM with such

information, the output symbols could be replaced with symbols referring to the

existence (i.e. binary error/no error information) or the frequency of errors in a

transition. That SSM would after minimization be a grammar of mistakes of the

underlying RNN, describing with a finite state description exactly for what situation

an RNN generates erroneous output symbols.
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17.7 CrySSMEx2

17.7.1 Meta-SDTDS

When CrySSMEx is used on an RNN to generate a deterministic machine it means

a transition from an uncountable domain into a countable one. The RNNs them-

selves cannot be counted or enumerated since they build upon the uncountable

real-valued input, state, and output domains. The deterministic SSMs, however,

can be enumerated. Thus, if the translation from an RNN into a deterministic SSM

is successful, the RNN can be indirectly enumerated by the extracted SSM. Sev-

eral other attempts have been made to enumerate RNNs with discrete “signatures”

that describe their dynamics. For example, by using the recurrent “self-weights”

of the state nodes (Tonkes et al., 1998) or an analysis of the Eigenvalues of the

Jacobian matrix in the vicinity of fixed points (Bodén et al., 2000). The use of

rule extraction to create such an enumeration could, however, be a more profound

way of enumerating RNNs since the extracted machines will in effect emulate the

RNNs.

If CrySSMEx was used on a set of RNNs to generate a set of SSMs, these SSMs

would potentially end up in a set of equivalence classes (cf. Blair and Pollack

(1997)), where all SSMs of one equivalence class are indistinguishable from each

other in terms of their output in all situations. These equivalence classes can each

be enumerated with natural numbers, {1 . . . n}. These CrySSMEx-enumerations of

the underlying RNNs could then be viewed as a quantizer (cf. Definition 9.4) ap-

plied to the weight space of the RNNs. Of course, each RNN should be exposed to

the exact same input sequence so that the difference between Ωs of different RNNs

is only due to the RNNs themselves.

If we consider backpropagation (BP), or backpropagation through time (BPTT),

these algorithms can in themselves be viewed as systems falling under the SDTDS

definition (Definition 9.1). Given a fixed learning rate and a fixed training set, BP

will make transitions in the weight space of the trained RNN, i.e. in one epoch,

BP will make a transition from one weight configuration into another. The weight

space corresponds to the state space of the SDTDS, the input space is empty and

the output could be equal to the state space. The transition function is simply the
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Figure 17.3: An illustration of how CrySSMEx could be used to analyse the backpropa-
gation algorithm (or some other deterministic training algorithm) when used for training
RNNs (or some other SDTDS). Backpropagation performs transitions in the weight space
of RNNs. CrySSMEx is applied to each RNN and transitions between equivalence classes
of RNNs can be described. CrySSMEx is then used on the level of backpropagation as
the underlying SDTDS and the weight space is processed such that equivalent RNNs will
be grouped together and inequivalent RNNs will be split. The two leftmost RNNs cor-
respond to random initial weight configurations. In reality, the BP-SSM should become
considerably larger.

gradient descent based updating of the weights of the RNN.

Since the weight space of BP can be viewed as a state space in the BP-SDTDS,

and since CrySSMEx could be used to enumerate (or quantize) this state space it

would be quite straightforward to use CrySSMEx to analyse BP or BPTT by letting

CrySSMEx itself be the basis of Λo. CrySSMEx would then be used on two levels

(hence the name CrySSMEx2), one to enumerate RNNs, and one to extract the

transitions between equivalence sets of RNNs (cf. Figure 17.3).

If successful, the results should be quite informative for the analysis of BP and

BPTT. The extracted machine would describe sequences of transitions between

different RNNs as the RNNs progress towards the desired solution. It would also

be possible to see how the BP sometimes “forgets” successful solutions and drifts

off to unwanted parts of search space (Bodén et al., 1999; Tonkes & Wiles, 1999;
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Jacobsson, 1999). The main obstacles for using CrySSMEx in this manner are the

computational time required and that the weight space may be too enormous to

conduct this extraction. But this should be fairly straightforward to implement

and test.

17.7.2 Dual systems

Another form of CrySSMEx2, i.e. where CrySSMEx is used simultaneously in two

different contexts, would be to extract from two interacting systems. For example,

consider that one system is an agent, and the other one is the environment in

which the agent operates in. The input-output relation of the two systems would

be reversed, i.e. the input of the agent is the output of the environment and vice

versa.

Let the state spaces of the agent and environment be termed SA and SE respec-

tively. Viewed from the agent’s perspective, its state SA, would have the following

basic interaction IA ⇒ SA ⇒ OA whereas its environment would have this interac-

tion: IE ⇒ SE ⇒ OE where OA = IE is the output/action of the agent and thereby

the input to the environment, and IA = OE is the sensory input of the agent and

hence the output of the environment. Figure 17.4 depicts a schematic description

of the agent-environment duality. The internal dynamics of the systems are here

ignored, but naturally the state of the systems will also affect themselves.

The extraction using CrySSMEx requires Λo to be specified and Λi to be invert-

ible, but that would not necessarily hold in this example (i.e. some of the obstacles

described in Section 17.9 may have to be solved first). The extraction of a machine

in one system may, however, be used to refine the Λi and Λo of the other system

(remember that Λi of one system is the Λo of the other). This is highly specula-

tive, of course, but the potential end result would be an extraction of a symbolic

description of how the two systems interact (Figure 17.4).

A good start would perhaps be to limit the agent’s repertoire of possible actions

to a finite set so that a Λo of the agent could be easily specified. This would allow

for a deeper analysis of some autonomous robot experiments where RNNs have

been used, for instance, Meeden (1996) used a finite set of actions, e.g., “move

forward-left” or “move backwards-right”.
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Figure 17.4: An abstract depiction of how CrySSMEx could simultaneously be applied
to dual interacting systems. In this example A stands for agent and E for the environ-
ment in which the agent is situated. Both the agent and the environment are dynamic
systems and if CrySSMEx successfully extracts finite state descriptions of them both, a
symbolic description of the “language” between the two systems would also have been
extracted. The sensorimotor agent-environment interaction (IA/OE and OA/IE) would
be abstracted as interchanging symbols (XA/YE and YA/XE) between two discrete (and
possibly stochastic) systems.

If the above is possible, then a possible next step is to create what I would call

CrySSMExn, where an unspecified number of subsystems can be identified. The idea

is that a single large system can sometimes be more adequately described as a set

of interacting systems (Watson & Pollack, 2005). For example, if two FSMs of m

and n states are translated into a single FSM, the resulting size of this FSM could

require as many as m × n states. For large FSMs m + n ≪ m × n and clearly, in

such cases, the two separate FSMs are a more compressed description.

The description of the interacting subsystems, conducting symbolic interaction,

could well be shorter than describing the full system using a single finite state

model. If an automatic division into subsystems is at all possible, the result of such

extraction would be very powerful. While genetic algorithms could possibly be used

to speculate about subsystem divisions, the fitness of such speculations could be

evaluated by the above described CrySSMEx2.

17.8 Truly parameter free CrySSMEx

CrySSMEx is only truly free from parameters if we consider Ω and Λo as derivable

from the domain somehow (see Algorithm 11.2). Λo can be seen as derivable when,

for example, the domain is symbolic which has typically been the case when RNN-

RE has been applied to RNNs trained on formal grammars (cf. Part I). But could
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the parameters be reduced in a broader range of situations?

17.8.1 Guessing Λo

If there is no known underlying symbolic domain or other natural symbolic interpre-

tation of the SDTDS output, then inferring Λo (cf. Section 9.1.3) from the SDTDS

alone seems an impossible task. The size of the resulting SSM could, for example,

not be used as any indication. If Λo is cvq0, for example, then the resulting SSM

has only one state, all inputs leading to the same transition resulting in a single

output symbol. If Λo is more finely grained, however, the SSM may be very large

but with output symbols that are very subtly differentiated semantically. The very

reason Λo is a parameter of CrySSMEx is that it should be chosen by the user to

reflect something meaningful. For example, if the underlying RNN is trained on

symbolic data, it makes sense to let Λo reflect the symbolic interpretation of the

RNN output.

It could, however, be possible to use a whole range of output quantizers si-

multaneously, each resulting in its own “SSM-view” of the SDTDS. Perhaps there

could be context dependent features from which can be estimated the adequateness

of these different views? For example, if the underlying system predicts the stock

market, and the output is in a range from -10 to 10%, then the accuracy of the

numerical prediction of the stock value, calculated using a numerical interpretation

of the symbolic output of the SSM, could be used as an evaluation criterion.

17.8.2 Generating Ω

It may not seem to be easy to avoid the sample set generated from the SDTDS

as a parameter. The algorithm should after all need some examples from which to

induce the model. But since the underlying system could potentially be immediately

interacted with, i.e. by feeding it input to see what happens, it would suffice to give

only the system itself as an input parameter. CrySSMEx would then itself choose

what inputs to use to generate Ω. Some ideas about how to perform this interaction

are, however, discussed in more detail in Sections 18.4 and 18.6.
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17.9 Gradual removal of SDTDS constraints

The SDTDS definition is used in this thesis in order to not restrict the possible

systems to RNNs only. The definition is therefore quite wide and details such

as activation functions and weights are ignored so that many other architectures

comply with the description. It may, however, still be too restrictive for a wide range

of simulated systems. These restrictions are obvious targets for further development

of the algorithm.

17.9.1 Determinism ⇒ Nondeterminism

One major obstacle for the use of CrySSMEx for a broader range of simulated sys-

tems, is that it cannot handle noisy systems. Random noise is often added in

simulated systems to create more realistic simulations and to “smear out” possible

systematic mistakes due to erroneous assumptions.

CrySSMEx will have problems with an underlying noisy system for many reasons,

for example:

• If an SE is nondeterministic, is it so because it should actually be split or is

it due to noise? Indeterminism stemming from a poor quantization can, and

should, be handled by a SE split. But indeterminism due to noise will not be

helped by such splits.

• If two SEs are almost equivalent, but not quite, is their inequivalence due to

the noise, or an actual inequivalence? Should they be merged or not? And

how do you determine if two SEs are almost equivalent5?

• When should CrySSMEx terminate? A fully deterministic SSM cannot be

achieved as the underlying system is not deterministic. Hence, some other

termination criterion must be used.

My conjecture is that the solution lies in abandoning the simple deterministic

progression from ssm0 and upwards. Instead I find it likely that a heuristic or

breadth first search needs to be conducted. There is a need for a backtrack possi-

bility since the consequence of a split or a merge may not be fully apparent until it

5Kullback Leibler distance of output distributions may be a good start (Cover & Thomas,
1990).
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is conducted and a new SSM is formed after it. Therefore a number of alternatives

may need to be tested for each SSM. For example, if an SE is split but the split

creates two SEs with no significantly decreased indeterminism, perhaps the split

should not have been conducted.

The generated search tree would have some practical consequences on the CVQ

graph. It would not be reasonable to create a different CVQ graph for each possible

vertex in the search tree. The CVQs will be related to each other and have large

overlaps. Rather, a multi-version CVQ should be created so that the quantization

of a vector using multiple versions can be conducted simultaneously.

17.9.2 Discrete input ⇒ Continuous input

The input space of the SDTDS is not explicitly limited in the SDTDS definition.

But for CrySSMEx to function, it needs to be discrete and Λi must be invertible.

This is due to the fact that each transition in the final SSM requires a unique input

symbol to label it.

Consider an SDTDS with a discrete set of input patterns, but with no predefined

input quantizer. Let Λi be cvq0. Then CrySSMEx could at each nondeterministic

SE perform the split on either Λs or Λi. If the split of the input space reduces the

ambiguity of the output symbol then it is successful. If not, then split the SE as

usual. If, for example, the input space of the system illustrated in Section 12.1 (cf.

Figure 12.2) has no known quantizer, the first SSM would have one SE, and one

input symbol x, and at the first iteration the input space would be sampled since

the state space is in the collect split data-function (cf. Algorithm 11.1). This

would continue until a deterministic SSM is extracted.

If the input space is truly continuous, another problem will occur. Even if the

underlying system is truly deterministic, any finite description of the input space

could give the impression that the system is not deterministic. If, for example, two

input vectors~ı1 and~ı2 result in two significantly different states of the SSM but are

quantized as the same input symbol, then from this input symbol alone, the state

could not be predicted. Hence, the same search procedure which is suggested in the

previous section would have to be used (with a different termination criteria etc.).

In other words, a breadth first, or heuristic, search is suggested, as in the case of
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indeterministic SDTDSs, but with the additional operation to split input symbols.

17.9.3 Full observability ⇒ Partial observability

A problem related to that of noise, is when the state quantizer has no full infor-

mation of the underlying system. This is typically always the case in real world

domains; some things will always remain hidden since no full nondisruptive mea-

surements can be done (cf. discussion of Plato’s cave in Chapter 1). If the state

space is not fully observable, it will again resemble the situation of indeterminis-

tic SDTDSs since the effect of hidden variables that cannot be modelled will be

observed as noise. A solution similar to the one suggested in Section 17.9.1 could

therefore apply.

The partial observability problem may, for example, arise when the state is

not directly observable, but first passes through some function which reduces the

information content in comparison to the full state. For example, if the full state

is a physical environment, the environment state will only be indirectly accessible

through sensors.

17.9.4 Discrete time ⇒ Continuous time

The restriction to consider only discrete time is not necessarily required in the SSM

description of the underlying system. The transition functions could possibly be

replaced with continuous time differential equations with an arbitrary choice of ∆t.

The modelling of continuous time SDTDSs could thereby also be a potential pos-

sibility. To do this from scratch would, however, probably mean reinventing large

portions of control theory. Clearly, this is one direction in which the well developed

theories of other fields would have to be used (cf. discussion in Chapter 15).

17.9.5 Real environments

If the above obstacles (of Sections 17.9.1–17.9.4) can be surmounted, then the road

is open to real world environments. The real world is noisy and continuous, and

only partially and indirectly observable all at once. Thus, if these kinds of systems

are to be analysed, all of the above mentioned problems must be handled together
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and not in isolation. I would, however, suggest that dealing with each problem

in isolation would be a good way to start. Furthermore, the best place to start

would probably be to work on SDTDSs of the kind studied in Chapter 12 and let

CrySSMEx find a suitable Λi. Then controlled noise could be added to the systems

gradually.

