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Exact and Heuristic Algorithms for the Minimization 
of Incompletely Specified State Machines 

June-Kyung Rho, Gary D. Hachtel, Fellow, IEEE, Fabio Somenzi, Member, IEEE, and Reily M. Jacoby 

Abstract-In this paper we present two exact algorithms for 
state minimization of FSM’s. Our results prove that exact state 
minimization is feasible for a large class of practical examples, 
certainly including most hand-designed FSM’s. We also present 
heuristic algorithms, that can handle large, machine-generated, 
FSM’s. The possibly many different reduced machines with the 
same number of states have different implementation costs. We 
discuss two steps of the minimization procedure, called state 
mapping and solution shrinking, that have received little prior 
attention in the literature, though they play a significant role 
in delivering an optimally implemented reduced machine. We 
also introduce an algorithm whose main virtue is the ability 
to cope with very general cost functions, while providing high 
performance. 

I. INTRODUCTION 

TATE MINIMIZATION is an important step in the de- S sign of FSM-based circuits. Though the problem has 
received considerable attention in the past [11-[71 (see [81 
for an extensive bibliography), it is the recent development 
of sequential synthesis systems that has created the need for 
efficient algorithms that can minimize large FSM’s. 

In this paper we present two exact algorithms for state 
minimization that we have implemented. Our results prove 
that, contrary to common belief, exact state minimization 
is feasible for a large class of practical examples, certainly 
including most hand-designed FSM’s. However, FSM’s gen- 
erated by sequential synthesis systems may have many states 
and, in particular, many compatible states. Heuristic techniques 
are therefore of interest. The ones we present in this paper 
have been very successful in reducing time and memory 
requirements, without appreciably affecting the optimality of 
the solution. 

Normally a reduction in the number of states is attempted 
in the hope of reducing the complexity of the resulting FSM, 
as measured, for instance, by the gate count of a multilevel 
implementation after technology mapping’. However, solu- 
tions with the same number of states may have different gate 
counts. Several steps in the algorithms influence the cost of the 
resulting implementation. We analyze two of them in detail, 
namely the mapping step (the choice of some next state entries 
for which multiple options exist) and the shrinking of the 
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‘Another objective may be increased testability. 

solution to nonprime compatibles (sets of compatible states 
that can be disregarded if the minimum number of states is 
the only concern; they are defined in Section 11). We show 
how careful choices in these phases reduce the cost of the 
state-minimal machine with respect to the original machine in 
most cases. 

We also briefly discuss the impact of more general cost 
functions on the optimization process. One of the two exact 
algorithms we present may be used, without changes, for 
different types of cost functions. It represents an attractive 
combination of generality and efficiency. 

After the preliminaries of Section 11, the paper discusses 
the exact algorithms in Section 111. Section IV describes the 
heuristic intended to reduce the CPU and memory require- 
ments. Section V covers the mapping problem, and Section VI 
is devoted to the shrinking of the solution. Finally, Sections 
VI1 and VI11 present experimental results and conclusions. 

11. PRELIMINARIES 

A jinite state machine (FSM) is defined as a quintuplet 
M = (I, 0, S. 6, A), where I is a finite nonempty set of inputs, 
0 is a finite nonempty set of outputs, S is a finite nonempty 
set of states, 6 : I x S + S is the next state function, and 
X : I x S -+ 0 (for a Mealy machine), or X : S --+ 0 
(for a Moore machine) is the output function. An FSM is 
incompletely specified if either 6 or X is not defined for one 
or more elements of its domain. 

An FSM can be described in several ways. In aflow-table 
description of an FSM, one row of the table corresponds to 
a state and a column corresponds to an element of I (the 
input alphabet). By contrast, in a cube table representation, 
one row of the table corresponds to one edge of the state 
transition graph, i.e., it specifies for a given present state, and 
a given input value, the next state and the output value. We 
will denote a cube table by F = { F z } ,  where F, is a cube 
with four fields: the input state IS(F,), the present state pS(F,), 
the next state NS(F;), and the output state OS(F,). We shall use 
both representations in the sequel. 

The flow table of Fig. 1 specifies an FSM described in [3], 
which will be used as an example in the following. Roughly 
speaking there is one row in the cube table for each nontrivial 
entry in the flow table, so in the sequel we will use the flow 
table in the examples for compactness. As an example, the 
row for the top-left entry of the flow table of Fig. 1 would be: 

2 1  a a 0. 
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Fig. 1 .  The Grasselli-Luccio example: The flow-table (top) and the list of 
prime compatibles (bottom). 

An input sequence is applicable to state Si of machine M 
if no unspecified next state transitions are encountered. Two 
states S; and Sj are compatible if and only if for every input 
sequence that is applicable to both Si and Sj, nonconflicting 
output sequences are produced. A set of states is compatible 
if and only if each pair of states in the set is compatible. A set 
of compatible states (a compatible for short) is maximal if it is 
not a proper subset of another set of compatible states. A state 
is incompatible if it is not compatible to any other state in S. 

If there is an input such that k is the next state of i and 1 is 
the next state of j and ( I C :  1) # ( 2 ,  j ) ,  then we say that ( k ,  I )  is 
implied by (i, j ) .  Illustrated in Fig. 2 are two graphs, [9], called 
the merge graph Ghf (left) and the compatibility graph GC 
(right). The merge graph has one node for each state. There is 
no edge between nodes i and j (states i and j are incompatible) 
if there is an input such that states i and j produce conflicting 
output values, or if some other pair ( I C ,  I )  (transitively) implied 
by ( i , j )  produces conflicting output values. There is an edge 
without label between nodes i and j (states i and j are fully 
compatible) if states i and j have no conflicting next output 
values and the state pairs they imply are fully compatible. 
Finally there is a labeled edge between nodes z and j (states 
i and j are conditionally compatible) if states i and j have 
no conflicting output values, but at least one pair of next 
states are neither incompatible nor fully compatible. The label 
consists of all such state pairs. The compatibility graph is a 
directed graph with one vertex for each pair of compatible 
states. ( ( i , j ) :  ( I C , I ) )  is an arc of G c  if ( i , j )  implies ( k , I ) .  

