
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 2, FEBRUARY 1994 I67

Exact and Heuristic Algorithms for the Minimization
of Incompletely Specified State Machines

June-Kyung Rho, Gary D. Hachtel, Fellow, IEEE, Fabio Somenzi, Member, IEEE, and Reily M. Jacoby

Abstract-In this paper we present two exact algorithms for
state minimization of FSM’s. Our results prove that exact state
minimization is feasible for a large class of practical examples,
certainly including most hand-designed FSM’s. We also present
heuristic algorithms, that can handle large, machine-generated,
FSM’s. The possibly many different reduced machines with the
same number of states have different implementation costs. We
discuss two steps of the minimization procedure, called state
mapping and solution shrinking, that have received little prior
attention in the literature, though they play a significant role
in delivering an optimally implemented reduced machine. We
also introduce an algorithm whose main virtue is the ability
to cope with very general cost functions, while providing high
performance.

I. INTRODUCTION

TATE MINIMIZATION is an important step in the de- S sign of FSM-based circuits. Though the problem has
received considerable attention in the past [11-[71 (see [81
for an extensive bibliography), it is the recent development
of sequential synthesis systems that has created the need for
efficient algorithms that can minimize large FSM’s.

In this paper we present two exact algorithms for state
minimization that we have implemented. Our results prove
that, contrary to common belief, exact state minimization
is feasible for a large class of practical examples, certainly
including most hand-designed FSM’s. However, FSM’s gen-
erated by sequential synthesis systems may have many states
and, in particular, many compatible states. Heuristic techniques
are therefore of interest. The ones we present in this paper
have been very successful in reducing time and memory
requirements, without appreciably affecting the optimality of
the solution.

Normally a reduction in the number of states is attempted
in the hope of reducing the complexity of the resulting FSM,
as measured, for instance, by the gate count of a multilevel
implementation after technology mapping’. However, solu-
tions with the same number of states may have different gate
counts. Several steps in the algorithms influence the cost of the
resulting implementation. We analyze two of them in detail,
namely the mapping step (the choice of some next state entries
for which multiple options exist) and the shrinking of the

Manuscript received June 5, 1991; revised May 18, 1992. This work
was supported in part by NSFDARPA grant MIP-8719546. This paper was
recommended by Associate Editor R. Brayton.

J.-K. Rho, G. D. Hachtel, and F. Somenzi are with the University of
Colorado, Boulder, CO 803094425.

R. M. Jacoby is with Cadence Design Systems, Lowell, MA 018524995,
IEEE Log Number 9212231.
‘Another objective may be increased testability.

solution to nonprime compatibles (sets of compatible states
that can be disregarded if the minimum number of states is
the only concern; they are defined in Section 11). We show
how careful choices in these phases reduce the cost of the
state-minimal machine with respect to the original machine in
most cases.

We also briefly discuss the impact of more general cost
functions on the optimization process. One of the two exact
algorithms we present may be used, without changes, for
different types of cost functions. It represents an attractive
combination of generality and efficiency.

After the preliminaries of Section 11, the paper discusses
the exact algorithms in Section 111. Section IV describes the
heuristic intended to reduce the CPU and memory require-
ments. Section V covers the mapping problem, and Section VI
is devoted to the shrinking of the solution. Finally, Sections
VI1 and VI11 present experimental results and conclusions.

11. PRELIMINARIES

A jinite state machine (FSM) is defined as a quintuplet
M = (I, 0, S. 6, A), where I is a finite nonempty set of inputs,
0 is a finite nonempty set of outputs, S is a finite nonempty
set of states, 6 : I x S + S is the next state function, and
X : I x S -+ 0 (for a Mealy machine), or X : S --+ 0
(for a Moore machine) is the output function. An FSM is
incompletely specified if either 6 or X is not defined for one
or more elements of its domain.

An FSM can be described in several ways. In aflow-table
description of an FSM, one row of the table corresponds to
a state and a column corresponds to an element of I (the
input alphabet). By contrast, in a cube table representation,
one row of the table corresponds to one edge of the state
transition graph, i.e., it specifies for a given present state, and
a given input value, the next state and the output value. We
will denote a cube table by F = { F z } , where F, is a cube
with four fields: the input state IS(F,), the present state pS(F,),
the next state NS(F;), and the output state OS(F,). We shall use
both representations in the sequel.

The flow table of Fig. 1 specifies an FSM described in [3],
which will be used as an example in the following. Roughly
speaking there is one row in the cube table for each nontrivial
entry in the flow table, so in the sequel we will use the flow
table in the examples for compactness. As an example, the
row for the top-left entry of the flow table of Fig. 1 would be:

2 1 a a 0.

0278-0070/94$04.00 0 1994 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 2, FEBRUARY 1994 168

d, 1 a, -
d , 1 a, 1
e , - -,-
e, - U, -
c , - -,1
c , l - , -
e. 0 d. 1

-
-
1
2
3
4
5
6
7
8
9

10
11
12 -

Class Sets

Fig. 1 . The Grasselli-Luccio example: The flow-table (top) and the list of
prime compatibles (bottom).

An input sequence is applicable to state Si of machine M
if no unspecified next state transitions are encountered. Two
states S; and Sj are compatible if and only if for every input
sequence that is applicable to both Si and Sj, nonconflicting
output sequences are produced. A set of states is compatible
if and only if each pair of states in the set is compatible. A set
of compatible states (a compatible for short) is maximal if it is
not a proper subset of another set of compatible states. A state
is incompatible if it is not compatible to any other state in S.

If there is an input such that k is the next state of i and 1 is
the next state of j and (I C : 1) # (2 , j) , then we say that (k , I) is
implied by (i, j) . Illustrated in Fig. 2 are two graphs, [9], called
the merge graph Ghf (left) and the compatibility graph GC
(right). The merge graph has one node for each state. There is
no edge between nodes i and j (states i and j are incompatible)
if there is an input such that states i and j produce conflicting
output values, or if some other pair (I C , I) (transitively) implied
by (i , j) produces conflicting output values. There is an edge
without label between nodes i and j (states i and j are fully
compatible) if states i and j have no conflicting next output
values and the state pairs they imply are fully compatible.
Finally there is a labeled edge between nodes z and j (states
i and j are conditionally compatible) if states i and j have
no conflicting output values, but at least one pair of next
states are neither incompatible nor fully compatible. The label
consists of all such state pairs. The compatibility graph is a
directed graph with one vertex for each pair of compatible
states. ((i , j) : (I C , I)) is an arc of G c if (i , j) implies (k , I) .