If successful, it would be very interesting to implement this kind of system on

an autonomous robot which could then explore its environment and build an in-

creasingly accurate model of its actions and their consequences. There is, of course,

much earlier work to consider. For example, Fox, Ghallab, Infantes and Long (2006)

present a Hidden Markov Model approach for creating finite state models of robot

behaviour. While their approach did require some human interpretation of obser-

vations, it would be very interesting to see if SSMs and CrySSMEx could be used in

a similar way and if the procedure then could be more fully automated.
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Chapter 18

Sciences of Simulated Universes

In this chapter future ambitions for the RNN-RE field are suggested in two frame-

works; Empirical and Popperian Machines. Within these descriptions, CrySSMEx

serves as a basis and central component of all examples, but the ideas presented

are intended as goals that could guide RNN-RE development in general.

Firstly, some properties of simulated systems are discussed from an epistemo-

logical perspective, suggesting that simulated systems are very accessible for scien-

tific analysis, and for automated scientific analysis. Subsequently in Sections 18.2

and 18.3, the necessity, feasibility, and revenues of the automatic analysis of simu-

lated systems are discussed. In Section 18.4 Empirical Machines are suggested as an

active learner for modelling simulated systems. While Karl Popper’s philosophy of

science is briefly compared with Herbert Simon’s machine learning ideas for solving

scientific problems in Section 18.5, Section 18.6 presents the furthest ambition for

rule extraction of this thesis: Popperian Machines, i.e. fully automated generators

and verifiers of statements, of highest possible empirical content, about populations

of underlying simulated systems.

18.1 The golden properties of simulated systems

A single simulated system has some properties that make it very suitable for con-

ducting active learning (e.g. Cohn et al., 1994; Bryant et al., 1999), on it (cf.

Chapter 15). Real physical systems are by far much more complex to analyse. If

we, for example, want to implement an active learner in the context of, for exam-
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ple, neuroscience or molecular biology, we need to automate not only the ability

to put forward theories and test them, but also all other competences involved.

A researcher conducting biological experiments needs skills in handling biological

tissue as well as planning expertise regarding the cost of the experimentation, etc.

To become a skilled experimental biologist may take a very long time. If an au-

tomated learner should interact with physical systems in the same manner as a

human expert, a considerable amount of sophisticated automation needs to be im-

plemented. In other words, the complete automated empirical loop becomes a huge

project compared to simply conducting experiments manually. There must be some

kind of gain expected from automating something to motivate the automation in

the first place. An even more difficult situation occurs if we move from a labo-

ratory environment into the so called “real world” where repeatable experiments

are perhaps only an idealization. In such domains human skills and experiences

become even more valuable and, at the same time, more difficult to automate. In

psychological studies, for example, how are test subjects selected and interpreted?

In astronomy, how are space probes designed and put into space and what probes

should be prioritized?

I suggest that if we want to automate scientific processes of any kind, instead of

focusing on the big scientific questions, we should more modestly start by looking at

systems with properties more suitable for automated analysis. Simulated systems

naturally have such inviting properties (but are not necessarily trivial to compre-

hend, cf. Section 18.2). If we compare the study of simulated dynamic systems

with the study of physical dynamic systems, there are some quite obvious differ-

ences that make them perfect subjects for systematic analysis. Let us call these the

“golden properties” of simulated systems, which when simulated on a computer,

allow us to (among other things):

• fully observe every single variable of the system,

• replicate results with arbitrarily high accuracy,

• repeat experiments without much additional effort after the framework for

the first experiment has been implemented,

• duplicate and distribute them among research colleagues,

• study the effect of arbitrary pertubations of the systems under controlled
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conditions,

• do nonperturbative studies of internal properties to an arbitrary degree of

detail.

In other words, they are almost perfect experimental subjects. Very few scientific

communities have the luxury of studying entities with properties so inviting for

conducting research on them. In fact, some of these properties lay the ground for the

possibility of conducting rule extraction from RNNs (cf. the “implicit requirements”

discussed in Section 6.5).

For example, one central aspect in science is to infer causality from observations

(Pearl, 2000). Sometimes it is obvious which event causes which effects, for example,

a glass shatters as a consequence of it falling to the floor, not the other way around.

But for some systems causality may become a chicken-or-egg matter, for example, if

the concentrations of two enzymes X and Y are correlated in a large set of samples,

is a high concentration of X causing a high concentration of Y , or vice versa? Or is

there perhaps an unknown cause Z, affecting both X and Y ? Such issues are very

problematic if there are no additional data.

For simulated systems, however, determination of causality is quite problem free.

Let us assume instead that the X−Y −Z-system is a simulated one, then it becomes

a simple matter of manipulating the levels of X and Y to see the effect of one or

the other. Even if we do not directly alter X and Y (since it may be biologically

implausible to do so) we can restart the system several times from the exact same

initial state. One can also save and retrieve the state of the system at any arbitrary

point in time. The controllability of the simulated system allows repeatability by

copying and altering the state arbitrarily. In a biological system, the state can

never be guaranteed to be exactly the same in two systems. Thus it will never be

fully known if the effect of what you want to test, or some possibly uncontrolled

aspect of the state of, e.g., a cell, is what is being measured. For simulated systems,

however, the inference of cause and effect is trivial. For example, it is in principle

trivial to answer questions such as “What would have happened to the simulated

system if it at time t was affected this way instead of that way?” (just restart

the simulation and simply try it out at time t). Imagine the richness of sciences

with answers to such questions, were Reality susceptible to them: e.g., ”What if
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dinosaurs had never become extinct?”, “What if gravity was 5% weaker?”, “What

if I had taken mathematics instead of computer science?”, “What if Alexander the

Great had lost his first battle?”. We will never know the answers to such questions

targeting the Reality in which we live. For simulated systems, however, questions

of that kind can in principle always be answered. The problem is of course to ask

the most interesting questions.

As long as a simulator is properly implemented, any observed phenomena can

be recreated and studied in detail. If, for example, one simulated experiment out

of a million results in deviant, but highly interesting results, this exact experiment

can be recovered and studied again. If one real experiment out of a million returns

a freak result, then you may only hope to achieve the same result again.

I suggest that every simulated system is susceptible to a scientific method supe-

rior to the method of sciences studying the real world. One may even demand that

every simulated system is more thoroughly analysed than their real counterparts;

i.e. that the possibility infers an obligation. But it is not that simple.

The Achilles heel of simulated experiments is instead that the ease of generating

clear observations is a double edged sword. It becomes very easy to generate new

results for slightly different conditions or slightly different systems may produce

unsurmountable amounts of data. This is also why there is a need for sciences

of simulated systems. While these systems are widely used today and can be fully

controlled, they may be incomprehensible due to the ease of conducting an arbitrary

number of studies on arbitrarily many, arbitrarily complex systems. Each system

can in principle have its own “science”, including a scientific nomenclature, models

and data.

18.2 Incomprehensibility due to abundance and

complexity

John Horgan in his controversial book, “The End of Science” (Horgan, 1996), sug-

gests several reasons why our scientific explorations may soon hit a solid brick wall.

Horgan is a renowned science writer for Scientific American, and perhaps it takes

a journalist with an unbiased perspective on science to dare to suggest there are
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fundamental limits to science and that those limits may already have been reached.

The book should perhaps more properly have been titled “The Ends of Scien-

tific Revolutions” since he suggests several different causes for scientific limits and

predicts a future lack of scientific revolutions (Kuhn, 1962) rather than a lack of sci-

entific progress in general. For example, quantum physics could only revolutionize

physics once, whereas refinements and applications of quantum physics may be de-

veloped indefinitely. However, some areas such as particle physics, may soon reach

a limit due to the physical unfeasibility of testing some hypotheses because the cost

could become astronomical (quite literarily so, since required particle accelerators

may surpass our solar system in size).

Potential scientific progress may also be impeded by human limitation in un-

derstanding a subject to the degree that accurate and meaningful hypotheses can

be made. A potential solution to this is to exclude the human element from the

equation and let computers without our cognitive limitations suggest and test the

hypotheses. This solution is suggested in light of Horgan’s book by Riegler (1998)

and the subject is also briefly touched upon in Horgan’s book itself. Therefore, if

machine intelligence is the key to the science of the incomprehensible, why not start

with simulated systems that have such inviting properties for conducting research

on them (cf. previous section)?

It is quite easy to create simulated systems that behave in incomprehensible

ways, even to the designer. Just create a system which alters itself as it runs and

you may soon be scratching your head trying to figure out what it is doing. Clearly,

the possibility that the scientific investigation of a simulated system may become

intractable for a human is quite conceivable (despite the golden properties presented

in Section 18.1).

A fundamental problem facing many empirical computer scientists is that it is

much easier creating large numbers of new computational models and observations

than actually understanding any of them. This situation is especially true in areas

where automated model building is part of the research, e.g., much ANN research.

This is because when one studies a phenomenon such as a neural network training

algorithm, the phenomenon manifests itself in a class of computational models, i.e.

the networks themselves.
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Suppose the level of the model builder (trainer) is called level 0 and the level

of the resulting models (networks) level 1. In the study of backpropagation, which

is a deterministic gradient descent algorithm for training ANNs, for example, the

algorithm results in a trained network for every random initial network you start

with (which is the standard procedure for training). Furthermore, the result varies

with selection of learning rate etc. The backpropagation algorithm is in this context

a level 0 object and the network a level 1 object. Level 0 objects create level 1

objects.

If the scientist wants to analyse some aspect of the system at level 0 (within

the context of some specified domain), then the empirical study needs to take place

at level 1, i.e. the level on which the system manifests itself. As in any empirical

study, more than one object needs to be incorporated, and, in many cases, the

differences between individual generated models are not insignificant, necessitating

a considerable number of models to be generated and studied. In the case of

backpropagation, the resulting generated networks may be very diversified despite

being trained on exactly the same domain. Each network can then be studied and

analysed in its own right. A few of the networks may, for example, have completely

novel and surprising solution to a problem, as exemplified in Ziemke and Thieme

(2002) when it was discovered that some evolved networks, controlling a robot,

used the environment as its memory instead of using its internal representation. In

order to discover such surprising behaviour in the networks, each must be studied in

detail (or, at least, one must be lucky enough to study the interesting ones closer).

The level 1 phenomena manifest themselves in what we can call level 2 (see

Figure 18.1), which in the case of neural networks corresponds to the behaviour

of the networks within the given domain (cf. Ω of Definition 9.3). The generated

collective of level 1 models are almost always evaluated quantitatively at level 2, e.g.,

a performance estimation of the networks (e.g. Miller & Giles, 1993; Jacobsson &

Ziemke, 2003a). There are also more qualitative evaluations of the networks based

on visual analysis of the behaviour (e.g. Meeden, 1996; Ziemke & Thieme, 2002).

Based on the collective results at level 2, conclusions on the aspects of the

models of level 0 are then drawn, typically without incorporating the individuality

of the level 1 models. In other words, there is an explanatory gap between the
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Figure 18.1: An illustration of the information explosion that many empirical computer
scientists may encounter. Level 0 objects may for example be different training algorithms
that each will generate one or more level 1 objects, e.g., neural networks. The trained
models have one or more measurable behaviours in different situations. To explain level 0
systems, more than one level 1-system may therefore have to be examined in turn.

trainer of models and the models’ behaviour. For example, if a number of potential

backpropagation parameter settings are to be compared in a domain, the final

performance of the resulting networks in terms of their generalization error would

typically be used to evaluate which setting is the best. But if the specifics of the

dynamics of the network is of interest then this performance analysis, of how the

networks manifest themselves on their domains, may not be enough. For example, if

the networks of Ziemke and Thieme (2002) had only been quantitatively evaluated

and not visually inspected, the fact that some networks utilized the environment

as memory would probably not have been recognized. The individuality of level 1

objects is lost when level 0 phenomena are evaluated only on an averaged collection

of level 2 data.

For other fields of science, where data collection is more costly, this would seem

absurd. For example, it would be unforgivable to not study data from space probes

in great detail considering the cost of gathering it. Treating data from space probes

as a collective set of data without accounting for the individuality of the probes

or the planets they are probing would be considered quite absurd. Yet, this is

precisely what is done when a training algorithm is used to generate systems that

“probe” the search space of the training algorithm. Each system may be a unique

solution to the problem found by the trainer, yet such individuality is lost when a

mere performance measure is conducted and then averaged for several individuals.
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The problem for the empirical computer scientist is that each model at level 1

is itself, although relatively easy to create, a potentially complex phenomenon for

which theories can be put forward and tested. Theories which explain the mecha-

nisms behind how the numerous level 1 models manifest themselves at level 2 may

require more than a superficial analysis of quantifiable aspects of this manifesta-

tion. This is typically done only on selected individual models, due to the amount

of effort needed to perform a complete empirical study on each object (e.g. Pollack,

1987; Meeden, 1996; Rodriguez et al., 1999; Bodén et al., 2000).

The basic problem here is not only whether or not the complexity of level 1

systems supersedes the human possibility of understanding them (as Horgan (1996)

suggests as a reason for halting scientific progress). For example, there are many

papers in which individual recurrent networks have been analysed in detail and

have arguably been understood by the authors (and readers)1. The problem is

rather that a detailed analysis of a handful level 1 objects may not be sufficient to

understand the properties of the level 0 objects. It may, however, be too costly for

humans to analyse each individual level 1 object.

There are many instances of human scientists spending entire careers on subject

matters that are seemingly very narrow. For example, biologists working on just

a few selected proteins for most of their careers. This is how some sciences have

become organized through the success of reductionism (and as a consequence of

some sociocultural aspects according to Kuhn (1962)). It does, however, seem

sensible for someone to be funded for analysing a very specific neurotransmitter

and its role in Alzheimer’s decease, for example. The potential of such research

lies in applications which may help people. There are, however, considerably fewer

people (apart from some overly enthusiastic mathematicians, perhaps) building

their careers on the analysis of one or several instances of simulated systems, even

though some such systems may be sufficiently complex for researchers to spend

a lifetime learning new things about them. One reason is that the knowledge

acquired about a simulated system may only indirectly yield dividends in the real

world. Another reason is that for every simulated model that can be created, an

uncountable number of variants of it can also be created. Why focus on one model,

1See Section 2.1 for a number of examples of such papers.
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when a new one can be created which may be more interesting? The problems for

an experimental computer scientist are that there are too many choices every step

of the way towards creating and analysing simulated systems.

The relative ease of creating new systems that can (and certainly should) be

studied yields a very low revenue from the analysis of each individual system. Con-

sider simulations of chemical reactions in an artificial molecular system with differ-

ent reaction rules and concentration levels of reactants, or simulations of galaxies

formed under different conditions. Another instance is simulations of thousands

of recurrent neural networks created by genetic algorithms for the purpose of con-

trolling a simulated robot arm. A detailed manual study of a randomly selected

individual system in these example areas will most likely not be very rewarding.