A set of compatibles is closed if for every compatible 
contained in the set, all the implied compatibles are contained 
in the set. A closed covering is a closed set of compatibles 
in which each state appears in at least one set. The class 
set of a compatible C is the set of compatibles CC, which 
are: a) Implied by C,  that is, if C is to be part of a closed 

Fig. 2. Merge and compatibility graphs for the Grasselli-Luccio example. 

covering, all members of CC must be included in at least one 
member of the closed covering, and b) not contained in C or 
any other member of CC. A compatible C is prime, if no other 
compatible C+ exists for which: 

c 5 c+ 
cc 2 cc+ 

In words, a compatible is not prime if it is included in 
another compatible and it has all the implications of the other 
compatible. The prime compatibles and their corresponding 
class sets are shown at the bottom of Fig. I .  Note that the first 
four primes and the eleventh are just the maximal compatibles 
(maximal cliques of the merge graph). From the definition, 
all maximal compatibles are prime and therefore there are 
more primes than maximals. It has been observed in the past 
[lo, pg. 4101 that the FSM’s that do not have minimum 
solutions composed of maximal compatibles only are very rare. 
Though this appears to be the case for isolated, hand-designed 
machines, we have routinely observed FSM’s that do require 
prime compatibles to get the minimum state solution in the 
optimization of interacting FSM’s [l  11. 

We shall have occasion to refer in the sequel to upper 
and lower bounds on the number of states in the minimized 
machine [9]. Of course, the number of states in the original 
FSM, and the total number of maximal compatibles are upper 
bounds; a tighter upper bound, b v ,  is just the size of the 
minimum closed covering composed of maximal compatibles 
only. A lower bound, bL ,  is the optimal solution of the same 
problem, except the closure requirement is dropped. 

111. EXACT STATE MINIMIZATION 

We first discuss the methods for solving the problem of 
finding a machine with the smallest number of states which 
covers the specified machine. That is, the problem is to find 
the smallest closed set of compatibles that cover all the states 
in the original machine. We shall investigate two methods, 
and we start by recalling the essential facts about covering 
problems that will be useful in their discussion. 

3.1. Covering Problems 
The covering problem is the problem of selecting elements 

from a collection of subsets of a set S in such a way that 
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the union of the selected subsets is S and that the cost of 
the selected subsets is minimum. A well-known example is 
the determination of a minimum cost cover, given the prime 
implicants of a Boolean function [12]. Solving the covering 
problem amounts to finding the minimum cost assignment 
satisfying a mate Boolean formula in conjunctive form [13]. 

The binate covering problem (BCP) is the generalization 
of the (unate) covering problem where the Boolean formula 
is not restricted to be unate, and therefore can express other 
constraints than just coverage. 

In state minimization there are actually two sorts of con- 
straints corresponding to the properties of coverage and closure 
of a solution. With reference to Fig. 1, the condition that state 
a must be covered by at least one of the prime compatibles 
is expressed as (C, + C I ~ ) ,  since C1 and C11 are the only 
prime compatibles containing state a. In similar fashion the 
coverage of all the other states can be expressed as a set of 
unate clauses, or in other words, a set of unate rows of the 
coverage matrix. 

Closure constraints, on the other hand, express implications. 
If prime Cs = {e ,  d} is to be part of the solution, then there 
must be other compatibles in the solution that contain all its 
implied classes, namely { a ,  g} and {d ,  e}.  Since {a, g} is only 
contained in C11, the selection of Cs implies the selection of 
(311. This can be written as (E6 + Cll). Compatible { d , e } ,  
however, is found in both C1 and Cd, hence the constraint 

There are several methods of solving the binate covering 
problem. We briefly outline one branch-and-bound method 
based on column splitting. The reader is referred to [3], [14], 
[15] for the details. The formula expressing the constraints can 
be put in matrix form by assigning a column to each variable 
and a row to each clause. Entry i,j is 2 if variable j does not 
appear in clause z, is 1 if it appears there uncomplemented, 
and is 0 otherwise. 

The matrix is first simplified as much as possible by finding 
essential columns and applying row and column dominance, 
much in the same way as in the unate case. Then a column 
is tentatively selected and a solution is recursively sought for 
the residual problem under that assumption. The column is 
then rejected and another solution is determined. The optimum 
solution is the best of the two. 

The algorithm prunes the search space by keeping up-to- 
date upper and lower bounds. If the lower bound (the sum of 
the costs of the partial solution and a lower bound on the cost 
of the residual problem) is greater than the upper bound, then 
the recursion is terminated. It is important to note that column 
dominance and bounding rely on the additive property of cost. 

(G + c1 + C4). 

3.2. The Binate Covering Method 
The binate covering method was developed by Grasselli and 

Luccio [3]. This method converts state minimization to a binate 
covering problem, hence the name. It can be summarized as 
follows. 

a) Form the merge graph, G M .  
b) Find maximal compatibles. 

c) Find lower bound bL as discussed in Section 11. If bL is 

d) Find prime compatibles and class sets. 
e) Form binate covering table of rows (state covering or 

f )  Solve with a generic binate covering algorithm package. 
The covering matrix for the binate covering algorithm has two 
parts. The first part is the “normal” part, which requires that the 
current solution (that is, set of compatibles being considered) 
covers all states of the given machine. This sub-matrix is unate, 
that is, each of its entries M,, is 2 (meaning compatible j 
does not contain state i) or 1 (meaning that it does contain 
it). The second part imposes the constraint of closure on the 
considered solutions. There is one row in the second part of 
the covering matrix for each element of the class set of every 
prime compatible C. The formation of these rows has been 
illustrated in Section 3.1. The cost of each column is 1. Some 
results of state minimization using this method are presented 
in Section VII. 

closed, stop. ( b ~  is an optimum solution [9, pg. 3401). 

closure constraints) and columns (prime compatibles). 