A set of compatibles is closed if for every compatible
contained in the set, all the implied compatibles are contained
in the set. A closed covering is a closed set of compatibles
in which each state appears in at least one set. The class
set of a compatible C is the set of compatibles CC, which
are: a) Implied by C, that is, if C is to be part of a closed

Fig. 2. Merge and compatibility graphs for the Grasselli-Luccio example.

covering, all members of CC must be included in at least one
member of the closed covering, and b) not contained in C or
any other member of CC. A compatible C is prime, if no other
compatible C+ exists for which:

c 5 c+
cc 2 cc+

In words, a compatible is not prime if it is included in
another compatible and it has all the implications of the other
compatible. The prime compatibles and their corresponding
class sets are shown at the bottom of Fig. I . Note that the first
four primes and the eleventh are just the maximal compatibles
(maximal cliques of the merge graph). From the definition,
all maximal compatibles are prime and therefore there are
more primes than maximals. It has been observed in the past
[lo, pg. 4101 that the FSM’s that do not have minimum
solutions composed of maximal compatibles only are very rare.
Though this appears to be the case for isolated, hand-designed
machines, we have routinely observed FSM’s that do require
prime compatibles to get the minimum state solution in the
optimization of interacting FSM’s [l 11.

We shall have occasion to refer in the sequel to upper
and lower bounds on the number of states in the minimized
machine [9]. Of course, the number of states in the original
FSM, and the total number of maximal compatibles are upper
bounds; a tighter upper bound, b v , is just the size of the
minimum closed covering composed of maximal compatibles
only. A lower bound, bL , is the optimal solution of the same
problem, except the closure requirement is dropped.

111. EXACT STATE MINIMIZATION

We first discuss the methods for solving the problem of
finding a machine with the smallest number of states which
covers the specified machine. That is, the problem is to find
the smallest closed set of compatibles that cover all the states
in the original machine. We shall investigate two methods,
and we start by recalling the essential facts about covering
problems that will be useful in their discussion.

3.1. Covering Problems
The covering problem is the problem of selecting elements

from a collection of subsets of a set S in such a way that

RHO et al.: MINIMIZATION OF INCOMPLETELY SPECIFIED STATE MACHINES 169

the union of the selected subsets is S and that the cost of
the selected subsets is minimum. A well-known example is
the determination of a minimum cost cover, given the prime
implicants of a Boolean function [12]. Solving the covering
problem amounts to finding the minimum cost assignment
satisfying a mate Boolean formula in conjunctive form [13].

The binate covering problem (BCP) is the generalization
of the (unate) covering problem where the Boolean formula
is not restricted to be unate, and therefore can express other
constraints than just coverage.

In state minimization there are actually two sorts of con-
straints corresponding to the properties of coverage and closure
of a solution. With reference to Fig. 1, the condition that state
a must be covered by at least one of the prime compatibles
is expressed as (C, + C I ~) , since C1 and C11 are the only
prime compatibles containing state a. In similar fashion the
coverage of all the other states can be expressed as a set of
unate clauses, or in other words, a set of unate rows of the
coverage matrix.

Closure constraints, on the other hand, express implications.
If prime Cs = {e , d} is to be part of the solution, then there
must be other compatibles in the solution that contain all its
implied classes, namely { a , g} and {d , e}. Since {a, g} is only
contained in C11, the selection of Cs implies the selection of
(311. This can be written as (E6 + Cll). Compatible { d , e } ,
however, is found in both C1 and Cd, hence the constraint

There are several methods of solving the binate covering
problem. We briefly outline one branch-and-bound method
based on column splitting. The reader is referred to [3], [14],
[15] for the details. The formula expressing the constraints can
be put in matrix form by assigning a column to each variable
and a row to each clause. Entry i,j is 2 if variable j does not
appear in clause z, is 1 if it appears there uncomplemented,
and is 0 otherwise.

The matrix is first simplified as much as possible by finding
essential columns and applying row and column dominance,
much in the same way as in the unate case. Then a column
is tentatively selected and a solution is recursively sought for
the residual problem under that assumption. The column is
then rejected and another solution is determined. The optimum
solution is the best of the two.

The algorithm prunes the search space by keeping up-to-
date upper and lower bounds. If the lower bound (the sum of
the costs of the partial solution and a lower bound on the cost
of the residual problem) is greater than the upper bound, then
the recursion is terminated. It is important to note that column
dominance and bounding rely on the additive property of cost.

(G + c1 + C4).

3.2. The Binate Covering Method
The binate covering method was developed by Grasselli and

Luccio [3]. This method converts state minimization to a binate
covering problem, hence the name. It can be summarized as
follows.

a) Form the merge graph, G M .
b) Find maximal compatibles.

c) Find lower bound bL as discussed in Section 11. If bL is

d) Find prime compatibles and class sets.
e) Form binate covering table of rows (state covering or

f) Solve with a generic binate covering algorithm package.
The covering matrix for the binate covering algorithm has two
parts. The first part is the “normal” part, which requires that the
current solution (that is, set of compatibles being considered)
covers all states of the given machine. This sub-matrix is unate,
that is, each of its entries M,, is 2 (meaning compatible j
does not contain state i) or 1 (meaning that it does contain
it). The second part imposes the constraint of closure on the
considered solutions. There is one row in the second part of
the covering matrix for each element of the class set of every
prime compatible C. The formation of these rows has been
illustrated in Section 3.1. The cost of each column is 1. Some
results of state minimization using this method are presented
in Section VII.

closed, stop. (b ~ is an optimum solution [9, pg. 3401).

closure constraints) and columns (prime compatibles).