Simulated systems are abundant in contemporary research and with the means

of creating one system, another can easily be created by tweaking some parameters

and running the level 0 simulator-generator again. Each individual level 1 system

may hold the key to whatever problem you are trying to solve, but carefully con-

ducted scientific studies on each of them become practically impossible. This is why

automated analysis of simulated systems is important. For real world systems the

potential prognosed pay-off, in terms of the knowledge gained and the application

of some research may be sufficient to motivate financing humans to conduct the

research. For individual simulated universes, however, the low payoff alone may be

sufficient motivation to automate the analysis. Moreover, machine analysis rather

than human reasoning may be more appropriate for some simulated systems. This

is because a simulated system can easily be created to be counter-intuitive and ab-

stract in a way that renders past human experience useless in the analysis process.

See Table 18.1 for a brief summary of some of the differences between simulated

worlds and reality.

If the golden properties are utilized to automate the analysis of simulated sys-

tems, what is then the purpose of the automatically generated models of these

systems? The simulated system is of course in itself completely described in source

code or something akin to it. This issue is central in rule extraction and the mo-

tivator is traditionally that a comprehensible model should be created from an

incomprehensible system. In the following section I argue why this motivation is
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Real world Simulated world

There is only one observable real
world.

Create as many simulated worlds as
you like.

Acquired knowledge may yield high
payoff (e.g., applications).

Knowledge is of low value since it will
be only about the simulated system
and nothing else.

Uncontrolled noise. Controlled noise.
Repetition of experiments require
skill.

Repetition of experiments require
only copy-paste of system state and
parameters.

Human intuition may be helpful since
humans have experience of the nature
of the real world.

Simulated systems may be entirely
unintuitive.

Time is (or appears as) continuous,
linear, divided into past, present and
future, and cannot be controlled.
Only if the present contains infor-
mation about the past can historical
analysis be conducted. Prediction is
difficult.

Time can be linear, cyclic or tree-like
and discrete, history is always accessi-
ble for analysis, future can always be
predicted (i.e. presimulated in sepa-
rate time line).

Can only be controlled indirectly,
through interaction.

Can be controlled in a “hand-of-god”-
like manner.

Table 18.1: Some highlighted examples of why it is easy as well as reasonable to conduct
a scientific study of a simulated system.

not as important as it seems.

18.3 Models as proxies for queries

I would suggest that the comprehensibility of extracted rules should not be the sole

basis for the assessment of the usefulness of rules (cf. Andrews et al. (1995); Tickle

et al. (1997, 1998)). The rules, or models, of some underlying phenomena can be

useful in other ways than being directly read and comprehended by humans. Tradi-

tionally, models of something should accentuate certain aspects and omit others in

order to promote understanding and ability to control the phenomena (Föllesdal,

Walløe & Elster, 1993). This is especially clear in control theory where the models

should be simple enough for engineers to develop and scrutinize them, yet sophisti-

cated enough to control the plant. But, with regard to automated model building,

the role of the engineer is replaced by a machine. The virtue of the model as a
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means to achieve control is, in my view, not diminished by being machine created.

For real control applications, however, legal problems may arise if no team of engi-

neers can be held responsible for the system (the legality issue is also used as one

motivator for rule extraction in Andrews et al. (1995)). When considering simu-

lated systems, however, models of the systems can be built automatically without

any risks involved (cf. initial discussion of Chapter 1).

The possibility of using models to control a phenomena is, nevertheless, not

the most essential if the underlying system is a simulated one. There may be a

desire to understand the system, but this may be rendered impossible if the model

of the system becomes more complex as a consequence of optimizing the fidelity.

The comprehensibility/fidelity tradeoff (Craven & Shavlik, 1999) means that the

better the model mimics the underlying system, the bigger and more complex it

may become.

I would however argue that if a model has certain properties, then, even if it

is large and incomprehensible, it may still be meaningful in terms of comprehen-

sion. For example, consider a highly complex simulated model of hot plasma, for

the purpose of building a fusion reactor. The model may have millions of state

variables and build on quantum mechanical principles, as well as being highly non-

linear. Despite being incomprehensible (within mortal limits of understanding),

the researcher depends on the model to answer queries such as “will this magnetic

field configuration result in a stable plasma?” and expects responses such as “Yes,

in 90% of the cases.”. The incomprehensibility of the system itself is of little sig-

nificance (given that it is accurate with respect to the relevant underlying physics)

when the researchers receive an answer which may very well be comprehensible.

Consequently, the idea is that models may be useful as a proxy for queries. I

would hold that one strength of models, in science, mathematics and maybe even

as mental representations, is that the model acts as a query-proxy between the

question-holder and the “reality” that the question addresses. The virtue of any

simulation lies in that the simulator is a model which is much cheaper, and more

appropriate, to query than the reality itself. And when it comes to models of

simulated models, the more abstract model should be constructed such that it is,

in turn, more appropriate for queries than the underlying simulated system.
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Consider for example SSMs as models of SDTDSs (cf. Part II). The user could

of course interact with the simulated SDTDS directly, by testing various combina-

tion of input patterns. But CrySSMEx creates the SSM model of the SDTDS as a

potential proxy for certain kinds of queries about the underlying system. Then, as

suggested in Section 17.2, various questions could be asked of this model without

the need to interact with the underlying system directly. The extracted SSM is

more appropriate for queries since it has a well defined syntax in the structure of

the SEs and transition as well as defined semantics represented by the input, output

and state quantizers.

To illustrate the strength of a model as a proxy for queries, consider a very

simple model of a population of real-valued measurements as a mean value and

standard deviation. Let us say, for example, that you have measured the length of

one thousand slimy earthworms, a nasty and cumbersome task by many standards.

From this exercise you know that the average length is 15 cm with a standard

deviation of 3 cm. To create a lossy model, in this case, you choose to assume

that the lengths are normally distributed. The model is lossy in the sense the

exact lengths of all measured worms cannot be recreated and other aspects of the

worms, such as degree of sliminess, are completely ignored2. It is a very powerful

model for the length of earthworms, not only for the ones that have been carefully

measured, but a model that is assumed will hold also for many other earthworms

collected under similar conditions. In fact, it may even be assumed that it holds

for all earthworms that have ever existed or will ever exist. Even if an infinite

number of earthworms will exist before the end of time, you will have a model

for them too, accurate or not. From the data alone, without assuming normal

distribution (or some other criteria) as your criteria for compression, you could not

have expressed anything more substantial than statements about specific lengths

of the 1000 individual earthworms you have encountered. Any statement about

these specific 1000 worms you could have been more accurate, but without the

compression of the model, would you really understand the domain? Compression

is, if not the actual act of comprehension, clearly helpful for your comprehension. A

deeper discussion of the suggested relation between compression and comprehension

2The normal distribution assumption also makes the model lossy in the sense that if it is a
false assumption, the model will be inaccurate.
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can be found in Chaitin (2005).

The power of the model is not only that it generalizes to more data than just

the collected data. The power of it as a proxy for queries is realized when you may

have concrete questions regarding the lengths of the earthworms. If you want to

go fishing and need earthworms longer than 20 cm in order to catch a really big

fish, then you could simply utilize your model of earthworm lengths to calculate

the probability of finding such worms. Suppose you want to estimate the expected

time it will take to get ten such worms if you dig up ten worms per minute. The

probability of an arbitrarily selected worm being longer than 20 cm should be

approximately one in twenty, according to your model. From this the expected

time it will take to find ten long worms can actually be calculated. Consider if

you want the same answer, without the use of your powerful “worm-length-model”.

Then you would actually have to dig up the desired amount of long worms, measure

the time each one takes, and repeat this until you can make a model for the average

time needed for the task. It would amount to a lot of worms compared to the elegant

worm-length-model powered deduction.

By investing computational time in building a model of a simulated system, the

cost of answering certain queries may decrease significantly. In the example above,

the collection of data together with some assumptions made possible queries about

an infinity of never seen examples. The answers may be wrong, if the model is

incorrect. But a single model consisting of two real values eliminates the need to

conduct any more measurements once the risk of errors in the model is accepted.

This is of course an idealization, but any form of model building should produce

revenues in the form of reduced (computational) cost for answering certain queries.

When a model, that is intended to be suitable for queries, is built upon a

simulated system, the assumptions made should be such that the model is more

suitable for queries than the simulated system is by itself. The assumption under-

lying CrySSMEx, for example, is that a finite state model is adequate. Even when

it is not adequate, it may be used as a proxy for queries, although the answers

may sometimes be inaccurate. What CrySSMEx does is to incrementally generate

gradually better models so that the expected accuracy of query-answers, with re-

spect to the actual underlying system, will gradually increase. It will, however,
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only increase with respect to the collected data, Ω, and when this data is perfectly

modelled, CrySSMEx terminates.

One could object that there may also exist queries, and answers to these queries,

that themselves are beyond our comprehension. Some of these incomprehensible

queries may however be exactly the kind of queries that are necessary (given some

ad hoc utility function). Thereby the rules can only be made partly comprehensible

by being accessible through queries. The problem of incomprehensible models is

merely temporarily avoided, and not solved, since, the most significant queries for

a particular model may be beyond our comprehension. This is of course true. We

cannot escape our finite ability to comprehend complex models. But, sometimes

not even queries, or their answers, need to be humanly comprehensible to be useful.

On a reasonable degree of abstraction CrySSMEx can be seen as asking questions of

the latest SSM about what aspects of it need refining, and how this should be done

through resampling of Ω. In CrySSMEx, the extraction of SSMs progresses with or

without our comprehension. In the following section this form of querying, for the

purpose of improving the queried model itself, is discussed further.

18.4 Future direction I: Empirical Machines

I will now define the first framework in which I think future RNN-RE algorithms

should be developed: Empirical Machines, based on active learning and induction

of models through querying of the underlying system (Angluin, 1981, 1987; Cohn,

1994; MacKay, 1992; Cohn et al., 1994; King et al., 2004; Angluin, 2004). A similar

active learning rule extraction approach is also suggested by Craven and Shavlik

(1994), but for feedforward networks only. For dynamic systems, the problems

are quite different than for feedforward networks since a system is fundamentally

different from a function in that it changes over time.

In CrySSMEx a sequence of models is built based on a predefined set of obser-

vations, Ω. As mentioned above, CrySSMEx can be seen as “querying” its latest

SSM model about how it could be refined such that the data is more properly

interpreted. From the answer of this query, the next SSM is then created. More

precisely, the SDTDS is interpreted through the CVQ which is adapted to create
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an SSM description of the SDTDS that is minimal and consistent with the SDTDS

sample, Ω. The adaptation of the CVQ is based on pinpointing ambiguous SEs of

the SSM through measuring the conditional entropy and selecting data in Ω that

may alleviate the ambiguity (nondeterminism). It could however be argued that

the principle which is used to select data from Ω could potentially also be used to

add data to Ω.

The reason the conditional entropy is used in Algorithm 11.1 is that it can be

interpreted as a model of ignorance. For example, Hssm(Y |Q = qi, X = xk) can be

interpreted as the degree of uncertainty regarding what the output symbol should

be if the SE and input symbol is known. In other words, the constituents of the

model that are the most ignorant or inexact are selected for refinement. The Hssm

entropies are defined (definitions 9.9 and 9.10) such that it does not consider dead

transitions (Definition 9.7) as ignorance. These definitions were based on the choice

of the closed world assumption, i.e. if a transition is dead, it is so because it is not

represented in Ω and thereby does not indicate any ignorance of the SSM regarding

Ω, but rather as ignorance in Ω regarding the underlying system itself. The closed

world assumption says: if something is not in the sampled data, Ω, then it is also

not in the model.

Dead transitions are, however, only one extreme case of insufficient data in Ω;

i.e. when an input symbol has never been presented to the underlying SDTDS in

certain situations. This is only at one end of the spectrum of transition frequencies

and the only one which can be seen in the SSM at all since the frequencies of

SEs and transitions in Ω are not modelled at all in the SSM. The extracted SSM,

however, may have some SEs and transitions that could be very poorly supported

by data in Ω. For example, if one transition is executed only one time and another

1000 times, in a quantized Ω, this will not be reflected in the SSM at all. It is quite

conceivable that a transition supported by a handful of observations in Ω can be

considered more volatile than a transition supported by thousands of observations.

An SSM is more likely to fail to generalize with respect to unseen situations at

the weakest links, i.e. infrequent SEs and transitions. It is also guaranteed not to

generalize at all in dead transitions.

One goal of CrySSMEx is to create a model which minimizes the uncertainty of the
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output of the underlying system given a sequence of inputs. If the model mimics

the underlying system well, this uncertainty will reach zero. This uncertainty is

what is gradually eliminated in the CrySSMEx-loop.

Fully eliminated uncertainty terminates CrySSMEx, i.e. after the SSM fully de-

scribes the data in Ω there is nothing more for CrySSMEx to do. This is precisely the

point at which CrySSMEx could be made part of an active learner; by resampling Ω to

cover ignorance in the SSM regarding the underlying SDTDS (cf. Section 17.2.1).

The resampling should be done by interacting with the underlying SDTDS in a

manner which should make infrequent SEs and transitions more frequent as well as

it should eliminate dead transitions.

There are of course many strategies for how to patch up the holes in the SSM.

One is to generate an input sequence which according to the current SSM should re-

sult in more uniform SE frequencies, i.e. that states should be visited approximately

the same number of times. Another method would be to interactively (while the

CVQ quantizes the state space) force the SDTDS to follow previously dead transi-

tions. This must be done interactively since, based on the SSM, it is impossible to

know what will happen in the dead transition. A reasonable strategy could be to

generate a new Ω that maximizes the probability that the underlying SSM should

fail to predict the SDTDS. To prevent loops, it is probably beneficial to let the

new Ω contain the previous Ω as a subset. When this new Ω has been used to

create a new model, the whole resampling procedure could be started over again.

For every iteration, the induced model should better mimic the underlying system

since the data on which it has been trained was selected to be as problematic for

the underlying system as possible3.

By Empirical Machine, I refer not only to systems built on CrySSMEx. As cur-

rently implemented, CrySSMEx has its specific limitations and features which are not

meant to constrain the concept of Empirical Machines. Empirical Machine means

a system of model induction which should create a model of a simulated system

that should be more accessible to queries than the underlying system itself. In par-

ticular, the model must be able to answer queries regarding its own inabilities (i.e.