3.3. The Closed Compatible Pair Set Covering Method 

This method is analogous to that described in [16], and can 
be derived by replacing prime compatibles with compatible 
pairs, and then proceeding similarly except for cost evaluation. 
It can be summarized as follows. 

a x )  As in the binate covering method. 
Form the compatibility graph Gc,  as described in Sec- 
tion 11. The nodes of Gc  are compatible pairs, and the 
edges correspond to implied pairs. 
Apply Tarjan’s algorithm for the strongly connected 
components of a digraph [ 171 to find all closed subgraphs 
of Gc .  Each closed subgraph identifies a set of edges 
(compatible pairs) of Ghf that is called a prime closed 
edge set. Any closed set of compatible pairs is a member 
of the power set of the set of prime closed edge sets; 
hence the name. 
Form a covering matrix, M ,  whose rows correspond to 
states and columns to closed subgraphs. The problem is 
to find a column covering set, which covers all rows, and 
has minimum cost. This is done with a branch and bound 
algorithm closely resembling that of the binate covering 
algorithm discussed above. 
The cost of a solution is, unfortunately, also the solution 
of a covering problem, namely, the size of the minimum 
closed clique covering of all the edges in the subgraph 
of G,tf induced by the current solution. Note that the 
current solution is just a set of closed subgraphs of Gc. 
Each closed subgraph has a specific set of nodes of Gc ,  
and hence, corresponding edges of G ~ J .  An ordinary 
unate covering routine may be called to find a tight lower 
bound on the size of the minimum clique covering of all 
edges of this subgraph of GLv. The edges corresponding 
to unconditionally compatible pairs are always kept in 
the subgraph. 
If the solution found in Step g) is closed then the 
bound is sharp, and we may proceed with the next 
level of recursion. Else, the solution can be “shrunk” 
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as discussed in Section VI. If closure cannot be gained 
by shrinking, then the method resorts to binate covering 
on the current subproblem. Fortunately this is a very 
rare occurrence, based on the limited data we have at 
this point. 

The prime closed edge sets for the example of Fig. 1 are: 

Pi = {bc}  P2 = { d h }  
P3 = {de} p 4  = { a s }  
P5 = {cd}u P 3 U  P4 pf3 = { c f } u P s  

Pg = {eh}UPT PlO = { f g } u p 9  
Pl1 = {cg}UP5UP10.  

P7 = {ab,ad,be,ae}UPS Pa = { b d } u P 7  

A cover of the matrix of Step f) is given by P I ,  Pa, and P ~ o .  
The solution of the clique covering problem for these sets 
yields the following closed cover, 

( a ,  b, d ,  e ) ,  (4  e,  h) ,  ( 4  c), (f, 91, 

as in the binate covering method. Some experimental results 
for this method are presented in Section VII. These results 
show this method to be surprisingly fast (this is discussed in 
Section 3.4), although implementation is still incomplete in 
some respects. 

3.4.  Cost Functions Other than the Number of States 

Here we shall consider briefly the more general problem of 
synthesizing the smallest cost (e.g., minimum gate count), or 
most encodable machine, which covers the original. Since the 
cost function for this more important problem is much more 
complicated, some of the efficiencies of the listed methods will 
disappear, due to the loss of important mechanisms which were 
formerly operative. 

For example, the binate covering method has sophisticated 
and proven procedures for row and column dominance and 
lower bound computation. Further, instead of having to search 
the space of all closed coverings, this method needs only to 
search the space of all closed coverings of prime compatibles. 
At first glance, this seems far more efficient than the closed 
compatible pair set method, which presumably would have to 
search a much larger space. Experimentally, however, we have 
found that this is not always the case. But even when it is the 
case, there is still an intrinsic virtue to the compatible pair 
covering method: Because its cost function is not assumed to 
be additive, it can be completely arbitrary, and therefore this 
method should work about as well for finding an “optimally 
encodable” result as it would for finding a result FSM with a 
minimum number of states. 

IV. HEURISTIC STATE MINIMIZATION 

As shown in Section VII, most of the examples we have en- 
countered so far are amenable to the exact solution of the state 
minimization problem. There are a few cases, however, where 
the covering problem cannot be solved, or even formulated, 
efficiently. In this section we introduce two heuristic tech- 
niques that have reduced substantially the time and memory 
requirements for the most difficult examples, while providing 

Fig. 3. Isomorphic states. 

excellent results in terms of optimality for all examples for 
which an exact solution was known. 

4.1.  Isomorphic States 
Definition I :  Two states s1 and s2 are isomorphic iffor every 

edge of the merge graph (sl, s,) there exists an edge ( s 2 ,  s,) and 
vice versa. 

Fig. 3 illustrates the definition. Notice that since the merge 
graph does not contain self loops (edges of the form (s~, s~),) 
two isomorphic states are necessarily incompatible (or else, 
the presence of the edge (SI, sa) would imply the presence of 
(SI, SI) and (s2, ~ 2 ) ) .  It is readily seen that state isomorphism 
is transitive. Also, if s1 and s2 are two isomorphic states, 
then for every maximal compatible containing SI, there is a 
corresponding maximal compatible containing sa. The latter 
maximal compatible is obtained from the former by simply 
replacing s2 for S I .  This results generalizes straightforwardly 
to sets of isomorphic states of arbitrary cardinality, thanks to 
transitivity. 

One immediate application of this result allows one to re- 
duce the computation required to find all maximal compatibles. 
From every set of isomorphic states of merge graph G M ,  one 
base state is selected. Then all the other states in the set and 
their edges are removed from the merge graph. If G$ is the 
resulting graph, we can prove the following simple result, by 
induction on the number of isomorphic state sets. 