3.3. The Closed Compatible Pair Set Covering Method

This method is analogous to that described in [16], and can
be derived by replacing prime compatibles with compatible
pairs, and then proceeding similarly except for cost evaluation.
It can be summarized as follows.

a x) As in the binate covering method.
Form the compatibility graph Gc, as described in Sec-
tion 11. The nodes of Gc are compatible pairs, and the
edges correspond to implied pairs.
Apply Tarjan’s algorithm for the strongly connected
components of a digraph [171 to find all closed subgraphs
of Gc . Each closed subgraph identifies a set of edges
(compatible pairs) of Ghf that is called a prime closed
edge set. Any closed set of compatible pairs is a member
of the power set of the set of prime closed edge sets;
hence the name.
Form a covering matrix, M , whose rows correspond to
states and columns to closed subgraphs. The problem is
to find a column covering set, which covers all rows, and
has minimum cost. This is done with a branch and bound
algorithm closely resembling that of the binate covering
algorithm discussed above.
The cost of a solution is, unfortunately, also the solution
of a covering problem, namely, the size of the minimum
closed clique covering of all the edges in the subgraph
of G,tf induced by the current solution. Note that the
current solution is just a set of closed subgraphs of Gc.
Each closed subgraph has a specific set of nodes of Gc ,
and hence, corresponding edges of G ~ J . An ordinary
unate covering routine may be called to find a tight lower
bound on the size of the minimum clique covering of all
edges of this subgraph of GLv. The edges corresponding
to unconditionally compatible pairs are always kept in
the subgraph.
If the solution found in Step g) is closed then the
bound is sharp, and we may proceed with the next
level of recursion. Else, the solution can be “shrunk”

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 2, FEBRUARY 1994

as discussed in Section VI. If closure cannot be gained
by shrinking, then the method resorts to binate covering
on the current subproblem. Fortunately this is a very
rare occurrence, based on the limited data we have at
this point.

The prime closed edge sets for the example of Fig. 1 are:

Pi = {bc} P2 = { d h }
P3 = {de} p 4 = { a s }
P5 = {cd}u P 3 U P4 pf3 = { c f } u P s

Pg = {eh}UPT PlO = { f g } u p 9
Pl1 = {cg}UP5UP10.

P7 = {ab,ad,be,ae}UPS Pa = { b d } u P 7

A cover of the matrix of Step f) is given by P I , Pa, and P ~ o .
The solution of the clique covering problem for these sets
yields the following closed cover,

(a , b, d , e) , (4 e, h) , (4 c), (f, 91,

as in the binate covering method. Some experimental results
for this method are presented in Section VII. These results
show this method to be surprisingly fast (this is discussed in
Section 3.4), although implementation is still incomplete in
some respects.

3.4. Cost Functions Other than the Number of States

Here we shall consider briefly the more general problem of
synthesizing the smallest cost (e.g., minimum gate count), or
most encodable machine, which covers the original. Since the
cost function for this more important problem is much more
complicated, some of the efficiencies of the listed methods will
disappear, due to the loss of important mechanisms which were
formerly operative.

For example, the binate covering method has sophisticated
and proven procedures for row and column dominance and
lower bound computation. Further, instead of having to search
the space of all closed coverings, this method needs only to
search the space of all closed coverings of prime compatibles.
At first glance, this seems far more efficient than the closed
compatible pair set method, which presumably would have to
search a much larger space. Experimentally, however, we have
found that this is not always the case. But even when it is the
case, there is still an intrinsic virtue to the compatible pair
covering method: Because its cost function is not assumed to
be additive, it can be completely arbitrary, and therefore this
method should work about as well for finding an “optimally
encodable” result as it would for finding a result FSM with a
minimum number of states.

IV. HEURISTIC STATE MINIMIZATION

As shown in Section VII, most of the examples we have en-
countered so far are amenable to the exact solution of the state
minimization problem. There are a few cases, however, where
the covering problem cannot be solved, or even formulated,
efficiently. In this section we introduce two heuristic tech-
niques that have reduced substantially the time and memory
requirements for the most difficult examples, while providing

Fig. 3. Isomorphic states.

excellent results in terms of optimality for all examples for
which an exact solution was known.

4.1. Isomorphic States
Definition I : Two states s1 and s2 are isomorphic iffor every

edge of the merge graph (sl, s,) there exists an edge (s 2 , s,) and
vice versa.

Fig. 3 illustrates the definition. Notice that since the merge
graph does not contain self loops (edges of the form (s~, s~),)
two isomorphic states are necessarily incompatible (or else,
the presence of the edge (SI, sa) would imply the presence of
(SI, SI) and (s2, ~ 2)) . It is readily seen that state isomorphism
is transitive. Also, if s1 and s2 are two isomorphic states,
then for every maximal compatible containing SI, there is a
corresponding maximal compatible containing sa. The latter
maximal compatible is obtained from the former by simply
replacing s2 for S I . This results generalizes straightforwardly
to sets of isomorphic states of arbitrary cardinality, thanks to
transitivity.

One immediate application of this result allows one to re-
duce the computation required to find all maximal compatibles.
From every set of isomorphic states of merge graph G M , one
base state is selected. Then all the other states in the set and
their edges are removed from the merge graph. If G$ is the
resulting graph, we can prove the following simple result, by
induction on the number of isomorphic state sets.

Lemma 1 : The maximal compatibles of Ghf can be computed
by finding the maximal compatibles of GE and then adding
to those all the compatibles obtained by replacing the other
isomorphic states for each base state in every maximal compatible
where it appears.

When the number of maximal compatible is very high, the
detection of isomorphic states by itself is not sufficient (see
example jac4 in Section VII). However, it can form the basis
for a heuristic algorithm that is now outlined.

1. Find isomorphic states and compute maximal compati-

2. Add a minimal number of maximal compatibles to cover

3. Make the resulting set of maximal compatibles closed;
4. Generate the prime compatibles from the set of maximal

compatibles obtained so far and solve the covering
problem.

The addition of maximal compatibles to cover the isomorphic
states is based on a simple greedy strategy: Among the
computed maximal compatibles, the one containing the most
base states is selected. Making the set of maximal compatibles

bles of the residual merge graph only;

the (nonbase) isomorphic states;

RHO et al.: MINIMIZATION OF INCOMPLETELY SPECIFIED STATE MACHINES 171

closed, on the other hand, requires checking the class sets of
the newly added maximal compatibles, possibly adding those
maximal compatibles that contain those implied classes not
included in any already selected class.