3A similar idea was developed already in Jacobsson and Olsson (2000) (which in turn was
based on Jacobsson (1998)) where, problematic, prototypical input patterns were extracted from
feedforward networks by “inverting” them.
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Figure 18.2: Outline of an Empirical Machine. The initial model of the underlying
system queries the underlying system in order to improve itself. A sequence of models
is thereby created, where increasingly detailed queries can be given as the deviance of
the models from the actual system decreases. A user can potentially query the Empirical
Machine which acts as an adapting proxy for queries. The queries from the user could be
used to guide the refinement of the underlying models.

ignorance) to answer certain queries. Apart from creating the model, the Empiri-

cal Machine must also have a mechanism for generating a new set of observations

which should remedy the ignorance in the current model. Traditionally, RNN-RE

methods assume finite state models, but other models are of course possible. For

example, a similar active learning rule extractor was suggested by Craven and Shav-

lik (1994), but it was limited to feed forward networks only. An Empirical Machine

is to be regarded as an automatic method for creating models of simulated system,

models that should in principle never stop being refined (or, at least verified) as

long as the machine is running. An external user may of course provide guidance

by providing additional queries regarding the underlying system. The outline of an

Empirical Machine in conjunction with an external user is depicted in Figure 18.2.

Observant readers will remember it was previously argued that it is preferable

to let CrySSMEx be compositional, i.e. to collect data from the SDTDS as it was op-

erating in its domain (cf. discussion in Section 9.1.2). By recollecting data actively,

the patterns of an underlying domain of the SDTDS will not be used as heuristics

in generating the rules which will result in many aspects of the rules not being

relevant for the SDTDS as it is actually operating in its domain. In Jacobsson
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and Ziemke (2003b) (and Appendix D) it was shown that by using the domain as

heuristics, significantly fewer states were extracted than if breadth first search was

used. This active learner is therefore more suitable for systems that are not strictly

bound by a constrained external domain. For example, the anbn-predicting RNNs

(cf. Section 12.2 and appendices C and D) are not really intended to do anything

else than predict anbn-strings. An Empirical Machine might, however, “conduct

experiments” on the RNN using any non-anbn-string resulting in big SSMs with

largely irrelevant aspects in terms of anbn.

The reason I define and discuss Empirical Machines is that, apart from being

a potential extension of CrySSMEx, it also provides a framework for other poten-

tial RNN-RE algorithms. If one wants to design a rule extractor for the purpose

of building an Empirical Machine, some arguably important goals for RNN-RE

algorithms and their rules are highlighted:

• By providing rules that can be queried, fidelity could potentially coexist with

comprehensibility (cf. discussion in Section 7.2.2) since large incomprehensible

rule sets can be viewed through queries that accentuate aspects of relevance

for the user. This places a focus on the querability of rules as a quality

criteria rather than the traditional criteria fidelity, accuracy, consistency and

comprehensibility (cf. Section 4.2.4).

• The rules should be able to assess some aspects of their own ignorance. This

is important not only for the Empirical Machine framework, but also for the

possibility of providing estimations of confidence when the rules are used to

predict or model the underlying system.

• The user can, but is not required to, guide the extraction. In essence, this

means the extraction process is further automated since the user needs to do

nothing more than provide the Empirical Machine access to the underlying

system. Full automation means the Empirical Machine can more easily be

incorporated as a constituent of larger systems (which is suggested in Sec-

tion 18.6).

• In order to build an Empirical Machine from a rule extractor means it must

be “user independent” since it must interact with the underlying system au-

tonomously. The importance of freedom from, or consistency over, parameters
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becomes accentuated since these parameters would be inherited from the rule

extractor to the Empirical Machine.

The first point is perhaps the most important for the field of RNN-RE since it

would motivate research on rule extraction also when the rules are beyond human

comprehension. Human comprehension has its limits but I see no reason why

extracted incomprehensible rules should be deemed worthless if they accurately

describe the underlying phenomena. As Einstein once put it: “A scientific theory

should be as simple as possible, but no simpler”. The challenge for rule extractors

is to show that this may also be true beyond the limit of human comprehension.

Most likely, the extracted models will quickly explode in size as every hole

patched in the SSM is likely to generate a larger SSM with even more dead transi-

tions. Therefore some strategies, regarding what aspects of the SSM should be the

focus of further resampling of the SDTDS, must be devised. Such interestingness

measures are commonly used as heuristics in computational scientific discovery and

this connection is investigated in more detail in the following sections.

18.5 Popper and machine learning

Scientific discovery involves two main subprocesses; creativity and criticism. Or as

Popper states it; “the work of the scientist consists in putting forward and testing

theories.” (Popper (1990), p. 31). Traditionally, the machine learning field has

been more involved with the former rather than the latter. Ironically, however, this

aspect of science is perhaps not the most accessible for automation. To automate

something, you must first understand it enough to program it (Chaitin, 2005).

Popper states: “The initial stage, the act of conceiving or inventing a theory, seems

to me neither to call for logical analysis nor to be susceptible of it” (Popper (1990),

p. 31). This has of course received criticism from proponents of machine learning

approaches to science; “It is unusual for an author, less than one-tenth of the way

through his work, to disclaim the existence of the subject matter that the title of

his treatise announces. Yet that is exactly what Karl Popper does in his classic,

The Logic of Scientific Discovery” (Simon (1973), p. 471,). This could simply

be attributed to a poorly titled book. The original title in German was “Logik
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der Forschung” (Popper, 1935) which is more accurately translated as “Logic of

Research” (which sounds less powerful, I suppose). Even more accurately, the book

should perhaps be titled “The Aspects of Science that can Actually be Reduced to a

Logical Description” or, “How to Separate Science from Non-science”. The last title

would indeed reveal the main ambition that Popper seemed to have with his book;

to give a detailed description of what science is and how to recognize pseudoscience

disguising as science.

The machine learning literature is strongly influenced by Herbert A. Simon,

a strong proponent of machine intelligence applied to realistic scientific problems.

Simon’s articles present a strongly descriptive view of science. A paper on a ma-

chine learning technique applied to a scientific domain is typically introduced by

a description of a success story where a scientist has discovered a novel law. In

Simon (1992), for example, diaries, correspondence and laboratory notebooks of a

few noteworthy scientists are studied to find patterns in their creativity, intuition,

assessment of the validity of ideas and planning of experiments etc. A challenging

task indeed. As I see it, the basic problem is, however, that intuition and creativity

are not matters easily approached by other means than introspection. Ideas about

scientific creativity may possibly be no more than sophisticated guesses at best,

since the problem of scientific creativity itself may not be a problem open to the

scrutiny of scientific methods (Popper, 1990). The science of creativity is not a

science at all, in fact, if we follow Popper’s definition of science.

Popper’s demarcation of science from non-science, or pseudo-science, is based on

his view that science should deal exclusively with falsifiable statements. If a state-

ment cannot be falsified through observations, then it is not scientific. Falsification

is, however, a property of the statement itself, not of the source of the statement.

In other words, in Popper’s philosophy of science, the source of statements is a

wild-card. Popper never states that there are no logically built up methods that

can come up with falsifiable statements, i.e. he never excludes the possibility of

the creative element of the scientist being automated. He merely claims that the

analysis of human creativity is intractable, and this does not, in my view, exclude

the possibility that logically built systems may have “creative” features. Simon

and others have certainly been able to develop several such logical programs for
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artificial creativity in scientific domains such as mathematics, chemistry, physics

astronomy biology, medicine etc. (Simon, 1995/96; Colton & Steel, 1999). Novel

discoveries are rare (typically known facts are rediscovered) but it does happen.

Others have embraced the non-logical nature of scientific discovery and let “ran-

dom” evolutionary processes be the basis for creative discoveries (Koza et al., 2003).

Through the use of genetic programming which builds on random mutations, ran-

dom crossovers and fitness-based stochastic selection, Koza et al. have been able

to find novel non-intuitive solutions to complex engineering problems (typically in

the field of electronics).

What defines computational scientific discovery? I would hold that Popper’s

definition is a good one to describe the middle word; i.e. that only falsifiable state-

ments are “scientific”. “Computational discoveries” are discoveries made by an

algorithm run on a computer. The process of computational discovery should also

involve minimal, or no, human intervention, to distinguish it from computer aided

research where the computer is used as a tool in the hand of humans. “Discovery”

is, in my view, a creation of a falsifiable, yet not falsified, statement about some-

thing. The creation itself can be made in any arbitrary way. Since the source of

statements bears no relevance in the assessment of their falsifiability, the nature of

the source needs no further specification. For the current discussion, we can assume

it to be random, human or a highly sophisticated machine learning algorithm. It

would be possible to call such statements “facts”, but in Popper’s philosophy, the

notion of a fact is problematic. Nothing can be known for sure, but some state-

ments can be stronger than others by being logically improbable to be true unless

they really are true. That is the essence of falsifiability.

You might react to the word “something” in “statement about something”.

Surely science must be about scientific subject matters, such as physics, medicine

or chemistry? But, such a definition of science would be purely descriptive and

provide no indication of when or if the study of a particular subject matter becomes

a science. On the contrary, I would hold that a proper definition of science is a

definition of the scientific method, not of the subject matter. It is the nature

of how we approach a subject matter that makes some knowledge scientific and

other knowledge not. If a subject is approached with a sound scientific method,

165



then the knowledge generated deserves to be labelled scientific knowledge4. This is

however seemingly not viewed as a sufficient criterion by researchers in the field of

computational scientific discovery. The problem domains under study are typically

within traditional natural sciences or mathematics (e.g. Simon, 1995/96; Colton &

Steel, 1999; King et al., 2004).

Another striking difference between Popper’s philosophy of science and tra-

ditional machine learning is the anticipated difficulty of approaching the matter

systematically. “The central problem of epistemology has always been and still

is the problem of the growth of knowledge. And the growth of knowledge can be

studied best by studying the growth of scientific knowledge.” (Popper (1990), p. 15).

The reason that scientific knowledge is considered easier to approach systematically

is simply that it is a very limited form of knowledge for which methodologies can

be defined. Consider common sense knowledge on the other hand; we all have it

(more or less), but can we single out a method for acquiring common sense knowl-

edge? In comparison, scientific progress is a social and well documented process

(Kuhn, 1962). Interestingly, however, proponents of traditional computational sci-

entific discovery hold: “Scientific discovery is generally viewed as one of the most

complex human creative activities” (Langley et al. (2002), p. 1). I do believe how-

ever, that this argument is more a consequence of analysing the result of scientific

method, than the scientific models themselves. The scientific method for testing

these models is in itself very simple in principle.

The ambition of Simon and his followers is indeed impressive. They attempt to

mimic the processes by which the great scientific minds of the past have achieved

success. But it is like deciding that Mount Everest is a good place to start if

you want to learn mountain climbing. The principle of climbing mountains is very

simple: just walk or crawl or climb towards higher ground until you reach the

top. The difficulty is more a consequence of the mountain. Likewise, the scientific

process is elementary; the resulting complexity is simply a consequence of applying

it to complex systems. Ironically, Simon himself provides an appropriate analogy

to this in his well known ant on the beach metaphor (Simon, 1969): the complex

path taken by an ant on the beach may be a consequence of the complexity of the

4Not to be confused with “truth” or “true knowledge”. Scientific knowledge is, and should
always be susceptible to change.
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environment rather than the complexity of the ant. A simple mechanism may result

in complex phenomena if put in complex contexts. And I believe this is precisely

the case for the scientific method.

The ambitions set aside, in practice, the machine learning field is typically

focused on induction of theories from data. Data is gathered from which models

are subsequently induced. Various heuristics are used to guide the model induction

towards interesting and comprehensible models. Some measures of interestingness

are (Colton et al., 2000):

• Empirical plausibility of conjectures. They do not suggest always discarding

conjectures refuted by observations, instead the conjecture could be altered

to fit the data. But the bottom line is that plausibility is taken as a criteria

for interestingness.

• Novelty. If a conjecture or concept can be deductively derived it cannot be

considered very novel.

• Surprisingness. Tautologies are the least surprising of conjectures.

• Applicability. The proportion of models in a database to which the conjecture

or concept is applicable.

• Comprehensibility and complexity. Simpler conjectures can be considered

more interesting.

• Utility. Ability for user to explicitly guide the search for conjectures by spec-

ifying a focus that indicates interestingness in the domain from the user’s

perspective.

Interestingly, Popper’s falsifiability is not in the list. In fact, Popper is seldom cited

at all in the computational scientific discovery community. This may of course be

due to Simon’s early criticism of Popper’s refutation of analytically approaching

the nature of human creativity.

In my opinion, Popper provides machine learning with a very sound philosophi-

cal, as well as practical basis, for automating science. He could well be criticized for

providing a very poor description of how science is conducted in practice. Most sci-

entists do not focus their attention and experiments on falsifying their own claims.

Moreover, much that we consider scientific knowledge may not be entirely falsifi-

able. But Popper’s philosophy of science is not descriptive, it is normative. He
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simply states what he considers scientists should do with their conjectures, not

what they are actually doing. As a consequence, he gives a fairly nonanthropomor-

phic view of science. The act of falsifying statements is not a typical human thing

to do. We prefer confirming our ideas and subsequently applying them. Striving

for falsification is, however, arguably a very logical ambition (if you believe in Pop-

per’s arguments, that is) and falsifiability should thereby be a good heuristic for

evaluating statements we want to be scientific. A good heuristic, that is, also when

computer-evaluated.

Moreover, as Popper denies any methodological approach for understanding cre-

ativity, there may also not be any methodological approaches for designing devices

that exhibit creativity. Thus creativity becomes a wildcard. Theories could be

generated by the throw of a dice a la Genetic Programming (Koza et al., 2003),

or by a sophisticated guessing game a la Inductive Logic Programming (Muggle-

ton & Raedt, 1994). With any arbitrary generator of statements, it would still fit

the Popperian framework as described here. The degree to which the creativity is

successful can in a Popperian framework be evaluated by the degree to which the

statements are falsifiable, but not yet falsified. Consider Einstein, for example: the

assessment of him being a successful creative scientific genius comes from his, quite

falsifiable ideas still being unfalsified (despite some considerable effort) a hundred

years after his 1905 annus mirabilis. But if instead a monkey at a type-writer had

put forward the theories by an incredible coincidence, these would have been just as

powerful (even though it is unlikely the monkey would have been given any credit

in the unlikely event anyone actually started taking them seriously).

Of course, if we developed machine learning techniques that use Popperian

falsificationism as a basis, we should not expect this science to resemble human

science. Human scientists do not follow the strict schemes of falsificationism. To

better understand human scientific creativity, we should instead follow Simon’s

initiative to be inspired by descriptive philosophies of science.