Lemma 1 : The maximal compatibles of Ghf can be computed 
by finding the maximal compatibles of GE and then adding 
to those all the compatibles obtained by replacing the other 
isomorphic states for each base state in every maximal compatible 
where it appears. 

When the number of maximal compatible is very high, the 
detection of isomorphic states by itself is not sufficient (see 
example jac4 in Section VII). However, it can form the basis 
for a heuristic algorithm that is now outlined. 

1. Find isomorphic states and compute maximal compati- 

2. Add a minimal number of maximal compatibles to cover 

3. Make the resulting set of maximal compatibles closed; 
4. Generate the prime compatibles from the set of maximal 

compatibles obtained so far and solve the covering 
problem. 

The addition of maximal compatibles to cover the isomorphic 
states is based on a simple greedy strategy: Among the 
computed maximal compatibles, the one containing the most 
base states is selected. Making the set of maximal compatibles 

bles of the residual merge graph only; 

the (nonbase) isomorphic states; 
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closed, on the other hand, requires checking the class sets of 
the newly added maximal compatibles, possibly adding those 
maximal compatibles that contain those implied classes not 
included in any already selected class. 

4.2 .  Tight Upper Bound 

large, the following heuristic method has been found useful. 
In cases where the number of prime compatibles is very 

1. Find the maximal compatibles; 
2. Find the minimum closed cover composed of maximal 

compatibles only ( b ~ ;  of Section 11); 
3. Compute the prime classes contained in the maximal 

compatibles of b ~ ; ;  
4. Solve a covering problem with the set of compatibles 

obtained by adding the generated prime compatibles to 
the maximal compatibles bLr. 

The rationale for this procedure is as follows. In many cases, 
Step 2 gives an optimum solution. For those cases when this 
is not true, the primes added are a small set of primes that 
requires no additional primes to guarantee closure, thus pre- 
venting excessive increase of computation time. Furthermore, 
they are selected from the maximal compatibles of Step 2, 
because these are (heuristically) good maximal compatibles. 
By replacing a maximal compatible with a prime derived from 
it, we hope to reduce the closure constraints, and thus be able 
to drop maximal compatibles that were included not to satisfy 
covering, but closure. 

V. MAPPING 
Here we consider the problem of optimally mapping the 

reduced machine into cube table format, suitable for input to 
an FSM state encoding algorithm. We introduce the problem 
by means of a simple example. 

Example I :  Consider Fig. 4 representing a simple Moore 
machine. Fig. 4(a) gives the state transition graph, and Fig. 
4(b) the equivalent flow table. The merge graph is given in 
Fig. 4(c), where the dotted lines visualize the compatibles 
used in the solution. It should be noted that state S2 appears 
in two different compatibles included in the solution. More 
specifically, the implied class for both {SI, Sa} and {Sa, 5 3 )  

under input 1 is {SZ}. So, in forming the reduced flow 
table (see Fig. 4(d)) we can satisfy the closure constraints 
in two different ways for two entries. Clearly, not all four 
combinations are equally effective. 

The mapping problem can be stated as follows. 
Given: A closed set of compatibles which covers all the 
states of the original machine. 
Find: A mapping of the implied classes into the compat- 
ibles, so as to minimize the cost of the resulting machine. 

Though the problem has been known for quite some time 
[18], it has received relatively little attention. (One exception 
is [19].) Ideally, the cost should reflect attributes like size, 
speed, and testability of the implemented machines. Since the 
effects of a given choice percolate through encoding, logic 
minimization, and technology mapping, before they can be 
assessed precisely, any method working atthe flow-table level 

2 lfjqj 
3 

I . .  I 

(C) (d) 

Fig. 4. Example of mapping problem. 

must be heuristic. Our approach consists of anticipating the 
effects of mapping on heuristic encodability measures such as 

the mapping problem in two phases. 
those from MUSTANG [20] JEDI [21], or MUSE [22]. w e  Solve 

1. Form a symbolic cube table where the next state field 
of each cube is a set of states, rather than a single state. 

2. Solve the optimization problem of selecting a unique 
representative from each set of such options. 

5.1. Forming the Symbolic Cube Table 
Fig. 5 presents algorithm CUBEMAP to form the symbolic 

cube table of the minimized machine, given the original cube 
table F ,  and the specified closed covering 7, obtained by one 
of the methods presented in Section 111. Note that the disjoint 
input alphabet is computed at Line 1. This entails splitting 
the original cubes so that the input parts of two cubes are 
either identical or nonintersecting (Line 2). The unique input 
parts form the disjoint input alphabet. By this process we are 
effectively creating a cube table whose rows are in one-to-one 
correspondence with the entries of the full-blown flow table, 
with the exception that the next state entries will be sets of 
next states. This may be a problem for large machines. On 
the other hand, by working with a fine grain representation of 
the cube table, we can exploit possibilities for cube merging 
that would otherwise go unnoticed. The actual procedure that 
we have implemented differs from CUBEMAP in two respects: 
a) the disjoint input alphabet is computed only for the states 
that are not incompatible; b) if the full flow table becomes too 
large, the procedure resorts to different alphabets for different 
rows. 