4.2 . Tight Upper Bound

large, the following heuristic method has been found useful.
In cases where the number of prime compatibles is very

1. Find the maximal compatibles;
2. Find the minimum closed cover composed of maximal

compatibles only (b ~ ; of Section 11);
3. Compute the prime classes contained in the maximal

compatibles of b ~ ; ;
4. Solve a covering problem with the set of compatibles

obtained by adding the generated prime compatibles to
the maximal compatibles bLr.

The rationale for this procedure is as follows. In many cases,
Step 2 gives an optimum solution. For those cases when this
is not true, the primes added are a small set of primes that
requires no additional primes to guarantee closure, thus pre-
venting excessive increase of computation time. Furthermore,
they are selected from the maximal compatibles of Step 2,
because these are (heuristically) good maximal compatibles.
By replacing a maximal compatible with a prime derived from
it, we hope to reduce the closure constraints, and thus be able
to drop maximal compatibles that were included not to satisfy
covering, but closure.

V. MAPPING
Here we consider the problem of optimally mapping the

reduced machine into cube table format, suitable for input to
an FSM state encoding algorithm. We introduce the problem
by means of a simple example.

Example I : Consider Fig. 4 representing a simple Moore
machine. Fig. 4(a) gives the state transition graph, and Fig.
4(b) the equivalent flow table. The merge graph is given in
Fig. 4(c), where the dotted lines visualize the compatibles
used in the solution. It should be noted that state S2 appears
in two different compatibles included in the solution. More
specifically, the implied class for both {SI, Sa} and {Sa, 5 3)

under input 1 is {SZ}. So, in forming the reduced flow
table (see Fig. 4(d)) we can satisfy the closure constraints
in two different ways for two entries. Clearly, not all four
combinations are equally effective.

The mapping problem can be stated as follows.
Given: A closed set of compatibles which covers all the
states of the original machine.
Find: A mapping of the implied classes into the compat-
ibles, so as to minimize the cost of the resulting machine.

Though the problem has been known for quite some time
[18], it has received relatively little attention. (One exception
is [19].) Ideally, the cost should reflect attributes like size,
speed, and testability of the implemented machines. Since the
effects of a given choice percolate through encoding, logic
minimization, and technology mapping, before they can be
assessed precisely, any method working atthe flow-table level

2 lfjqj
3

I . . I

(C) (d)

Fig. 4. Example of mapping problem.

must be heuristic. Our approach consists of anticipating the
effects of mapping on heuristic encodability measures such as

the mapping problem in two phases.
those from MUSTANG [20] JEDI [21], or MUSE [22]. w e Solve

1. Form a symbolic cube table where the next state field
of each cube is a set of states, rather than a single state.

2. Solve the optimization problem of selecting a unique
representative from each set of such options.

5.1. Forming the Symbolic Cube Table
Fig. 5 presents algorithm CUBEMAP to form the symbolic

cube table of the minimized machine, given the original cube
table F , and the specified closed covering 7, obtained by one
of the methods presented in Section 111. Note that the disjoint
input alphabet is computed at Line 1. This entails splitting
the original cubes so that the input parts of two cubes are
either identical or nonintersecting (Line 2). The unique input
parts form the disjoint input alphabet. By this process we are
effectively creating a cube table whose rows are in one-to-one
correspondence with the entries of the full-blown flow table,
with the exception that the next state entries will be sets of
next states. This may be a problem for large machines. On
the other hand, by working with a fine grain representation of
the cube table, we can exploit possibilities for cube merging
that would otherwise go unnoticed. The actual procedure that
we have implemented differs from CUBEMAP in two respects:
a) the disjoint input alphabet is computed only for the states
that are not incompatible; b) if the full flow table becomes too
large, the procedure resorts to different alphabets for different
rows.

5.2. Selecting a Unique Mapped Representation

Given a symbolic cube table such as that produced by
CUBEMAP, the next problem to be solved is to select a unique
representative from each of the next-state sets. One could
observe that this table is a symbolic relation (i.e., analogous
to a Boolean relation with symbolic input and output fields,)
and therefore, by the procedure presented in [23], one could
determine the set of unique representatives which minimizes

172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 2, FEBRUARY 1994

Procedure CUBE-MAP(F, S, y) {
F ’ = 0 ; n=O

1 AD = DISJOINTJNPUT-ALPHABET(F)
2 { E k } = CUBE-SPLITTING(F, A D)

foreach (input E AD) {
foreach (Cj E y) {

n = n + l
R = { IC 1 I S (E ~) s input , P S (E ~) E Cj }
.Un = { i 1 ci 2 C k E R N S (E k) }

F“ = F’ U { input, j, ,U”, nkER O S (E ~) }

3
4
5 K , = lMnl
6

1
1

7 return ((F * , M , K))
1

INPUT: F - A machine M in cube table format. S - The set of states of M. 7 - A closed covering {C’, C2, . . .}
of M .

OUTPUT: F’ - The minimized machine in cube table format, where each state corresponds to a specific member
c’ E 7 .

OUTPUT: M - A set of sets, one for each row in the mapped machine, representing the set of alternativesfor selecting
the next state for that cube of the reduced machine.

OUTPUT: K - A vector whose elements K, are the number of mapping alternatives for each row of F’. That is, Kn
is the number of ways to select the next state entry of F:, while maintaining the closure property.

Fig. 5 . Procedure CUBEMAP.

row count after symbolic minimization. The solution of the
problem also provides the optimum encoding as a by-product.

However, we also observe that this problem may be too hard
to solve practically, and, furthermore, cube count in the PLA
FSM representation is not the first objective of multi-level
targeted state-assignment algorithms. So, we consider here
algorithms for heuristically selecting from among the next-
state mapping alternatives, so as to optimize the encodability
of the resulting cube table FSM specification, by anticipating
the effects of mapping on encoding algorithms.

Let T be the symbolic flow table returned by CUBEMAP,

and let Nij be the set of next state alternatives for entry Tij,
that is, for present state i, and input j . Note that if N;j is a
singleton, then the mapping for state i and input j is fixed.

Our heuristic method estimates the literal savings made
possible by a particular choice. The savings taken into account
are due to distance-1 merging. A cube c can merge with
another cube c’ if PS(C) = PS(C’) and if rs(c) and IS(C’) are
distance-I apart. Alternatively, c can merge with c’ if I ~ (c) =
IS(C’) and if PS(C) and PS(C’) receive adjacent encodings.