A similar problem is mentioned by Witkowski (2002) who created a Popperian

model of animal behaviour. Although it may be reasonable to assume that a lim-

ited form of assessment of falsification of theories could occur in animal brains, the

analogy should not be taken too seriously: “Clearly it will not be appropriate to
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suggest that the principles embodied in ‘The Logic of Scientific Discovery’ can be

wholly or directly incorporated into an animat controller, where the aim is to pro-

vide engineering analogues of animal learning and behavior.” (Witkowski (2002),

Section 6). The same can perhaps be said if we were trying to provide engineering

analogues of the human epistemology of science which seems to be the ambition of

Simon et al. But my ambition is, rather than to strive for a model of human episte-

mology as it manifests itself in traditional science, I want to develop a scientifically

based Machine Epistemology directed specifically at simulated systems5.

18.6 Future direction II: Popperian Machines

In the following section I suggest how the Popperian framework could be used as a

basis for future RNN-RE algorithms that conduct an automatic scientific process

on simulated systems: Popperian Machines6. In the suggested Empirical Machine,

a model is induced through a series of queries to the underlying simulated system

for the purpose of acquiring a better model. Every simulated system that is anal-

ysed within an Empirical Machine will thereby have an adaptable query-proxy (the

induced model) to which a user can ask certain questions. If a particular question

requires aspects of the model that are not yet supported by data, the Empirical

Machine will, as suggested in Section 18.4, automatically interact with the under-

lying system in order to acquire this data. In effect, the Empirical Machine acts as

an automated experimenter conducting tests on the underlying system.

The Empirical Machine should be able to falsify statements, firstly by consulting

its model directly, and secondly by acquiring data that potentially could falsify the

statement. Queries to the Empirical Machine (let us adhere to SSMs in these

examples) could be in the form of statements, such as “There exists an SE to

which the input symbol a will always cause a transition from all other SEs”. The

5The relation between machine learning and the philosophy of science is also arguably a strong
one (e.g. Williamson, 2004; Korb, 2004) and this strong connection is what I propose should
be utilized in practice. Moreover, in recent interesting arguments against the widespread use
of “data-driven” data mining in the bioinformatics field, Popper has been used as an argument
against machine learning induction (Allen, 2001a, 2001b; Gillies, 2001)

6Not to be confused with Dennett’s Popperian creatures (Dennett, 1996). The Popperian
creatures are based on the idea that the anticipations of the outcome of different actions (through
a sophisticated enough internal mental representation of the world) allow the creatures to select
among their actions before performing them.
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Empirical Machine should, to test (i.e. to falsify) the statement, based on this

specific example query, check all a-transitions and see if they all lead to the same

SE. Moreover, if any a-transitions are dead (Definition 9.7), it should attempt to

extend Ω, through interaction with the underlying SDTDS, so that data is collected

regarding these transitions. Clearly, the implementation of an Empirical Machine

requires a number of complex declarative programming problems to be solved, but

let’s assume that these are solved for the relevant cases.

If the Empirical Machine can be entrusted to actually collect the data necessary

to falsify statements, then populations of Empirical Machines, each adjusted to their

own underlying system, could serve as a basis for falsifying statements that are over

populations of systems. For example, the statement in the previous example could

be expressed as: “In all systems of this population, there exists an SE to which

symbol a will always cause a transition from all other SEs.” If such a statement

is falsifiable for just one of the underlying systems then it is falsifiable. If it is

subsequently proved false in just one of the underlying systems, then it is false.

Although the creativity aspect of this framework was previously referred to

as a “wildcard”, it should be noted that a successful falsification could be very

informative for generating new statements. For example, statements about all

underlying systems, falsified merely for one system, X, could be refined as “For all

systems except system X...”. Such divisions could lay the ground for dividing the

underlying systems into subclasses based on what statements can be given about

them. Concepts such as “Systems for which statement S is true” could then be

introduced into the query language (cf. concept induction Colton et al. (2000)).

The framework for generating falsifiable statements about the simulated system

I term a Popperian Machine and is depicted in Figure 18.3. The concept is fairly

simple; the generator of statements fills a list of statements which the Empirical

Machines attempt to falsify. The statement list should only contain falsifiable, yet

unfalsified statements. How to populate the list and what statements should be

prioritized is discussed next.

Popper describes the scientific process following the creation of a novel hypoth-

esis as:

“First, there is the logical comparison of the conclusions among them-
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Figure 18.3: Outline of a Popperian Machine. A statement generator (which is unde-
fined and could very well be a human user) feeds a statement list falsifiable statements
about a set of underlying systems. The statements are reformulated as queries (aimed at
falsifying the statements) to a set of Empirical Machines that interact with their associ-
ated underlying system in order to build models that can answer the queries. Falsified
statements are then deleted from the list of statements. Over time, the list of statements
should have increasingly higher empirical content, in terms of them being falsifiable, yet
not falsified (Popper, 1990).
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selves, by which the internal consistency of the system is tested. Sec-
ondly, there is the investigation of the logical form of the theory, with
the object of determining whether it has the character of an empirical
or scientific theory, or whether it is, for example, tautological. Thirdly,
there is the comparison with other theories, chiefly with the aim of
determining whether the theory would constitute a scientific advance
should it survive our various tests. And finally, there is the testing of
the theory by way of empirical applications of the conclusions which
can be derived from it.” (Popper (1990), p. 32)

In accord with the suggested framework in Figure 18.3 I maintain that many

aspects of what Popper considers a scientific process could be automated. How to

implement the logic required for the deductive reasoning regarding, for example,

“internal consistency” and “logical form” is not in the scope of this thesis. But

such matters are highly central in the field of Inductive Logic Programming (Mug-

gleton & Raedt, 1994), since it involves generating (guessing) statements that are

of internal consistency and of particular logical forms. The fourth step, “the testing

of the theory” is, in my suggested framework, the responsibility of the Empirical

Machine.

The aspect of falsifiability becomes relevant in the third step, i.e. in the assess-

ment to which degree a statement constitutes a scientific advance. How to exactly

define and implement the assessment of falsifiability itself is also a grand issue be-

yond the scope of this thesis. I would, however, suggest some basic directions.

Firstly, some statements are inherently unfalsifiable by their nature (e.g., tautolo-

gies). Others require enormous resources in order to test them, which thereby

renders them less falsifiable. Other statements are open-ended since they involve

infinity. For example, if the statement “Transitions over symbol a from SE q1 will

always lead to the same SÉ’ is not falsified after 1000 consecutive as, should 1000

more be tested?

There will be degrees of falsifiability as well as degrees of how much falsification

has been attempted through experiments targeted at a specific statement. The

concept of “degrees of falsifiability” occupies large portions of Popper (1990). There

is also a number of possibilities of how to exactly formalize and implement the

assessment of the falsifiability of statements. I will not attempt to suggest any

particular strategy for the general case. For example, Popper proposes that the

“logical probability of a statement is complementary to its degree of falsifiability”
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(Popper (1990), p. 119). In other words, if it seems very probable that a statement

will be falsified through observations, it should thus be considered falsifiable. How

exactly this logical probability is assessed is, however, likely to depend on the

underlying logical language in use.

Within the context of SSMs and underlying SDTDSs, however, I would suggest

that falsifiability could quite easily be translated into universality and precision

(Popper (1990), section 36). Universality and precision are described by Popper

as the two outstanding demands for statements with the highest possible empirical

content. A statement is more universal than another if it applies to more situations.

A statement is more precise than another if it forbids more outcomes in those

situations. For example, a statement about all days of the week is more universal

than a statement only about Mondays. And a statement that on the referred days

100% of all people drink coffee is more precise than one stating that only at least

80% drink coffee, since the latter allows more observations without falsifying it7.

Universality of SSM-statements could be translated into the number of situa-

tions for which a statement applies, i.e. the number of systems for which a statement

applies, or number of SEs. Precision could be translated into an assessment of how

well the statement constrains the behaviour of the system into a limited set of pos-

sibilities. Universal statements will thereby be more falsifiable since more systems

and situations would occur in which the statement can be falsified. Precise state-

ments would be more falsifiable since fewer of the probable observed situations will

allow the statement to be considered unfalsified.

Universality and precision could potentially be competing goals. It is, for exam-

ple, probably easier to give a very precise statement about a single system compared

to one for a wide range of systems. For example, an SSM extracted from a single

SDTDS is a very precise (and falsifiable) statement that “This SSM describes how

this specific SDTDS behaves”. The full range of generated statements should thus

ideally cover a spectrum of universal and precise statements (cf. Figure 18.4).

By promoting universality and precision alone, short and simple statements

should become more prevalent than complex ones. A statement about all systems

requires no lengthy explicit list of what systems it applies to, for example. And pre-

7To falsify the statements you need, for the first one, only observe that one person does not
drink coffee, whereas the other one require observations of at least 20% of the population.
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Figure 18.4: Falsifiability as universality and precision. Statements about systems (cf.
Figure 18.3) occupy points on the axes (illustrated by the circles) and would ideally cover
a spectrum of from precise to universal ones.

cise statements should describe as few allowed situations as possible. The simplicity

could also be further, and implicitly, promoted in the generation of statements:

“Simple statements, if knowledge is our object, are to be prized more
highly than less simple ones because they tell us more; because their em-
pirical content is greater; and because they are better testable.” (Popper
(1990), p. 142).

With regard to the simplicity of statements, I would again argue that Popper’s

philosophy is ideal for machine learning. His chapter on simplicity (Chapter 7 in

Popper (1990)) includes, for example, the section “Elimination of the Aesthetic

and the Pragmatic Concepts of Simplicity”. Simplicity is a very central theme in

epistemology, yet with few successful logical definitions of the concept, according

to Popper. His approach is, quite naturally, to relate simplicity with falsifiability

in an attempt to find a nonanthropomorphic definition of the concept.

The Popperian Machine could fit very well into the context of rule extraction

since it would not only induce rules from underlying systems, but also statements

about the systems that are based on a sound scientific principle and well tested.
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Moreover, the extracted rules themselves would reflect and support these scientifi-

cally guided statements. The whole ambition is to maximize the empirical contents

of the statements and thereby also of the underlying rules. Therefore I suggest

that Popperian Machines are an important future direction for the field of rule

extraction.

18.7 Chapter summary

In this chapter I argue that automated analysis of simulated systems is both promis-

ing and required. Promising in the sense that the ease of observability and manip-

ulability is unmatched in reality (cf. Section 18.1), and required in the sense that

these system may be large, complex, counter-intuitive and numerous since creation

of simulated systems is easy (cf. Section 18.2). The researcher per system ratio is

low today and likely to decline. In my opinion, the basic reasons for automating

anything are necessity and possibility. These criteria are certainly fulfilled when

it comes to automated analysis of simulated systems. The analysis of simulated

systems should be automated not because the most significant research questions

are found in them, but because the process is too expensive for humans to do it.

The volume and insignificance of the many individual simulations renders them too

unrewarding for human reasoning.

In Section 18.3 I also challenge the notion of comprehensibility as the primary

motivation for RE (cf. Section 4.2.4). A model has more virtues than being readable

by humans. Many simulators themselves are good examples of these. A weather

simulator is, for example, very complex but acts as a proxy for queries about the

actual weather (which is even more complex). The weather presenter in turn acts

as a proxy for the simulator, giving us a presentation that laymen may understand.

Although the weather simulator itself is very complex and incomprehensible to most

of us, it generates a result we may understand and appreciate; a weather forecast.

Similarly, rules extracted from an SDTDS may be incomprehensibly complex, but

it acts as a model with a clearly defined syntax of which queries can be asked.

In Sections 18.4–18.6 two abstract frameworks for future RNN-RE research were

suggested. These frameworks are suggested on the basis that fidelity should be con-
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sidered more important than comprehensibility (cf. Section 4.2.4) since models that

correctly mimic the underlying system should generate better answers to queries

about the system. Empirical Machines are proposed as active learners that target

the ignorance of their best models in order to gather interesting data from the

system through interaction (i.e. experimentation). Based on a philosophical discus-

sion of Popper in relation to machine learning and automated scientific discovery

(in Section 18.5), it is suggested Popperian Machines provide a scientifically based

selection that guides the Empirical Machines towards scrutinizing statements of

high empirical content. These statements (i.e. theories) about populations of sim-

ulated systems, that should be falsifiable but not falsified, is the desired output of

the Popperian Machines.
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Chapter 19

Summary and Final Thoughts

19.1 Contribution highlights

The contributions of this thesis are distributed in its three parts: the first provides

an account of the history of the field, the second makes a contribution to the field,

and the final part views the field from a new, more speculative perspective and

suggests future directions.

The goal of Part I is to provide structure to the RNN-RE field through a tax-

onomy and review of earlier techniques. In Part II CrySSMEx is suggested as an

alternative to the reviewed techniques. It is not only a new technique, but is also

separated from the pattern of the previous techniques by integrating elements that

were separated earlier. In Part III, not only some more or less speculative ideas

for future work are suggested, but also concepts that question the very idea of rule

extraction by viewing it as an automated scientific process.

To summarize, the main contributions of this thesis are:

• Part I: A taxonomy for RNN-RE to organize the field of RNN-RE and to

suggest some possible common goals for the field.

– A taxonomy of RNN-RE techniques.

– A collection of references of (hopefully) all earlier RNN-RE papers.

– A historical account of how RNN-RE has developed as a field.

– A description of RNN-RE separated into four constituents: quantization,

observation, construction and minimization.
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• Part II: The CrySSMEx-algorithm which distinguishes itself from all earlier

RNN-RE approaches in several ways.

– The first integration of quantization, observation, construction and min-

imization into one algorithm.

– The SSM as a new form of an extracted model.

– The CVQ as a novel quantization algorithm which is both divisive and

agglomerative.

– The source code, and its open source availability1, is itself a contribution

which unfortunately is too technically detailed to be dealt with more

thoroughly in this thesis2.

• Part III: New connections to other fields and future directions are suggested.

– A connection of RNN-RE is made to other fields of machine learning

(and of control theory etc.).

– More than ten possible improvements (some of which have actually

been implemented) and approximately 20 challenges for RNN-RE and

CrySSMEx are suggested.

– A motivation for the automation of scientific analysis of simulated sys-

tems is given.

– Empirical and Popperian Machines are suggested.

While the thesis began with references to Plato and ended with references to

Popper, the contribution that should be emphasized above all the others, and which

is very far from an abstract philosophical discussion is CrySSMEx and its implemen-

tation.