5.2. Selecting a Unique Mapped Representation 

Given a symbolic cube table such as that produced by 
CUBEMAP, the next problem to be solved is to select a unique 
representative from each of the next-state sets. One could 
observe that this table is a symbolic relation (i.e., analogous 
to a Boolean relation with symbolic input and output fields,) 
and therefore, by the procedure presented in [23], one could 
determine the set of unique representatives which minimizes 
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Procedure CUBE-MAP(F, S, y) { 
F ’ = 0 ;  n=O 

1 AD = DISJOINTJNPUT-ALPHABET(F) 
2 { E k }  = CUBE-SPLITTING(F, A D )  

foreach ( input E AD ) { 
foreach ( Cj E y ) { 

n = n + l  
R = { IC 1 I S ( E ~ )  s input , P S ( E ~ )  E Cj } 
.Un = { i 1 ci 2 C k E R N S ( E k )  } 

F“ = F’ U { input, j, ,U”, nkER O S ( E ~ )  } 

3 
4 
5 K ,  = lMnl 
6 

1 
1 

7 return ( ( F * ,  M ,  K)) 
1 

INPUT: F - A machine M in cube table format. S - The set of states of M.  7 - A closed covering {C’, C2, . . .} 
of M .  

OUTPUT: F’ - The minimized machine in cube table format, where each state corresponds to a specific member 
c’ E 7 .  

OUTPUT: M - A set of sets, one for each row in the mapped machine, representing the set of alternativesfor selecting 
the next state for that cube of the reduced machine. 

OUTPUT: K - A vector whose elements K, are the number of mapping alternatives for each row of F’. That is, Kn 
is the number of ways to select the next state entry of F:, while maintaining the closure property. 

Fig. 5 .  Procedure CUBEMAP. 

row count after symbolic minimization. The solution of the 
problem also provides the optimum encoding as a by-product. 

However, we also observe that this problem may be too hard 
to solve practically, and, furthermore, cube count in the PLA 
FSM representation is not the first objective of multi-level 
targeted state-assignment algorithms. So, we consider here 
algorithms for heuristically selecting from among the next- 
state mapping alternatives, so as to optimize the encodability 
of the resulting cube table FSM specification, by anticipating 
the effects of mapping on encoding algorithms. 

Let T be the symbolic flow table returned by CUBEMAP, 

and let Nij be the set of next state alternatives for entry Tij, 
that is, for present state i, and input j .  Note that if N;j is a 
singleton, then the mapping for state i and input j is fixed. 

Our heuristic method estimates the literal savings made 
possible by a particular choice. The savings taken into account 
are due to distance-1 merging. A cube c can merge with 
another cube c’ if PS(C) = PS(C’) and if rs(c) and IS(C’) are 
distance-I apart. Alternatively, c can merge with c’ if I ~ ( c )  = 
IS(C’) and if PS(C) and PS(C’) receive adjacent encodings. 

Even if the above conditions are not strictly met, the 
extraction of common cubes is still possible. The size of the 
cube is given by the number of literals common to the two 
cubes. Based on these considerations, the mapping procedure 
works as follows. 

1. For each next-state set N;j consider every element s k  

in turn and determine its row and column values as 
explained in the following; 

2. Let the row (column) candidate for entry i , j  be the 
element of N;j with the highest row (column) value; 

3. Choose between the row and column candidates the one 
having the highest product of its two values. 

The row value of Sk is computed as: 

LjPXfP 
P 

where Lip  is the sum of the number of don’t cares in the 
intersection of the input parts and of the number of ones in 
common in the output parts of the cubes corresponding to Tij 
and Tip, and A$ is 1 if sk E Nip and 0 otherwise. For the 
column value, we do not know the distance of the encodings 
of two states in advance. So, we assume that that distance is 
1 for every pair. The column value is thus computed as: 

EK&;I  
P 

where K!p is analogous to L i p ,  only for entries Tij and Tpj, 
and n i j  is 1 if Sk E Npj and 0 otherwise. The number of input 
literals in common is relevant because different “rows” of the 
table may have different input alphabets. 

VI. SHRINKING THE COMPATIBLES IN THE SOLUTION 

Though a solution with the minimum number of states can 
always be found by restricting attention to prime compatibles 
only, one may be interested in exploring solutions containing 
nonprime compatibles in order to minimize other indicators 
like the gate count after encoding, logic minimization, and 
technology mapping. As an example, we consider the FSM 
of Fig. 1. The only four-state solution composed of prime 
compatibles is 
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bbara 
bbsse 
beecount 
ex 1 
ex2 
ex3 
ex5 
ex7 
lion9 
mark1 
opus 
scf 
sse 
tbk 
train1 1 
grasselli 
luccio 
house 
unger65 
pager 
palama 
tma 
Ibk 
green 
jacl 
jac2 
jac3 
jac4 

TABLE I 
EXPERIMENT SUMMARY 

literals 

FSM IV~ /-WO :V, iVc’,,,,, j’,,, :\ip,,,,V,,.,,,,,hr,,,or~~-reduced 

412 I O  6 1 1 6 0 54 45 
717 16 
314 7 

9/19 20 
212 19 
212 I O  
212 9 
212 10 
211 9 

5/16 15 
516 10 

27/56 121 
7f7 16 
613 32 
211 11 
311 8 
211 6 
211 22 
211 8 
315 22 
211 6 
716 20 
613 32 

21/17 53 
1319 32 

11/10 30 
9/19 48 
1011 65 

36 
4 
2 

129 
37 
26 
32 
9 

20 
1 

70 
36 
16 
25 
14 
8 

104 
I O  
65 
10 
15 
16 

305 
109 
66 

410 
1514 

11 
4 
2 

36 
10 
6 
6 
5 

12 
1 

12 
11 
16 
5 
5 
3 

30 
3 

32 
5 

15 
16 

5 24 
109 
31 

618 
32 

11 
7 
2 

1366 
91 
38 
57 
5 

18 
1 

90 
11 
48 
16 
12 
15 

26 1 
14 
71 
11 
15 
48 

524 
109 
64 

173 1 
803 

2 11 111 103 
0 2 31 24 

16 0 281 198 
0 0 118 27 
0 0 57 23 
0 0 45 14 
0 0 60 20 
0 0 15 13 
0 11 73 69 
8 0 69 63 

85 0 820 754 
2 11 1 1 1  103 
0 0 208 210 
1 0 22 12 
0 0 51 24 
0 0 2 0  6 
0 0 82 38 
0 0 25 7 
2 5 89 42 
0 0 29 12 
5 13 121 126 
0 0 261 204 
0 46 4364 3690 
9 20 499 485 
2 7 447 410 
4 14 513 603 
1 52 370 278 

TOTAL 667 3095 1561 5440 143 192 8946 7603 

A four-state solution including nonprime compatibles is 

When subjected to the same logic synthesis procedure (see 
Section VI1 for the details), the former resulted in 26 literals 
and the latter in 24. The area after technology mapping was 
reduced by 6%. 