Even if the above conditions are not strictly met, the
extraction of common cubes is still possible. The size of the
cube is given by the number of literals common to the two
cubes. Based on these considerations, the mapping procedure
works as follows.

1. For each next-state set N;j consider every element s k

in turn and determine its row and column values as
explained in the following;

2. Let the row (column) candidate for entry i , j be the
element of N;j with the highest row (column) value;

3. Choose between the row and column candidates the one
having the highest product of its two values.

The row value of Sk is computed as:

LjPXfP
P

where Lip is the sum of the number of don’t cares in the
intersection of the input parts and of the number of ones in
common in the output parts of the cubes corresponding to Tij
and Tip, and A$ is 1 if sk E Nip and 0 otherwise. For the
column value, we do not know the distance of the encodings
of two states in advance. So, we assume that that distance is
1 for every pair. The column value is thus computed as:

EK&;I
P

where K!p is analogous to L i p , only for entries Tij and Tpj,
and n i j is 1 if Sk E Npj and 0 otherwise. The number of input
literals in common is relevant because different “rows” of the
table may have different input alphabets.

VI. SHRINKING THE COMPATIBLES IN THE SOLUTION

Though a solution with the minimum number of states can
always be found by restricting attention to prime compatibles
only, one may be interested in exploring solutions containing
nonprime compatibles in order to minimize other indicators
like the gate count after encoding, logic minimization, and
technology mapping. As an example, we consider the FSM
of Fig. 1. The only four-state solution composed of prime
compatibles is

RHO er al.: MINIMIZATION OF INCOMPLETELY SPECIFIED STATE MACHINES 173

bbara
bbsse
beecount
ex 1
ex2
ex3
ex5
ex7
lion9
mark1
opus
scf
sse
tbk
train1 1
grasselli
luccio
house
unger65
pager
palama
tma
Ibk
green
jacl
jac2
jac3
jac4

TABLE I
EXPERIMENT SUMMARY

literals

FSM IV~ /-WO :V, iVc’,,,,, j’,,, :\ip,,,,V,,.,,,,,hr,,,or~~-reduced

412 I O 6 1 1 6 0 54 45
717 16
314 7

9/19 20
212 19
212 I O
212 9
212 10
211 9

5/16 15
516 10

27/56 121
7f7 16
613 32
211 11
311 8
211 6
211 22
211 8
315 22
211 6
716 20
613 32

21/17 53
1319 32

11/10 30
9/19 48
1011 65

36
4
2

129
37
26
32
9

20
1

70
36
16
25
14
8

104
I O
65
10
15
16

305
109
66

410
1514

11
4
2

36
10
6
6
5

12
1

12
11
16
5
5
3

30
3

32
5

15
16

5 24
109
31

618
32

11
7
2

1366
91
38
57
5

18
1

90
11
48
16
12
15

26 1
14
71
11
15
48

524
109
64

173 1
803

2 11 111 103
0 2 31 24

16 0 281 198
0 0 118 27
0 0 57 23
0 0 45 14
0 0 60 20
0 0 15 13
0 11 73 69
8 0 69 63

85 0 820 754
2 11 1 1 1 103
0 0 208 210
1 0 22 12
0 0 51 24
0 0 2 0 6
0 0 82 38
0 0 25 7
2 5 89 42
0 0 29 12
5 13 121 126
0 0 261 204
0 46 4364 3690
9 20 499 485
2 7 447 410
4 14 513 603
1 52 370 278

TOTAL 667 3095 1561 5440 143 192 8946 7603

A four-state solution including nonprime compatibles is

When subjected to the same logic synthesis procedure (see
Section VI1 for the details), the former resulted in 26 literals
and the latter in 24. The area after technology mapping was
reduced by 6%.

The number of all compatibles, including those that are
not prime, is generally too large to allow an exhaustive
search of the optimum solution. In Section 3.3 a method
has been described that avoids the computation of the prime
compatibles. Here we present a post-processing technique
that tries to shrink the compatibles in a closed cover, in
the attempt to maximize the number of don’t care entries
in the minimized flow table. Shrinking a compatible C,
means finding a compatible Ck C C, that can replace for
C,, without violating covering and closure constraints. The
purpose is similar to the one pursued in [24], but does not
require an increase in the number of prime compatibles. A
different approach to finding solutions not restricted to prime
compatibles is described in [25].

Let y = {C, ~ . . . , Cn} be a closed cover. A generic
compatible C, may contain states that are not found in any
other compatible of y. These states are said essential in this
context and they cannot be removed from Ca. The nonessential
states may be removed from CO, if doing so does not violate
the closure constraints.

TABLE I1
RESULTS OF EXACT MINIMIZATION WITH BINATE COVERING

time (s)
FSM iV, literals cover map total
bbara 7 45 0.00 0.00 0.00
bbsse 13 103 0.00 0.15 0.17
beecount 4 24 0.00 0.00 0.01
ex 1 18 198 0.00 0.02 0.06
ex2 5 27 4669.44 0.01 4702.22
ex3 4 23 0.66 0.01 0.80
ex5 3 14 0.05 0.00 0.07
ex7 3 20 0.10 0.00 0.16
lion9 4 13 0.00 0.00 0.00
mark 1 12 70 0.00 0.19 0.21
opus 9 63 0.00 0.00 0 . 0
scf 97 786 0.00 0.05 0.75
sse 13 103 0.00 0.16 0.17
tbk 16 210 0.00 1.65 3.86
train 1 1 4 12 0.00 0.00 0.01
grasselli 4 24 0.00 0.00 0.02
luccio 2 6 0.00 0.00 0.01
house 9 45 12.33 0.04 12.91
unger65 3 7 0.00 0.00 0.01
pager 10 42 0.00 0.02 0.04
palama 3 12 0.00 0.00 0.01
tma 18 126 0.00 0.05 0.05
Ibk 16 204 0.00 1.64 4.09
green 37 3690 0.55 520.08 732.98
jac 1 21 485 0.23 0.38 0.73
jac2 14 410 0.02 0.62 0.99
jac3 19 603 2304.65 0.90 2361.51
TOTAL 368 7365 6988.03 525.97 7821.84

There are two reasons why removal of nonessential states
may destroy closure. The state is part of an implied class
of some other compatible, or the reduced compatible has
a larger class set. Based on this observation, the following
simple procedure can be devised. Every nonessential state is
considered in turn and tentatively removed. The resulting cover
y’ is then checked for closure. If the answer is positive, then
y’ replaces y.