19.2 Final thoughts

RNNs, and simulated systems in general, are, since they are simulated entities,

very “studyable” once we have the tools to study them (cf. the “golden properties”

1On cryssmex.sourceforge.net.
2It may be worth mentioning that I spent far more time on the implementation of CrySSMEx

than on the thesis text and the presented experiments combined. This implementation involved
solving some interesting problems (e.g., the Voronoi diagram plotter used to generate Figures 12.2
and 12.3, which can plot within arbitrarily merged Voronoi compartments) that unfortunately
never made it into the thesis.
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of Section 18.1). Furthermore, the algorithms reviewed in this thesis, together

with CrySSMEx, may hold the seed of a deeper and more general notion of analysis

than previously employed for RNNs. Better analysis tools may in turn help RNN

research to progress more rapidly once we obtain a deeper understanding of what

the networks are actually doing. After all, in many other disciplines of science, the

quantum leaps in progress often stem from more sophisticated analysis tools and

measuring devices producing qualitatively new data conflicting with existing models

(anomalies) that eventually may result in scientific revolutions (Kuhn, 1962). Today

we have deep, though partially conflicting theories of what the RNNs will be able

to do in practice (i.e. the Turing machine equivalence vs. the difficulty of acquiring

correct behaviour through learning), but we have no means of evaluating in an

efficient manner what particular instances of RNNs are actually doing.

With critical eyes, rule extraction from recurrent neural networks may seem an

infinitesimal subfield within another infinitesimal subfield and thereby it has very

limited potential to deliver interesting scientific results. But if there were a future

microscope for zooming in on RNNs, I would maintain that there are good reasons

to believe rule extraction mechanisms are the operational parts, or “lenses”, of that

microscope. And as any real-world microscope, this RNN-microscope will, if general

enough, be able to zoom in on other types of simulated dynamic systems and thus

contribute to the scientific community in a considerably broader sense. Not in the

sense that the biggest research questions are found in these systems, the reason for

automating the simulated system analysis is precisely the opposite; it is simply too

expensive to let humans do it when the systems are individually too uninteresting

and when the number of them per researcher grows too large. The Empirical and

Popperian Machines are suggested with this in mind. My hope is that the ideas

suggested in this final part of the thesis will help populating the artificial “Plato

caves” (cf. Chapter 1) with prisoners that have epistemic hunger3 and the capability

to explain their most informative conclusions about their universes to the creators

of these universes.

3I.e. curiosity (Dennett, 1996, p. 92).
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Appendix A

Substochastic vectors

Some important types of, and operations on, substochastic vectors are defined below

(some of these are also found in Paz (1971)):

Definition A.1 A substochastic vector ~v is a vector where all elements are

nonnegative and the sum of the elements is ≤ 1. �

A special case of the substochastic distribution is where all probabilities are zero:

Definition A.2 An exhausted substochastic vector ~v is the special case of a

substochastic vector where all elements are 0. �

And, as another special case, we find vectors with more conventional probabilistic

properties:

Definition A.3 A stochastic vector ~v is the special case of a substochastic vector

where the sum of the elements is exactly 1. �

And a special case of stochastic vectors is where only one element is probable:

Definition A.4 A degenerate vector is a stochastic vector one element with

probability 1 and the rest 0. �

Definition A.5 The entropy of an n-dimensional substochastic vector ~v is here

denoted as H(~v) and is calculated by

H(~v) = −
n∑

i=1

~vi log~vi

�
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By definition 0 · log 0 = 0. Entropy is not really well defined for substochastic

vectors, but in the algorithm of this thesis, entropy will only be calculated over

stochastic or exhausted vectors. Therefore the entropy as described here will be

according to proper theory (Cover & Thomas, 1990) unless the distribution is ex-

hausted in which case function, here called entropy, will return zero.

Definition A.6 The function normalize is used to transform a substochastic vec-

tor into a stochastic vector, if possible, according to

normalize(~v) =





~v
Pn

i=1
~vi

if
∑n

i=1 ~vi > 0

~v · 0 otherwise

�

Definition A.7 The support set of a substochastic vector ~v = (~v1, ~v2, . . . , ~vn) is

the set {i : ~vi > 0} and is denoted sup(~v). �
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Appendix B

List of abbreviations

CrySSMEx Crystallizing SSM Extractor
CVQ Crystalline Vector Quantizer
NDI-equivalence Not Decisively-Inequivalent
RE Rule Extraction
RNN Recurrent Neural Network
RNN-RE RNN specific RE
SDTDS Situated Discrete Time Dynamic System
SE State Element (of an SSM)
SSM Substochastic Sequential Machine
UNDI-equivalent Universally NDI-equivalent
VQ Vector Quantizer
Λ Quantizer function
Ω Transition event set (from an SDTDS)

Table B.1: List of important abbreviations.
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Appendix C

Jacobsson & Ziemke (2003a)

Improving Procedures for Evaluation of Connectionist

Context-Free Language Predictors1

Henrik Jacobsson, Tom Ziemke

Abstract
This paper shows how seemingly minor differences in training and evaluation pro-
cedures used in recent studies of recurrent neural networks as context free language
predictors can lead to significant differences in apparent network performance. We
therefore suggest standard evaluation procedures whose use would facilitate better
reproducability and comparability.

C.1 Introduction

A number of recent papers have investigated the use of Recurrent Neural Networks
(RNNs) for predicting strings belonging to the class of the Context Free Language
(CFL) anbn and the Context Sensitive Language (CSL) anbncn (Wiles & Elman,
1995; Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999; Bodén et al.,
1999, 2000; Chalup & Blair, 2000; Bodén & Wiles, 2000; Gers & Schmidhuber, 2001;
Bodén & Blair, in press; Schmidhuber et al., 2002). Each of these papers makes
valuable contributions, but when we compared them, we noticed two problems:
Firstly, sometimes a number of details of the evaluation method (for evaluating
the generalization ability of the networks) were undocumented. Secondly, where
details of evaluation were provided, minor differences between the methods used
in different papers were found. This led us to carry out a series of experiments
with the aim to systematically investigate whether these differences may affect the
Estimated Generalization Ability (EGA) for a given population of RNNs. Such
differences may be an indicator that the reproducability and comparability of the
generalization ability presented in these papers might be questioned.

In our experiments we have varied three aspects of the testing procedure in
order to see how the EGA of the RNNs is affected. These aspects are: Firstly, the

1This is a verbatim copy of Jacobsson and Ziemke (2003a). Only the formatting and contact
information differs from the original (the bibliography is also not included here since it can be
found elsewhere in the thesis).
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string order, i.e. the order in which strings of different lengths from the grammar
anbn are concatenated into the string which the RNN should predict. Secondly, the
maximum string length, i.e. the highest value of n of the anbn strings in the test
set. The third aspect, error tolerance is the degree to which the network is allowed
to make mistakes. The reason that the two first aspects are important is that an
RNN is a dynamical system with a potential sensitivity to its initial state which
can be based on previous inputs. Variations of these three aspects exist in the
above mentioned papers, but are in some cases just vaguely described, if at all. In
addition to these three, other important aspects, such as the number of networks,
number of repeated tests per network and basic definitions such as “success” are
varied and in some cases quite vaguely described.

The structure of this paper is as follows: First the investigated papers are
briefly summarized to give an overview of their experimental strategies. Then our
experiments designed to evaluate the sensitivity of the EGA with respect to testing
procedure are presented. The results of the survey and experiments are then fused
into some concluding remarks and recommendations.

C.2 Background

The papers that present results of CFL and CSL predictions with RNNs and their
testing approaches are summarized in Table C.1. The architectures focused on
in these papers were Simple Recurrent Networks (SRNs) (Wiles & Elman, 1995;
Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999; Bodén et al.,
1999, 2000; Chalup & Blair, 2000), Sequential Cascaded Networks (SCNs) (Bodén
et al., 2000; Bodén & Wiles, 2000; Bodén & Blair, in press) and Long Short-Term
Memory (LSTM) (Gers & Schmidhuber, 2001; Schmidhuber et al., 2002). The
training algorithms used in these papers are either based on gradient descent (Wiles
& Elman, 1995; Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999;
Bodén et al., 1999, 2000; Bodén & Wiles, 2000; Gers & Schmidhuber, 2001; Bodén
& Blair, in press; Schmidhuber et al., 2002) and/or Evolutionary Hillclimbing (EH)
(Tonkes et al., 1998; Bodén et al., 2000; Chalup & Blair, 2000). There are, of course,
many other important papers in the field of CFL/CSL prediction and related fields,
but those not presenting quantitative studies of the generalization ability have been
omitted as they have no direct bearing on our results. Other papers in the field
of CFL- and CSL-prediction have also been omitted to make comparisons simpler,
i.e. only anbn and anbncn papers are included.

The training and test set sizes used in the cited papers are presented in Ta-
ble C.1, as well as the ordering of strings in the test set. Where there has been
any chance of misunderstanding the structure of the testing set/procedure, we have
chosen not to make any assumptions. For example, when the test set is explained
as “from depth 1 to 30” (Wiles & Elman, 1995) or “strings up to n = 12” (Bodén
et al., 1999) it may be implicit that the strings are ordered in an ascending order,
but as no explicit definition of string order is found, these papers are marked as
being ambiguous about the test set order.

Among these papers, we found three different test set orderings: random, as-
cending and descending order. Six out of eleven papers did not explicitly define
the order of their test set. The maximum string length of the test set also varied
among the papers. Furthermore, the details of the error tolerance were usually
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not discussed, i.e. it was actually quite unclear in some of the papers whether cor-
rect prediction once per string occurrence was enough to consider the prediction
successful or if the network needed to consistently predict all strings correctly. It
seems, however, that the former is most commonly used.

It may also be worth noting that two papers (Gers & Schmidhuber, 2001;
Schmidhuber et al., 2002) used slightly different domains, anbnT and anbncnT,
which strictly speaking are not the same languages as anbn or anbncn. The ter-
minal symbol T gives the network a mechanism for resetting its state in a more
deterministic manner than otherwise. The comparison across these domains may
therefore not be reliable. Considering only comparisons within the domains, how-
ever, the terminal symbol may in fact improve comparability due to the potential
increase of determinism.

C.3 Experiments

The experiments presented in this paper are aimed towards evaluating whether
the string order, maximum string length and error tolerance when testing RNN
predictors affect the EGA significantly for given trained populations of networks.
We therefore consider the training of the networks a secondary matter, i.e. no effort
has been spent on finding optimal parameters for the EH. In effect, the results may
not be comparable to other papers (a comparison that should not be done anyway).
Instead the training should just be seen as a necessary step to generate populations
of networks in which some effects of the testing parameters can be demonstrated.

C.3.1 The Testing Procedure

The test set is determined by the string order and maximum string length. Three
orderings of string are used; random, ascending, and descending. We let the max-
imum string length of the test set vary between 10 and 100. In each test, exactly
1000 strings of each length are included. The strings are concatenated into the
sequence which the network is trained to predict.

The performance of the network is recorded for the 1000 strings of each length it
receives. If we consider just one network we will have an estimate of the performance
of the network on each individual string length. This performance is typically higher
for short strings and lower for long strings. The performance is, however, not
necessarily decreasing monotonically and a string with a high n may be predicted
completely accurately, while the strings of length n − 1 could at the same time be
completely inaccurately predicted. We have chosen to record the maximum string
length that the network processes correctly (string length is something which all
previous papers have mentioned when talking about the generalization ability of
their networks), but this measurement needs to take into account the nonmonotonic
performance degradations for longer strings. The following definition will lead to
such a measurement.

The correctness, c(n), of a network in terms of predicting a given length is
defined as

c(n) =
no. of correctly predicted strings of length n

no. of strings of length n
(C.1)

where the total number of strings of length n in this case was 1000 for all n up
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Wiles & Elman (1995) anbn 1 ≤ n ≤ 12 * 1 ≤ n ≤ 30
Tonkes et al. (1998) anbn 1 ≤ n ≤ 10 * 1 ≤ n ≤ 12
Rodriguez et al. (1999) anbn 1 ≤ n ≤ 11 asc until failure
Tonkes & Wiles (1999) anbn 1 ≤ n ≤ 10 * 1 ≤ n ≤ 12
Bodén et al. (1999) anbn 1 ≤ n ≤ 10 * 1 ≤ n ≤ 12
Bodén et al. (2000) anbn 1 ≤ n ≤ 10 rand *
Chalup & Blair (2000) anbn 1 ≤ n ≤ 20 rand 1 ≤ n ≤ 20∗∗

—”— anbncn 1 ≤ n ≤ 20 rand 1 ≤ n ≤ 20∗∗

Bodén & Wiles (2000) anbncn 1 ≤ n ≤ 10 desc 1 ≤ n ≤ “large
n”

Gers & Schmidhuber (2001) anbnT 1 ≤ n ≤ 10 to * 1 ≤ n ≤ 1000
1 ≤ n ≤ 50

—”— anbncnT 1 ≤ n ≤ 10 to * 1 ≤ n ≤ 500
1 ≤ n ≤ 50

Bodén & Blair (2002) anbn 1 ≤ n ≤ 10 * *
Schmidhuber et al. (2002) Refers to the data in Gers & Schmidhuber (2001)
*=not explicitly defined.
**=incrementally tested during training.

Table C.1: A summary of CFL and CSL prediction experiments using various neural network architectures.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
c(n) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00 0.77 0.10 0.00 1.00 0.00
cr(n) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 0.91 0.70 0.07 0.00 0.00 0.00

Table C.2: A realistic example of an evaluation of an RNN by using c(n) and cr(n) of
equation C.1 and C.2. If requiring a strong network, this network’s EGA is up to string
length 6 and if only requiring a weak network, the EGA is 11.

to the maximal string length. A correctly predicted string means that at least the
predictable part (i.e. not the first b) of the string is correctly predicted. As c(n) is
not monotonically decreasing it can not be used directly to unambiguously define
up to which string length the network is successful. In Table C.2 an example of a
string evaluation is shown. From this example it is clear that there is no obvious
way to give statements of which maximum string length the network can handle.
In the example, the network can handle all strings up to a6b6 but fails on some of
a7b7 , a10b10 and a11b11 . It can also handle all of a13b13 , but none of a12b12 or
a14b14 . Up to what string length should we then say that the network is performing
correctly?

To solve this we introduce a recursive definition of correctness, reflecting that
the performance on one string length depends also on the performance on all shorter
string lengths. The recursive correctness, cr(n), is defined as:

cr(1) = c(1)
cr(n) = cr(n − 1) · c(n) for n > 1

(C.2)

In the example of Table C.2, cr(n) is monotonically decreasing and only accepts
string lengths for which previous string lengths also have been correctly predicted.
The correctly predicted a13b13 are now ignored since no correct predictions of
a12b12 were made.