The number of all compatibles, including those that are 
not prime, is generally too large to allow an exhaustive 
search of the optimum solution. In Section 3.3 a method 
has been described that avoids the computation of the prime 
compatibles. Here we present a post-processing technique 
that tries to shrink the compatibles in a closed cover, in 
the attempt to maximize the number of don’t care entries 
in the minimized flow table. Shrinking a compatible C, 
means finding a compatible Ck C C, that can replace for 
C,, without violating covering and closure constraints. The 
purpose is similar to the one pursued in [24], but does not 
require an increase in the number of prime compatibles. A 
different approach to finding solutions not restricted to prime 
compatibles is described in [25].  

Let y = {C, ~ . . . , Cn} be a closed cover. A generic 
compatible C, may contain states that are not found in any 
other compatible of y. These states are said essential in this 
context and they cannot be removed from Ca. The nonessential 
states may be removed from CO, if doing so does not violate 
the closure constraints. 

TABLE I1 
RESULTS OF EXACT MINIMIZATION WITH BINATE COVERING 

time (s) 
FSM iV, literals cover map total 
bbara 7 45 0.00 0.00 0.00 
bbsse 13 103 0.00 0.15 0.17 
beecount 4 24 0.00 0.00 0.01 
ex 1 18 198 0.00 0.02 0.06 
ex2 5 27 4669.44 0.01 4702.22 
ex3 4 23 0.66 0.01 0.80 
ex5 3 14 0.05 0.00 0.07 
ex7 3 20 0.10 0.00 0.16 
lion9 4 13 0.00 0.00 0.00 
mark 1 12 70 0.00 0.19 0.21 
opus 9 63 0.00 0.00 0 . 0  
scf 97 786 0.00 0.05 0.75 
sse 13 103 0.00 0.16 0.17 
tbk 16 210 0.00 1.65 3.86 
train 1 1 4 12 0.00 0.00 0.01 
grasselli 4 24 0.00 0.00 0.02 
luccio 2 6 0.00 0.00 0.01 
house 9 45 12.33 0.04 12.91 
unger65 3 7 0.00 0.00 0.01 
pager 10 42 0.00 0.02 0.04 
palama 3 12 0.00 0.00 0.01 
tma 18 126 0.00 0.05 0.05 
Ibk 16 204 0.00 1.64 4.09 
green 37 3690 0.55 520.08 732.98 
jac 1 21 485 0.23 0.38 0.73 
jac2 14 410 0.02 0.62 0.99 
jac3 19 603 2304.65 0.90 2361.51 
TOTAL 368 7365 6988.03 525.97 7821.84 

There are two reasons why removal of nonessential states 
may destroy closure. The state is part of an implied class 
of some other compatible, or the reduced compatible has 
a larger class set. Based on this observation, the following 
simple procedure can be devised. Every nonessential state is 
considered in turn and tentatively removed. The resulting cover 
y’ is then checked for closure. If the answer is positive, then 
y’ replaces y. 

We have found this strategy quite effective in improving 
the quality of the solutions. However, the shrunk solution may 
be worse than the original one when the number of mapping 
choices is significantly reduced. This is taken into account 
by performing the shrinking process in two phases. The first 
phase takes place before mapping and is constrained: A move 
is accepted only if the number of mapping choices is not 
decreased. The second phase is performed after mapping and 
is unconstrained. 

VII. EXPERIMENTAL RESULTS 

Table I lists the main features of our experiments. The 
FSM’s come from different sources. Many come from the 
MCNC benchmark set [26]. Actually all the MCNC FSM’s 
were run. Those not reported, either have no compatible 
states, or have all states compatible, and hence degenerate to 
combinational logic, once minimized2. For all the cases not 
reported, the processing times were negligible. Our test suite 
also contains some contrived examples intended to put the 

2These examples are dotzjile. modulol2. sla, and s8. 
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literals I area(pm2) I delay (ns) 

TABLE 111 
RESULTS OF TECHNOLOGY MAPPING 

15.21 
111 
31 

28 1 
118 
57 
45 
60 
15 
73 
69 

820 
111 
208 
22 
51 
20 
82 
25 
89 
29 

121 
26 1 

4364 
499 
447 
513 
370 

103 
24 

198 
27 
23 
14 
20 
13 
69 
63 

754 
103 
210 

12 
24 
6 

38 
7 

42 
12 

126 
204 

3690 
485 
410 
603 
278 

95584 
27840 

232928 
98368 
49648 
38048 
52896 
12992 
67280 
61712 

683008 
95584 

174000 
18560 
45008 
16704 
66816 
22736 
75632 
26448 

1081 12 
217152 

3130608 
422240 
371200 
416672 
310416 

90480 
22736 

164720 
23664 
19952 
12528 
15776 
12064 
66816 
56608 

624544 
90480 

182352 
12064 
22272 
4640 

35264 
7888 

40368 
9744 

103936 
169360 

2670784 
393936 
343360 
494 160 
238960 

18.12 
6.94 

21.11 
29.40 
12.88 
8.67 

12.83 
3.51 

10.33 
11.22 
54.35 
18.12 
28.16 
3.23 

10.54 
6.93 

19.71 
9.63 

12.33 
7.89 

32.41 
39.3 1 
44.60 
21.37 
2 1.47 
24.25 
23.99 

bbara 
bbsse 
beecount 
ex 1 
ex2 
ex3 
ex5 
ex7 
lion9 
mark1 
opus 
scf 
sse 
tbk 
trainl 1 
grasselli 
luccio 
house 
unger65 
pager 
palama 
tma 
lbk 
green 
jac 1 
jac2 
jac3 
jac4 