We have found this strategy quite effective in improving
the quality of the solutions. However, the shrunk solution may
be worse than the original one when the number of mapping
choices is significantly reduced. This is taken into account
by performing the shrinking process in two phases. The first
phase takes place before mapping and is constrained: A move
is accepted only if the number of mapping choices is not
decreased. The second phase is performed after mapping and
is unconstrained.

VII. EXPERIMENTAL RESULTS

Table I lists the main features of our experiments. The
FSM’s come from different sources. Many come from the
MCNC benchmark set [26]. Actually all the MCNC FSM’s
were run. Those not reported, either have no compatible
states, or have all states compatible, and hence degenerate to
combinational logic, once minimized2. For all the cases not
reported, the processing times were negligible. Our test suite
also contains some contrived examples intended to put the

2These examples are dotzjile. modulol2. sla, and s8.

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 2. FEBRUARY 1994

literals I area(pm2) I delay (ns)

TABLE 111
RESULTS OF TECHNOLOGY MAPPING

15.21
111
31

28 1
118
57
45
60
15
73
69

820
111
208
22
51
20
82
25
89
29

121
26 1

4364
499
447
513
370

103
24

198
27
23
14
20
13
69
63

754
103
210

12
24
6

38
7

42
12

126
204

3690
485
410
603
278

95584
27840

232928
98368
49648
38048
52896
12992
67280
61712

683008
95584

174000
18560
45008
16704
66816
22736
75632
26448

1081 12
217152

3130608
422240
371200
416672
310416

90480
22736

164720
23664
19952
12528
15776
12064
66816
56608

624544
90480

182352
12064
22272
4640

35264
7888

40368
9744

103936
169360

2670784
393936
343360
494 160
238960

18.12
6.94

21.11
29.40
12.88
8.67

12.83
3.51

10.33
11.22
54.35
18.12
28.16
3.23

10.54
6.93

19.71
9.63

12.33
7.89

32.41
39.3 1
44.60
21.37
2 1.47
24.25
23.99

bbara
bbsse
beecount
ex 1
ex2
ex3
ex5
ex7
lion9
mark1
opus
scf
sse
tbk
trainl 1
grasselli
luccio
house
unger65
pager
palama
tma
lbk
green
jac 1
jac2
jac3
jac4

8.46
21.58
5.91

23.57
6.53
6.09
2.35
5.80
4.17
9.98

13.74
49.45
21.58
35.51
5.22
7.80
2.76
7.91
2.17
8.43
5.58

22.02
3 1.24
36.44
28.04
32.79
41.70
39.59

TOTAL 8946 7603 6986912 5667040 528.51 486.41

algorithms under strain. This is the case of juc4, that has 3 859
641 maximal compatibles (the number in Table I is the results
obtained by the isomorphic heuristic) and, to a lesser extent, of
other examples. In Table I, N;, No, and N , are the numbers of
inputs, outputs, and states before minimization, respectively.
The other columns show the numbers of compatible pairs
(Ncom), maximal compatibles (Nmax), and prime compatibles
(Nprime); the number of incompatible states (Nincom), and
the number of states that are isomorphic to some other states
(Niso). Finally, the two rightmost columns report the number
of literals after encoding with MUSE and optimization with
MIS2.2 [27] (standard Boolean script preceded by cspfsimplzfi
if external don’t cares exist [28]) for the original and the
minimized machines. The results for the minimized machines
are the best between those of Tables I1 and VI. In all tables,
times are referred to DECstations 5000/200, except when
otherwise stated.

Table I1 gives the results obtained with the exact algorithm
based on the method of Grasselli and Luccio and binate
covering. There, N , represents the minimum number of states
of a cover of the machine. A break-down of the execution
times is given to show that, problems may actually arise
in all phases of the algorithm, especially in the solution of
the covering problem. The map time is the time required to
build the reduced flow table, given the set of compatibles. It
is apparent that most cases are amenable to exact solution.
We didn’t manage to find the exact solution for jac4, due
to the aforementioned problem (over three million maximal
compatibles).

TABLE IV
COMPARISON OF MAPPING HEURISTICS

options
FSM edges total hl h2 h3
trainl 1 3 6 12 12 12
beecount 8 16 24 23 24
ex2 5 16 21 27 27
ex3 4 8 25 22 23
ex5 1 3 14 14 14
ex7 2 5 20 20 20
lion9 2 4 13 13 13
grasselli 8 16 24 24 24
house 7 18 41 45 45
pager 1 5 42 48 42
palama 1 2 12 12 12
tma 26 79 124 123 126
unger65 1 2 10 7 7
jacl 22 44 485 504 485
jac2 58 143 462 418 410
jac3 29 70 61 1 61 1 603
TOTAL 178 431 1946 1923 1887

Table I11 compares the results of applying encoding, logic
optimization, and technology mapping to both the original
and the minimized machines. As in Table I, the best result
between Table I1 and Table VI was used for each machine. The
data reported refers to the combinational logic of the FSM’s.
Routing area is not included. MIS2.2 was used for technology
mapping [26] with the lib2 library from MCNC [26]. Both the
literal count and the total cell area decreased by about 15%.
Delay decreased by only 8% and, unlike area, there are in this
case big losses as well as big wins. This reflects the fact that
no special consideration is paid to delay in the optimization
process and indicates an area for future research. Not shown
in the table is the reduction of the flip-flop count by 21%.

The comparison of three mapping heuristics is reported in
Table IV. The first method (h l) is simply picking the first
element in each set of next states3. Method h2 consists of
counting the number of occurrences of each possible choice
in the other entries of the same row and column. The literal
savings are not taken into account. Finally, Method W is
the one described in Section V. Only examples for which
mapping was not trivial are reported. The number of edges of
the transition graph for which there was a choice of different
next states and the total number of options are reported. For all
methods, the table gives the number of literals obtained starting
from the exact solution found with the binate covering method.