The error tolerance is the quality demand on the network by the experimenter.
The highest error tolerance corresponds to the experimenter being satisfied with the
RNN correctly predicting strings only at least once and the lowest error tolerance
is when the RNN needs to correctly predict all strings. Chalup and Blair (Chalup
& Blair, 2000) addressed the issue of error tolerance explicitly and defined “weak
solutions” and “strong solutions” to correspond to networks satisfying the highest
and lowest error tolerance requirements respectively. We adopt these terms in this
paper. The EGA (using cr(n)) of the network in the example in Table C.2 is then
6 if we consider only strong solutions, and 11 if we only require weak solutions.

C.3.2 Architecture & Training Algorithm

The network architecture used in our experiments is an SRN and the optimisation
algorithm is an EH, see (Bodén et al., 2000) for details. The fitness is proportional to
the number of correctly predicted strings in a concatenated sequence of strings from
anbn with 1 ≤ n ≤ 10 where each string length occurred exactly three times (cf.
the testing procedure in the previous section). Three separate fitness functions are
used; Frand, Fasc and Fdesc for random, ascending and descending string length order
respectively, i.e. the only difference between the fitness functions is the ordering of
the strings. It should be noted that the aim of the experiment is not to evaluate
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the differences between these populations but to evaluate how the EGA varies
for these fixed populations under different testing strategies. The use of three
different populations may reveal different effects the testing procedure may have
on the estimated results. In fact any sufficiently large population would do as the
goal basically is to show that there are populations for which testing procedure
differences significantly affect the estimated performance.

The evolutionary algorithm was run for 10,000 generations with a mutation rate
of σ = 1.0 and a population size of 100 of which 20 were selected as elite. The elite
group was saved to the next generation and was the group from which new networks
were generated. 120 runs were carried out for each fitness function with different
random seeds and the best network of each successful end-population was saved for
further analysis. A population was deemed successful if at least one of its networks
correctly predicted (the predictable part of) all strings in the training set.

C.4 Results

C.4.1 Training Results

Of the 120 experiments with each of the three fitness functions Frand, Fasc and
Fdesc the number of successful (in terms of correctly predicting the entire training
set) runs were 114, 75 and 76 respectively. All the statistics will be based on the
best network of each successful population. It is worth noting that the success
rate is much higher for Frand than for Fasc and Fdesc. This is probably due to
higher sensitivity to local optima for the deterministic fitness functions. Subsequent
experiments (not documented here) indicated that for higher values of the mutation
parameter, σ, this problem vanishes.

C.4.2 Estimated Generalization Abilities

The resulting EGA of networks generated with the three fitness functions tested un-
der different conditions are shown in Table C.3. The maximum correctly predicted
string length of each successful network was calculated according to equations C.1
and C.2 as in the example in Table C.2.

The Effect of Error Tolerance Level

The effect of demanding weak or strong networks is clearest when the networks
are tested on strings in a random order. The EGA is half or lower for the strong
solutions given a high enough maximum string length of the test set. The error
tolerance effect is still there with a test set in ascending order, but weaker.

Interestingly, the error tolerance has virtually no effect at all when testing on
strings in a descending order. We speculate that this is due to the RNN gradually
receiving simpler and simpler strings, resulting in the exact same behaviour every
time, i.e. the network either correctly predicts all strings of a specific length or none
at all.

One should keep in mind that, as the test set has 1000 replicas of each string
length, strong solutions correctly predict 1000 out of 1000 strings, whereas weak
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solutions need only predict 1 out of 1000 correctly. In our opinion, this makes
strong solutions much more interesting.

Effects of Maximum String Length

The effect of the maximum string length (N in Table C.3) differs depending on
test set order, error tolerance and fitness function. When only considering strong
solutions and random test set order, a higher N leads to a significantly lower EGA
for all networks. The opposite seems to be true for most weak solutions for all test
set orderings and networks. For ascending test set order, the degrading performance
for higher values of N is not as clear as when testing on randomly ordered strings.
For tests on strings in descending order, N has no degrading effect.

The Effects of String Order

String order is perhaps one of the more interesting aspects of the testing procedures,
as there were three distinct orderings found in previous work while most papers
did not describe this aspect of testing explicitly. In our experiments, string order
played two roles, in the training and testing of networks. The networks trained on
the different training sets can be clearly ranked in terms of performance. Networks
trained on Frand are clearly better than Fasc which is clearly better than Fdesc.

A ranking of the test sets is not as straightforward. Considering only strong
solutions it is, however, clear that a randomly ordered test set is tougher than the
ascending order which is in turn tougher than the descending order. For weak solu-
tions the randomly ordered test set gives the highest results. This is not surprising
as weak solutions need only 1 out of 1000 strings correctly predicted of every string
length and a randomly ordered set gives the network a higher variety of initial
states of which some may lead to a correct prediction.

It is interesting to see that, as a validation of the network training, all networks
handle their training sets perfectly and that the networks trained with Frand also
handle the other training sets perfectly. Networks trained on randomly ordered
strings thus seem more robust.

Although the results of the randomly ordered test set seem to be most sensitive
to the other parameters (i.e. string length and error tolerance), in our opinion,
this test provides the most interesting results, as the network will be tested more
rigorously.

C.5 Discussion and Conclusions

It is clear from table C.3 that changes in the testing procedure render significantly
different results. These effects are also not consistent for the three populations and
can therefore at this stage not be predicted. These results are not surprising, as it
is well known that initial conditions may affect the behavior of dynamical systems,
and hence affect the performance of RNNs, a subset of dynamical systems. The
cited papers, implicitly or explicitly, touch the dynamical nature of RNNs, but in the
construction or description of the experimental setup this important issue often does
not receive much attention. All papers describe the architectures and algorithmic
details of the learning techniques quite thoroughly and present insightful, detailed
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analyses of individual networks. But without a proper description of the testing
procedures used to generate quantitative results, reproducibility and comparability
are lost. Three papers also make cross paper comparisons (Gers & Schmidhuber,
2001; Bodén & Wiles, 2002; Schmidhuber et al., 2002) in the domain of these papers,
comparisons that, due to the problems pointed out here, may be questioned. For
the same reasons, it would also not make sense to compare our results to those of
any other paper using different testing procedures.

Some practical recommendations for future research in this area: Train and
test sets should be ordered randomly to give both robust networks and a thorough
testing of these networks. Only strong networks (or perhaps a slightly relaxed
version of “strong”, e.g. 90-99% correct) should be considered. A network solving
a task only (at least) once is far less interesting than those solving it consistently.
Since the results also indicate that the maximum string length in the test set has
a significant effect on the results the expected performance may affect the measured
performance directly, since the maximum string length in the test set will probably
be chosen based on the expected performance. Hence, the maximum string length in
the test set should be varied, perhaps starting with a low value and then increasing
stepwise.

What can be learned from this is that to guarantee reproducability, the descrip-
tion of the generation of testable objects has to be complemented with a description
of the testing procedure applied to these objects. In the cited papers the architec-
tures, training procedures and analysis of individual RNNs came out mostly crystal
clear to the reader, while some crucial details of the testing methods did less so.
So our final, and most important recommendation, is to recognize that the analysis
tools are as important a part of the data generation as the networks themselves.
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Networks trained on Frand (114 RNNs) Networks trained on Fasc (75 RNNs) Networks trained on Fdesc (76 RNNs)
strong weak strong weak strong weak

avg max avg max avg max avg max avg max avg max
N Test set in random order

10 10.00 (0.00) 10 10.00 (0.00) 10 6.79 (0.45) 10 10.00 (0.00) 10 4.07 (0.48) 10 10.00 (0.00) 10
15 8.95 (0.45) 15 12.09 (0.16) 15 5.11 (0.62) 15 12.13 (0.26) 15 3.46 (0.56) 15 12.36 (0.21) 15
20 7.77 (0.53) 20 12.48 (0.22) 20 3.33 (0.58) 17 13.12 (0.31) 20 1.58 (0.37) 14 12.96 (0.36) 20
25 6.51 (0.50) 20 12.55 (0.23) 23 2.72 (0.54) 17 13.53 (0.36) 25 1.37 (0.35) 14 13.55 (0.38) 25
50 5.81 (0.48) 20 12.63 (0.24) 23 2.00 (0.45) 17 14.19 (0.61) 49 1.32 (0.35) 14 14.53 (0.59) 36

100 5.81 (0.48) 20 12.62 (0.24) 23 2.00 (0.45) 17 14.08 (0.60) 49 1.33 (0.35) 14 14.04 (0.49) 30
Test set in ascending order

10 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10 6.49 (0.49) 10 8.80 (0.31) 10
15 10.84 (0.34) 15 11.71 (0.16) 15 9.24 (0.61) 15 11.43 (0.28) 15 6.49 (0.64) 15 8.78 (0.52) 15
20 11.10 (0.37) 20 11.97 (0.22) 20 8.88 (0.66) 20 11.65 (0.33) 20 5.16 (0.63) 20 8.75 (0.56) 20
25 10.26 (0.44) 21 11.98 (0.22) 21 7.32 (0.75) 25 11.71 (0.36) 25 5.26 (0.67) 21 8.59 (0.58) 21
50 10.80 (0.38) 20 11.98 (0.22) 21 8.07 (0.67) 19 12.00 (0.54) 45 5.00 (0.64) 21 8.51 (0.59) 21

100 10.80 (0.38) 20 11.98 (0.22) 21 8.07 (0.67) 19 12.00 (0.54) 45 5.00 (0.64) 21 8.51 (0.59) 21
Test set in descending order

10 10.00 (0.00) 10 10.00 (0.00) 10 9.33 (0.22) 10 9.36 (0.22) 10 10.00 (0.00) 10 10.00 (0.00) 10
15 11.64 (0.16) 15 11.64 (0.16) 15 10.97 (0.36) 15 10.97 (0.36) 15 10.50 (0.24) 15 10.50 (0.24) 15
20 11.89 (0.22) 20 11.89 (0.22) 20 11.08 (0.45) 20 11.08 (0.45) 20 10.51 (0.32) 20 10.51 (0.32) 20
25 11.90 (0.22) 21 11.90 (0.22) 21 11.16 (0.46) 25 11.16 (0.46) 25 10.63 (0.33) 23 10.63 (0.33) 23
50 11.90 (0.22) 21 11.90 (0.22) 21 11.43 (0.62) 45 11.43 (0.62) 45 10.61 (0.32) 21 10.61 (0.32) 21

100 11.90 (0.22) 21 11.90 (0.22) 21 11.43 (0.62) 45 11.43 (0.62) 45 10.61 (0.32) 21 10.61 (0.32) 21

Table C.3: The average, standard deviation (in parentheses), and maximum length the networks was deemed to process correctly. The performance
is evaluated on networks generated with the three different fitness functions, Frand, Fasc and Fdesc. The results are separated into the three different
test sets and results for weak and strong solutions are presented separately. The results for different maximum string lengths N are also shown
separately.
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Appendix D

Jacobsson & Ziemke (2003b)

Reducing Complexity of Rule Extraction from Prediction

RNNs through Domain Interaction1

Henrik Jacobsson, Tom Ziemke

Abstract
This paper presents a quantitative investigation of the differences between rule
extraction through breadth first search and through sampling the states of the
RNN in interaction with its domain. We show that for an RNN trained to predict
symbol sequences in formal grammar domains, the breadth first search is especially
inefficient for languages sharing properties with realistic real world domains. We
also identify some important research issues, needed to be resolved to ensure further
development in the field of rule extraction from RNNs.

D.1 Introduction

An RNN can be painstakingly difficult to analyze. Very often RNN analysis be-
comes a matter of creating small enough networks to allow a direct visualization
of the internal activations. There are almost as many approaches to RNN analysis
as there are papers about RNN and the methods are often ad hoc and adapted
to specific domains and network architectures. Rule extraction (RE) from RNNs
(Giles, Miller, Chen, Chen & Sun, 1992; Zeng et al., 1993; Tiňo & Šajda, 1995; Blair
& Pollack, 1997; Tiňo & Köteles, 1999) offers a very promising tool for analyzing
RNNs as it generates a functional model (usually a finite state automaton, FSA) of
the of the RNN, providing an abstract symbolic model of the potentially complex
analog network dynamics. In comparison to other analysis tools, such as cluster
analysis, vector flow fields, analysis of fixed points etc., RE gives insight not only
to the “passive” clusters resulting in the state space, but also to the “active” role
of these clusters in the RNN interaction with the domain. RE is also not inherently
limited by the dimensionality of the state space as are visualization methods. How-
ever, RE suffers from an apparent increasing space and time complexity for larger

1This is a verbatim copy of Jacobsson and Ziemke (2003b). Only the formatting and contact
information differs from the original (the bibliography is also not included here since it can be
found elsewhere in the thesis).
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and more complex networks and therefore various heuristics need to be developed
to allow RE to tackle more ’difficult’ RNNs.

The effect of one such heuristic will be investigated quantitatively in this paper.
The complexity of the behavior of an RNN is a product of its internal functional
mappings generating sequences of states and output and of the complexity of the
domain from which the network is fed input patterns. It is well known that even
relatively simple systems can exhibit surprisingly complex behavior in interaction
with a complex environment but the opposite is true also: the complexity of the
behavior of a potentially complex system can be restricted by a simple environment.
We will in this paper show an example of how this can be exploited as a heuristics
for RE from RNNs by using the domain as a means for generating the states of the
network that are the basis for the extracted rule set as opposed to performing a
breadth first search based on the possible input patterns. Both methods have been
used previously in RE algorithms, but to our knowledge no comparative study has
been presented.

We will first introduce our definition of RNNs, rule extraction and some theo-
retical prerequisits. Then the experiments and results are presented. In the last
section we draw some conclusions and discuss possible future directions.

D.2 Background

In this paper we will, for simplicity, stick to a very simple definition of recurrent
neural networks. The activations of the input, state and output nodes are for
example restricted to values in the interval [0, 1] and the output is functionally
dependent on the state alone (excluding for example some forms of second ordered
networks).

Definition D.1 A Recurrent Neural Network is a 6-tuple R = 〈I, O, S, δ, γ, s0〉
where
I ⊆ [0, 1]nI is the input space,
S ⊆ [0, 1]nS is the state space,
O ⊆ [0, 1]nO is the output space,
δ : S × I → S is the state transition function and
γ : S → O is the state interpretation function
s0 ∈ S is the initial state vector �

Where nI , nS and nO are the dimensionality of each respective space. Note that
the weights of the connections and activation functions of the individual nodes
are subsumed by δ and γ in this definition. Those details are simply ignored by
existing RE algorithms and the neurons of the network are treated as ensembles
rather than as individuals. The term compositional was suggested by (Tickle et
al., 1998) to denote this level of granularity of the rule extraction algorithm’s view
upon the underlying network. The other modes of granularity are decompositional
(white box), pedagogical (black box) and eclectic (containing elements of both
decompositional and pedagogical).