8.46 
21.58 
5.91 

23.57 
6.53 
6.09 
2.35 
5.80 
4.17 
9.98 

13.74 
49.45 
21.58 
35.51 
5.22 
7.80 
2.76 
7.91 
2.17 
8.43 
5.58 

22.02 
3 1.24 
36.44 
28.04 
32.79 
41.70 
39.59 

TOTAL 8946 7603 6986912 5667040 528.51 486.41 

algorithms under strain. This is the case of juc4, that has 3 859 
641 maximal compatibles (the number in Table I is the results 
obtained by the isomorphic heuristic) and, to a lesser extent, of 
other examples. In Table I, N;,  No, and N ,  are the numbers of 
inputs, outputs, and states before minimization, respectively. 
The other columns show the numbers of compatible pairs 
(Ncom), maximal compatibles (Nmax), and prime compatibles 
(Nprime); the number of incompatible states (Nincom), and 
the number of states that are isomorphic to some other states 
(Niso). Finally, the two rightmost columns report the number 
of literals after encoding with MUSE and optimization with 
MIS2.2 [27] (standard Boolean script preceded by cspfsimplzfi 
if external don’t cares exist [28]) for the original and the 
minimized machines. The results for the minimized machines 
are the best between those of Tables I1 and VI. In all tables, 
times are referred to DECstations 5000/200, except when 
otherwise stated. 

Table I1 gives the results obtained with the exact algorithm 
based on the method of Grasselli and Luccio and binate 
covering. There, N ,  represents the minimum number of states 
of a cover of the machine. A break-down of the execution 
times is given to show that, problems may actually arise 
in all phases of the algorithm, especially in the solution of 
the covering problem. The map time is the time required to 
build the reduced flow table, given the set of compatibles. It 
is apparent that most cases are amenable to exact solution. 
We didn’t manage to find the exact solution for jac4, due 
to the aforementioned problem (over three million maximal 
compatibles). 

TABLE IV 
COMPARISON OF MAPPING HEURISTICS 

options 
FSM edges total hl h2 h3 
trainl 1 3 6 12 12 12 
beecount 8 16 24 23 24 
ex2 5 16 21 27 27 
ex3 4 8 25 22 23 
ex5 1 3 14 14 14 
ex7 2 5 20 20 20 
lion9 2 4 13 13 13 
grasselli 8 16 24 24 24 
house 7 18 41 45 45 
pager 1 5 42 48 42 
palama 1 2 12 12 12 
tma 26 79 124 123 126 
unger65 1 2 10 7 7 
jacl 22 44 485 504 485 
jac2 58 143 462 418 410 
jac3 29 70 61 1 61 1 603 
TOTAL 178 431 1946 1923 1887 

Table I11 compares the results of applying encoding, logic 
optimization, and technology mapping to both the original 
and the minimized machines. As in Table I, the best result 
between Table I1 and Table VI was used for each machine. The 
data reported refers to the combinational logic of the FSM’s. 
Routing area is not included. MIS2.2 was used for technology 
mapping [26] with the lib2 library from MCNC [26]. Both the 
literal count and the total cell area decreased by about 15%. 
Delay decreased by only 8% and, unlike area, there are in this 
case big losses as well as big wins. This reflects the fact that 
no special consideration is paid to delay in the optimization 
process and indicates an area for future research. Not shown 
in the table is the reduction of the flip-flop count by 21%. 

The comparison of three mapping heuristics is reported in 
Table IV. The first method ( h l )  is simply picking the first 
element in each set of next states3. Method h2 consists of 
counting the number of occurrences of each possible choice 
in the other entries of the same row and column. The literal 
savings are not taken into account. Finally, Method W is 
the one described in Section V. Only examples for which 
mapping was not trivial are reported. The number of edges of 
the transition graph for which there was a choice of different 
next states and the total number of options are reported. For all 
methods, the table gives the number of literals obtained starting 
from the exact solution found with the binate covering method. 

The effectiveness of shrinking can be evaluated from the 
following. Synthesis of green could not be completed starting 
from the nonshrunk solution, because of the excessive memory 
requirements. For the remaining examples whose solutions 
could be shrunk, the total literal count was reduced from 2175 
to 2095 (or 4%). 

Preliminary results for the compatible pair method are given 
in Table V. The two numbers in the rightmost column are 
the times taken without/with closure check; * means timeout. 
Results so far have been obtained with the number of states as 

’Picking always the first choice gave consistently the best results among all 
the trivial algorithms, including random selection. This is because this method 
guarantees more uniform selections than, for instance, random choices. 
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TABLE V 
RESULTS WITH THE COMPATIBLE PAIR METHOD 

FSM solution closed? N* time (s) 
lbk YES 16 3.35121.67 
Icf YES 91 4.4715.72 
scf YES 97 5.0416.77 
tbk YES 16 3.3121.60 
bbsse YES 13 0.1810.23 
beecount YES 4 0.0510.07 
ex1 YES 18 0.0510.37 
markl NO 15 .28/0.33 
opus YES 9 0.01/0.0s 
green YES 37 14.35/164.38 
jac 1 YES 21 1.4/* 
lion9 YES 4 0.00/0/00 
jac2 NO 30 3.68/* 
pager YES 10 1.01/1.10 
ex3 NO 10 3.06114.97 
ex5 YES 3 1.6815.17 
ex7 YES 3 2.48112.03 

kohavi6 YES 3 0.1510.12 
kohavi7 YES 3 0.1310.08 
kohavi8 NO 6 0.1510.22 
bbara YES 7 0.15/0.15 
bbtas YES 6 0.0310.05 
sse YES 13 0.15/0.20 
palama YES 1 0.0810.05 
ex2 YES 5 249.64/* 
jac3 YES 19 38672.64/* 
jac3 YES 19 (1020.50)/* 

trainl 1 YES 4 0.4210.3n 

objective. Times refer to SUN Sparcstations 1. The second 
entry for j u d  gives the time obtained when each unate 
covering problem is solved heuristically by stopping the search 
at the first leaf of the solution tree. 