The effectiveness of shrinking can be evaluated from the
following. Synthesis of green could not be completed starting
from the nonshrunk solution, because of the excessive memory
requirements. For the remaining examples whose solutions
could be shrunk, the total literal count was reduced from 2175
to 2095 (or 4%).

Preliminary results for the compatible pair method are given
in Table V. The two numbers in the rightmost column are
the times taken without/with closure check; * means timeout.
Results so far have been obtained with the number of states as

’Picking always the first choice gave consistently the best results among all
the trivial algorithms, including random selection. This is because this method
guarantees more uniform selections than, for instance, random choices.

RHO er al.: MINlMIZATION OF INCOMPLETELY SPECIFIED STATE MACHINES 175

TABLE V
RESULTS WITH THE COMPATIBLE PAIR METHOD

FSM solution closed? N* time (s)
lbk YES 16 3.35121.67
Icf YES 91 4.4715.72
scf YES 97 5.0416.77
tbk YES 16 3.3121.60
bbsse YES 13 0.1810.23
beecount YES 4 0.0510.07
ex1 YES 18 0.0510.37
markl NO 15 .28/0.33
opus YES 9 0.01/0.0s
green YES 37 14.35/164.38
jac 1 YES 21 1.4/*
lion9 YES 4 0.00/0/00
jac2 NO 30 3.68/*
pager YES 10 1.01/1.10
ex3 NO 10 3.06114.97
ex5 YES 3 1.6815.17
ex7 YES 3 2.48112.03

kohavi6 YES 3 0.1510.12
kohavi7 YES 3 0.1310.08
kohavi8 NO 6 0.1510.22
bbara YES 7 0.15/0.15
bbtas YES 6 0.0310.05
sse YES 13 0.15/0.20
palama YES 1 0.0810.05
ex2 YES 5 249.64/*
jac3 YES 19 38672.64/*
jac3 YES 19 (1020.50)/*

trainl 1 YES 4 0.4210.3n

objective. Times refer to SUN Sparcstations 1. The second
entry for j u d gives the time obtained when each unate
covering problem is solved heuristically by stopping the search
at the first leaf of the solution tree.

Finally, Table VI collects the results of applying the heuris-
tic techniques described in Section IV. The rightmost column
lists which of the techniques have been applied: I means
isomorphic state identification and T means tight upper bound.
A technique not listed for a particular example did not apply
to it.

The only example where the heuristic approach did not
deliver the true optimum is juc3, where the approximate
solution had one more state. On the positive side we can note
that:

The times for the most difficult examples were substan-
tially reduced;
The isomorphic state heuristic makes it possible to solve,
though in an approximate way, an example with over
three million maximal compatibles. Such a solution is
practically precluded to all methods based on the exhaus-
tive enumeration of all maximal compatibles.

The only previous work reporting results on public domain
benchmark FSM's is [25]. Table VI1 compares results from
that work to ours. The literal counts for some of the examples
were not reported in [25]. The CPU times of FSMRED were
divided by 10 to account for the difference of computer
speeds. STAMINA is the name of our program implementing
the binate covering approach. FSMRED is faster for example
ex2, but it obtains a substantially worse result. On most other
examples, STAMINA is faster even when solving the problem

TABLE VI
RESULTS OF HEURlSTICMINIMrZATION

FSM 'VS time (s) literals heuristics
bbara 7 0.01 45 T
bbsse 13 0.17 103 I
beecount 4 0.01 24 I
ex 1 18 0.06 198 T
ex2 S 79.92 27 T
ex3 4 0.39 25 T
ex5 3 0.07 14 I
ex7 3 0.12 20 T
lion9 4 0.00 13 T
markl 12 0.22 69 I

scf 97 0.76 754 T
sse 13 0.18 103 I
tbk 16 3.88 210 T
trainl 1 4 0.01 12 T
grasselli 4 0.03 24 T
luccio 2 0.00 6 T
house 9 1.96 38 T

opus 9 0.00 63 T

unger65 3 0.01 7 T
pager 10 0.04 48 I
palama 3 0.01 12 T

green 37 644.28 4199 I
jac 1 21 0.49 493 I
jac2 14 1 .oo 470 I
jac3 20 28.42 613 I
jac4 20 27 8 I ,T 24618.85
TOTAL 389 25378.05 8198

tma 18 0.06 126 T
Ibk 16 4.10 204 T

exactly. STAMINA produces fewer states and considerably
fewer literals. The latter comparison, however, must be taken
with a grain of salt, since the encoding programs are different
and the misll commands used in [25] were not reported.

In [7] the number of states is reported for examples taken
from the literature. STAMINA obtains the minimum number of
states on all those machines, when run in heuristic mode. Run
times are negligible for all the examples.

VIII. CONCLUSIONS

This paper has described several efficient algorithms for the
minimization of finite state machines. We have considered how
to find solutions that result in better encoded machines, rather
than just decrease the numbers of states. When an additive cost
function such as the number of states is used, one has to select
among the possibly many solutions with the same number
of states. In that context, we have discussed the mapping
and shrinking problems and shown their relevance. We have
also considered the implications of cost functions that are not
purely additive. One algorithm, based on the coverage of the
closed subgraphs of the compatibility graph, has been shown
to be remarkably efficient, in spite of its ability to deal with
nonadditive cost functions.

Our experiments indicate that most hand-designed finite
state machines are amenable to exact minimization. We have
also shown that heuristic techniques can be used in other
cases. In all but very few cases, state minimization followed
by state mapping and solution shrinking provides a better
starting point for the subsequent synthesis tasks of encoding,

176

,

I

I

’
-

-

-

-

I

~

’

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 13, NO. 2, FEBRUARY 1994

4 0.01 24
5 4702.22 27
3 0.07 14
3 0.16 20

12 0.21 -

9 0.00 -

97 0.75 -

13 0.17 -

16 3.86 210
4 0.01 12

173 4707.5 352 1

TABLE VI1
COMPARISON To FSMRED [ZSI

FSMRED STAMINA
literals exact heuristic

bbara 0.2 7 0.00 7 0.01
beecount 4
ex2 10
ex5 5
ex7 4

mark1 12

scf 97
sse 13
tbk 16

train11 4
TOTAL 181

opus 9

0.1 37 62
0.3 87 130
0.1 19 30
0.1 25 35
0.1 - -

0.1 - -

99.8 - -

0.1 - -

3.5 278 436
0.1 18 32

104.5 514 787

4 0.01 24
5 72.92 27
3 0.07 14
3 0.12 20

12 0.22 -

9 0.00 -

97 0.76 -

13 0.18 -

16 3.88 210
4 0.01 12

73 78.2 352

logic optimization, and technology mapping, when area is
the goal. Further investigation is required to better direct the
minimization process to improve the speed of the FSM’s and
to identify useful nonadditive cost functions. Another area
of investigation is the development of algorithms that trade
off some optimality for the ability to deal with machines
even larger, and with many more compatibles, than those we
have used for our experiments. One possible source of similar
machines is the collapsing of two or more simpler machines
in an attempt to resynthesize a network of FSM’s.