States in the state space S will be visited when the network is fed input vectors
from the input space. However, the full set of possible input patterns is seldomly
needed to take into account for training or analysis of the RNN, e.g. if different
input features are strongly correlated. Instead we can define the set Î ⊂ I as a
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finite set of patterns that the network actually will receive in situ, i.e. when receiving
input from the domain. We have here chosen to define Î as finite since in previous
approaches to RE from RNNs, formal language tasks have almost exclusively been
considered. For this reason we introduce a set of symbols, Σ, isomorphic to Î, i.e.
for every symbol in Σ, there is exactly one corresponding member in Î. In many
papers where a formal language recognition/prediction task is studied, the symbols
of Σ are encoded in I through ’one hot’ encoding, i.e. every symbol of Σ ’activates’
only one corresponding element of the input vector.

When the network is fed patterns from Î a number of states will be visited.
This set can formally be defined as the set of Î-accessible states from the initial
state s0, let us call it AÎ

0 ⊆ S. AÎ
0 is composed of those states in S that will be

visited through the iterative mappings induced by all possible input patterns in Î
in all possible orders as defined in equations D.1 and D.2. In other words, AÎ

0 is
the set of states that would be visited if all possible sequences over Σ (denoted Σ∗)
were fed to the network (with the network reset to s0 before each new string).

Y0 = {s0}, Yn+1 = Yn ∪
⋃

i∈Î

δ(i,Yn) for n ≥ 0 (D.1)

AÎ
0 = lim

n→∞
Yn (D.2)

A similar definition (for binary languages only) of accessible states is found in (Blair
& Pollack, 1997). The production of these states is equivalent to that of an iterated
function system (IFS) (Kolen, 1994b).

In rule extraction algorithms the state space needs to be quantized to a finite
set of classes. This quantization function is here denoted Q : S → {0, 1, 2, . . . , N}
in its general form. In previous RE approaches Q is typically a simple orthogonal
lattice dividing the state space into hypercubes (e.g. (Giles, Miller, Chen, Chen
& Sun, 1992)), dividing the activation range of each individual state dimension
into q intervals of equal size. This results in qnS hypercubes that can be uniquely
enumerated. In this paper we refer to these hypercubes as bins and the degree of
quantization in each dimension of the state space will be referred to as q. Other
clustering methods used for RE from RNNs are for example k-means clustering
(e.g. (Zeng et al., 1993)) or a self organizing map SOM (e.g. (Tiňo & Šajda, 1995)).

D.2.1 Rule extraction through breadth first search

One of the most common algorithm for rule extraction from RNNs is that of Giles
et al. (Giles, Miller, Chen, Chen & Sun, 1992). The algorithm conducts a breadth
first search in the state space to extract a finite state machine from the RNN.
The RNNs were prior to RE trained to classify strings as grammatical or non-
grammatical. In the general case, any string in Σ∗ should then be possible for the
network to process.

The algorithm starts with an initial state so and generates the outgoing transi-
tions from this state by computing all new states for all input symbols, i.e. δ(s0, i)
for all i ∈ Î. This is then repeated for all first states in each visited bin until all
these states have been tested in this way and no new bin is visited. The number of
the bin and the corresponding output of the first encountered state vector of each
bin is then transformed to the extracted FSA. This FSA is then minimized using
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a standard minimization algorithm (Hopcroft & Ullman, 1979). The RE algorithm
starts with a small q and is repeated with increased values of q until the machine
is consistent with the training data.

One way to view this algorithm is to see that the search generates a tree of
symbols that generates a set of states in the network. From the root node (equiv-
alent to the initial state of the network) all symbols expand to subtrees that are
expanded likewise until all leaf-nodes lead to loops in Ŝ. From the root node the
path to each leaf node is the equivalent to a string of symbols. If all these substrings
are fed to the network with a network reset between each string, the exact same
states as visited during breadth first RE will be visited. This set of substrings will
be called XB, where XB ⊂ Σ∗ and the states visited during the extraction of rules
will be called AXB

0 , i.e. the set accessible from the initial state s0 through breadth

first search RE, AXB

0 ⊆ AÎ
0.

D.2.2 Rule extraction in a domain context

As mentioned above, in many tasks the full set of strings in Σ∗ is not relevant for
the training of the network. Much research on RNN is focused on prediction tasks
which in many ways are much less restrictive than classification tasks since the role
of an external “teacher” is reduced to a minimum. For prediction tasks the network
is not required to correctly predict all possible sequences of symbols, but only the
ones that belongs to the domain. The network does typically not even need to
correctly predict all symbols of the sequences in the domain, as some subparts of
the sequence may be inherently unpredictable. The temporal XOR problem is one
such example where only every third symbol is at all predictable (Elman, 1990).
This means that the rules extracted from the network need only incorporate the
sequences and subsequences that the network will encounter in the domain. If the
network is for example trained to predict events that results from the behavior of a
autonomous robot it would not be reasonable to extract rules for actions that would
never be carried out in certain situations, e.g. the event ’drive-forward’ should not
occur if the robot is in the state ’wall-ahead’ and is successfully avoiding obstacles.

We will use the notation X ∈ Σ∗ to refer to a sequence generated or sampled
from the domain. The sequence is written as x0x1x2 . . . xn. This domain specific
input sequence will generate a sequence of states in the network which we will refer
to as the X-accessible set from s0, or AX

0 . AX
0 ⊂ AÎ

0 is more formally defined as

sn+1 = δ(sn, in) (D.3)

where n ≥ 0 and in corresponds to xn (remember that Î and Σ are isomorphic and
X ∈ Σ∗). And

AX
0 = {s0, s1, s2, . . . , sn} (D.4)

where n is the length of sequence X.
From the information about states gathered through the processing of the do-

main, a state machine of some kind, emulating the network, can be generated. The
typically indeterministic data from the network must be processed in some way to
lead to a deterministic discrete machine (e.g. (Tiňo & Šajda, 1995)) or the extracted
state machine can in itself be stochastic (e.g. (Tiňo & Köteles, 1999)).
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D.3 Experiments

The sets ÂX
0 and ÂXB

0 are both subsets of AÎ
0 but cover different aspect and generate

different rule sets. In this paper we will experimentally investigate the relation
between ÂX

0 and ÂXB

0 , i.e. the difference between the domain sampling and breadth
first search approaches of RE in terms of the visited states.

In these experiments we have chosen to limit the tasks to be pure prediction
tasks, i.e. the task for a network is to predict the next symbol in a sequence gen-
erated by a grammar and not to classify incoming strings. Another prerequisite is
also that the networks are perfect, i.e. they never predict predictable symbols of
the domain incorrectly. This in order to prevent illegal rules to be caused by an
erroneous network, but instead to be indicators of flaws of the extraction procedure
itself.

D.3.1 The Networks

Three prediction domains have been considered in this paper, two regular gram-
mars and one context free. (Casey, 1996) showed that from an RNN effectively
implementing a regular grammar, a finite state machine consistent with the RNN
can be extracted. For the context free grammar, we assume that some limited
version of it can be extracted.

• The simplest is the temporal XOR-problem, suggested in (Elman, 1990),
where every third binary symbol is determined by an XOR operation of the
two preceding symbols which are random.

• The next grammar, the “6-letter grammar”, was created by Elman (Elman,
1990) to test a language with more than two symbols and that required some
deeper memory in the network. The sequence from the grammar consists of
the subsequences ba, dii and guuu concatenated in random order2. Conse-
quently, only the vowels are predictable.

• The third domain was 0n1n, a context free language. n was in these exper-
iments 1 ≤ n ≤ 10 and varied in random order with the generated strings
concatenated into a single sequence. In this language, only the 1’s and the
first 0 is predictable. The full grammar, with n unlimited, cannot be rep-
resented in any finite state machine, but since we only require the rules to
correctly predict the training set it is possible to view this as a regular gram-
mar (although this may be complicated if the network has actually learned
to generalize to longer sequences).

These domains were chosen to test the effect of the number of symbols and
language class separately. All languages have predictable and unpredictable parts
of the generated sequences and the networks are all trained to predict the next
symbol. 100 networks were trained on each domain until they were deemed to
perfectly predict the predictable parts of the sequences. The architecture chosen
was simple recurrent networks (SRNs) (Elman, 1990) with two hidden nodes. For
the regular language backpropagation through time (BPTT) was used to train

2In our experiments we used ’one-hot’ encoding to represent the symbols to the network, i.e.
six bits were used of which each one encodes only one symbol. Elman used a quite different
non-orthogonal encoding based on phonological properties of the letters.
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them and since BPTT had problems on the context free language an evolutionary
hill-climbing algorithm was used for that instead.

D.3.2 Evaluation criteria

The primary objective of the experiments was to assert the degree of excess com-
putational power used by rule extraction through breadth first in the selected do-
mains. For all networks, we tested RE through breadth first search and sampling
for varying values of q to see the effects of the quantization level on various aspects.

We chose to measure |ÂXB

0 | and |ÂX
0 | and will here present the ratio,

|ÂXB

0 |/|ÂX
0 |, i.e. the relative difference in number of bins visited through RE and

through processing of domain respectively. Also, the proportion of substrings in
XB that are at all possible in the domain which the network is trained on is mea-
sured. If the breadth first RE for example tests the sequence 00011110 on a
correctly predicting 0n1n-network starting from the initial state in the network, it
is a symbol-sequence that never occurs in the true domain and should therefore be
considered an obsolete sequence.

The performance of the extracted machines was also monitored to determine
whether correct rules were extracted. The termination point for the breadth first
RE, i.e. when the extracted machine is consistent with the data, was also tested in
order to see if and when the algorithm would terminate.

D.4 Results

In Figure D.1 we show an example of how RE can be illustrated in the state space
of the RNN predicting the 6-letter sequence. In this example it can be seen how
RE through breadth first search finds many states irrelevant for predicting within
the domain.

In Figure D.2 the ratios of visited bins and of syntactical substrings generated
in the RNN by breadth first search RE in comparison to domain interaction are
shown. It is clear that breadth first RE generated the biggest amount of irrelevant
tests on the 6-letter networks. This is probably due to the fact that after each
symbol in the 6-letter sequence, typically only one of six symbols will occur in the
domain whereas all six symbols will be tested by the RE.

It should be mentioned that the RE algorithm terminated quite rapidly; for
XOR within q = 3 to q = 10, for the 6-letter grammar within q = 2 to q = 8.
But for 0n1n at least q = 21 and for 15% of the networks, the algorithm did
not terminate at all. 84% of the XOR networks seemed to stabilize in terms of
extracting equivalent machines. Only 2% of the 6-letter sequence stabilized. 5%
of the 0n1n actually also stabilized. These numbers are not fully certain however,
since the number of states in the minimized automata could continue increasing for
higher quantization levels.

D.5 Discussion and Conclusions

We have shown that the degree to which breadth first RE requires excessive com-
putational resources seems to be related to the number of symbols in the language
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Figure D.1: The internal activation of a network performing prediction in the 6-letter
sequence. The lattice corresponds to the discretization with the state divided into 252

bins in this example. The diagonal dotted lines are the hyperplanes, defining the borders
within the state space for which symbol that is predicted. The hyperplanes divides the
state space into the ’u’-region on the upper half, the ’a’-region on the lower left side and
the ’i’-region on the lower right side. The rest of the state space corresponds to no valid
symbol; the center area with all output nodes set to zero and a small area on the center
left side with the ’a’ and ’u’-node active simultaneously. The states visited through the
breadth first RE are denoted ’+’ and the states visited through processing of the domain
are denoted ’∗’ and are connected to show the order of the states visited.

for networks trained to predict symbolic sequences. The ratio of, for the domain,
relevant “questions” (in form of sequences) “asked” to the network also was very
low for the grammar with six symbols, and for the context free grammar.

Blair and Pollack (Blair & Pollack, 1997) suggested to use the state count of the
extracted machine to determine whether the network is effectively implementing
“regular” or “non-regular” automaton. If the state count is growing indefinitely
with q, they proposed to use this as an indicator that the underlying RNN is
non-regular. But the results presented here suggest that, for prediction tasks,
regularity of the network can not be tested as suggested in (Blair & Pollack, 1997)
since the number of states generated from networks predicting sequences of the
regular languages was almost always growing indefinitely although the networks
were predicting all symbols of the language perfectly. The percentage of networks
for which the RE stabilized did also not correlate with the language class. The
termination criterion of the RE algorithm was however satisfied much earlier for
regular than for context free prediction networks. But this could also be due to the
larger number of states needed to model the strictly regular language 0n1n with
1 ≤ n ≤ 10. This should however be investigated further to give more insight into
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Figure D.2: The ratio |ÂXB

0 |/|ÂX
0 | is shown in the left column and the ratio of substrings

in XB possible in the domain is shown on the left side. (a) and (b) correspond to the
XOR-language, (c) and (d) to the 6-letter language (observe that for this language q was
at most 50) and (e) and (f) to the 0n1n-language. The maximum, minimum, average and
standard deviation of one hundred networks for each domain are shown.
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if (and how) RE can be used to determine the underlying language class, which is
judged to be “fool’s gold” by Kolen (Kolen, 1993).

One can also argue that RE through search is, in some sense, less credible
than through sampling since it requires the possibility of an external entity setting
the state of the network. Sampling of the networks internal states generated in
the context of its domain however generates stochastic machines that are harder
to analyse (and to minimize, execute, compare etc.) than the finite automata
generated by breadth first search RE.

We suggest that in most “real world domains”, e.g. stock market prediction,
the task is precisely to predict sequences of data with typically a magnitude of
possible input patterns. According to our results, in these types of tasks it would
be especially beneficial to use sampling rather than breadth first to extract rules.

But, to fully exploit the potential of RE through sampling and to ensure further
development of these algorithms, new questions need to be asked. For example, the
optimal quantization function for the state space should be sought. And to do that,
we need to ask how to evaluate different quantization functions. Since an RNN (as
defined here) is deterministic, one possibility could be to give higher scores to quan-
tization functions generating “less stochastic” machines. Another difficulty that has
not been investigated properly is how rule extraction from imperfect networks (very
commonly found in real world domains) should be conducted. In a way, this has
been implicitly touched in this paper, since we used partly unpredictable prediction
domains, but this should be investigated in further detail.
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