Finally, Table VI collects the results of applying the heuris- 
tic techniques described in Section IV. The rightmost column 
lists which of the techniques have been applied: I means 
isomorphic state identification and T means tight upper bound. 
A technique not listed for a particular example did not apply 
to it. 

The only example where the heuristic approach did not 
deliver the true optimum is juc3, where the approximate 
solution had one more state. On the positive side we can note 
that: 

The times for the most difficult examples were substan- 
tially reduced; 
The isomorphic state heuristic makes it possible to solve, 
though in an approximate way, an example with over 
three million maximal compatibles. Such a solution is 
practically precluded to all methods based on the exhaus- 
tive enumeration of all maximal compatibles. 

The only previous work reporting results on public domain 
benchmark FSM's is [25]. Table VI1 compares results from 
that work to ours. The literal counts for some of the examples 
were not reported in [25]. The CPU times of FSMRED were 
divided by 10 to account for the difference of computer 
speeds. STAMINA is the name of our program implementing 
the binate covering approach. FSMRED is faster for example 
ex2, but it obtains a substantially worse result. On most other 
examples, STAMINA is faster even when solving the problem 

TABLE VI 
RESULTS OF HEURlSTICMINIMrZATION 

FSM 'VS time (s) literals heuristics 
bbara 7 0.01 45 T 
bbsse 13 0.17 103 I 
beecount 4 0.01 24 I 
ex 1 18 0.06 198 T 
ex2 S 79.92 27 T 
ex3 4 0.39 25 T 
ex5 3 0.07 14 I 
ex7 3 0.12 20 T 
lion9 4 0.00 13 T 
markl 12 0.22 69 I 

scf 97 0.76 754 T 
sse 13 0.18 103 I 
tbk 16 3.88 210 T 
trainl 1 4 0.01 12 T 
grasselli 4 0.03 24 T 
luccio 2 0.00 6 T 
house 9 1.96 38 T 

opus 9 0.00 63 T 

unger65 3 0.01 7 T 
pager 10 0.04 48 I 
palama 3 0.01 12 T 

green 37 644.28 4199 I 
jac 1 21 0.49 493 I 
jac2 14 1 .oo 470 I 
jac3 20 28.42 613 I 
jac4 20 27 8 I ,T 24618.85 
TOTAL 389 25378.05 8198 

tma 18 0.06 126 T 
Ibk 16 4.10 204 T 

exactly. STAMINA produces fewer states and considerably 
fewer literals. The latter comparison, however, must be taken 
with a grain of salt, since the encoding programs are different 
and the misll commands used in [25] were not reported. 

In [7] the number of states is reported for examples taken 
from the literature. STAMINA obtains the minimum number of 
states on all those machines, when run in heuristic mode. Run 
times are negligible for all the examples. 

VIII. CONCLUSIONS 

This paper has described several efficient algorithms for the 
minimization of finite state machines. We have considered how 
to find solutions that result in better encoded machines, rather 
than just decrease the numbers of states. When an additive cost 
function such as the number of states is used, one has to select 
among the possibly many solutions with the same number 
of states. In that context, we have discussed the mapping 
and shrinking problems and shown their relevance. We have 
also considered the implications of cost functions that are not 
purely additive. One algorithm, based on the coverage of the 
closed subgraphs of the compatibility graph, has been shown 
to be remarkably efficient, in spite of its ability to deal with 
nonadditive cost functions. 

Our experiments indicate that most hand-designed finite 
state machines are amenable to exact minimization. We have 
also shown that heuristic techniques can be used in other 
cases. In all but very few cases, state minimization followed 
by state mapping and solution shrinking provides a better 
starting point for the subsequent synthesis tasks of encoding, 
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4 0.01 24 
5 4702.22 27 
3 0.07 14 
3 0.16 20 

12 0.21 - 

9 0.00 - 

97 0.75 - 

13 0.17 - 

16 3.86 210 
4 0.01 12 

173 4707.5 352 1 

TABLE VI1 
COMPARISON To FSMRED [ZSI 

FSMRED STAMINA 
literals exact heuristic 

bbara 0.2 7 0.00 7 0.01 
beecount 4 
ex2 10 
ex5 5 
ex7 4 

mark1 12 

scf 97 
sse 13 
tbk 16 

train11 4 
TOTAL 181 

opus 9 

0.1 37 62 
0.3 87 130 
0.1 19 30 
0.1 25 35 
0.1 - - 

0.1 - - 

99.8 - - 

0.1 - - 

3.5 278 436 
0.1 18 32 

104.5 514 787 

4 0.01 24 
5 72.92 27 
3 0.07 14 
3 0.12 20 

12 0.22 - 

9 0.00 - 

97 0.76 - 

13 0.18 - 

16 3.88 210 
4 0.01 12 

73 78.2 352 

logic optimization, and technology mapping, when area is 
the goal. Further investigation is required to better direct the 
minimization process to improve the speed of the FSM’s and 
to identify useful nonadditive cost functions. Another area 
of investigation is the development of algorithms that trade 
off some optimality for the ability to deal with machines 
even larger, and with many more compatibles, than those we 
have used for our experiments. One possible source of similar 
machines is the collapsing of two or more simpler machines 
in an attempt to resynthesize a network of FSM’s. 
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