REFERENCES

M. C. Paul1 and S. H. Unger, “Minimizing the number of states in
incompletely specified sequential switching functions,” IRE Trans. Elect.
Comp., vol. EC-8, pp. 356367. Sept. 1959.
S. Ginsburg, “Synthesis of minimal state machines,” IRE Trans. Elect.
Comp., vol. EC-8, pp. 4 4 1 4 9 , Dec. 1959.
A. Grasselli and F. Luccio, “A method for minimizing the number
of internal states in incompletely specified sequential networks,” IEEE
Tran. Elect. Comp., vol. EC-14, pp. 350-359, June 1965.
Y. V. Pottosin, “Experimental evaluation of one method of minimizing
the number of states of discrete automata,” in Synthesis of Digital
Automata, V. G. Lazarev and A. V. Zakrevskii, eds., transl. from
Russian. New York: Consultants Bureau, 1969, pp. 92-98.
E. B. Lee and M. Perkowski, “Concurrent minimization and state
assignment of finite state machines,” in IEEE Cony! Systems. Man, and
Cybernetics, Halifax, Canada, Oct. 1984, pp. 248-260.
M. J. Avedillo, J. M. Quintana, and J. L. Huertas, “A new method for
the state reduction of incompletely specified sequential machines,” in
Proc. European Design Automation Conf., Glasgow, U.K., Mar. 1990,

M. J. Avedillo, J. M. Quintana, and J. L. Huertas, “New approach to
the state reduction in incompletely specified sequential machines,” in
IEEE Int. Symp. Circuits and Systems, New Orleans, LA, May 1990,

B. Reusch and W. Merzenich, “Minimal coverings for incompletely
specified sequential machines,” Acta Informatica, vol. 22, pp. 663-678,
1986.
Z . Kohavi, Switching and Finite Automata Theory, 2nd ed. New York:
McGraw-Hill, 1978.
E. J. McCluskey, Logic Design Principles. Englewood Cliffs, NJ:
Prentice-Hall, 1986.
J.-K. Rho, G. D. Hachtel, and F. Somenzi, “Don’t care sequences and
the optimization of interacting finite state machines,” in IEEE Int. Cony!
Computer-Aided Design, Santa Clara, CA, Nov. 1991, pp. 418421.
E. J. McCluskey, Jr., “Minimization of Boolean functions,” Bell Syst.
Technical J . , vol. 35, pp. 1417-1444, Nov. 1956.
S. R. Petrick, “A direct determination of the irredundant forms of a
Boolean function from the set of prime implicants,” Tech. Rep. AFCRC-

pp. 552-556.

pp. 440-443.

TR-56-1 IO, Air Force Cambridge Research Center, Cambridge, MA,
Apr. 1956.

[14] A. Grasselli and F. Luccio, “Some covering problems in switching
theory,” in Networks and Switching Theory, G. Biorci, ed. New York:
Academic Press, 1968.

[15] R. K. Brayton and F. Somenzi, “An exact minimizer for Boolean
relations,” in IEEE Int. Con& Computer-Aided Design, Santa Clara, CA,
Nov. 1989, pp. 316319.

[16] S. C. DeSarkar, A. K. Basu, and A. K. Choudhury, “Simplification of
incompletely specified flow tables with the help of prime closed sets,”
IEEE Trans. Comp., vol. C-18, pp. 953-9.56, Oct. 1969.

[17] R. Tarjan, “Depth first search and linear graph algorithms,” SIAM J .
Computing, vol. 1, pp. 146160, 1972.

[181 S. H. Unger, Asynchronous Sequential Switching Circuits. New York:
Wiley, 1969.

[19] M. Perkowski, A. Rydzewski, and P. Misiurewicz, Teoria Uktadow Log-
icznych. Warsaw, Poland: Wydawnictwa Politechniki Warszawskiej,
1978, in Polish.

[20] S. Devadas, H.-K. T. Ma, A. R. Newton, and A. Sangiovanni-
Vincentelli, “MUSTANG: State assignment of finite state machines
for optimal multi-level logic implementations,” IEEE Trans.Computer-
Aided Design, vol. CAD-7, pp. 129G1300, Dec. 1988.

[21] B. Lin and A. R. Newton, “Synthesis of multiple level logic from
symbolic high-level description languages,” in Proc. IFIP Int. Cony!

[22] X. Du, G. D. Hachtel, B. Lin, and A. R. Newton, “MUSE: A multi-
level symbolic encoding algorithm for state assignment,” IEEE Trans.
Computer-Aided Design, vol. 10, pp. 28-38, Jan. 1991.

[23] B. Lin and F. Somenzi, “Minimization of symbolic relations,” in IEEE
Int. Conf. Computer-Aided Design, Santa Clara, CA, Nov. 1990, pp.

[24] G. V. Russo and G. Palamh, “Minimization of incompletely specified
sequential machines,” Digital Processes, vol. 6 , pp. 199-206, 1980.

[25] L. N. Kannan and D. Sarma, “Fast heuristic algorithms for finite state
machine minimization,” in Proc. European Design Automation Conf.,
Amsterdam, The Netherlands, Feb. 1991, pp. 192-196.

[26] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” Tech. rep., Micro-electronics Center of North Carolina,
Research Triangle Park, NC, Jan. 1991.

[27] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: A multiple-level interactive logic optimization system,” IEEE
Trans. Computer-AidedDesign, vol. CAD-6, pp. 1062-1081, Nov. 1987.

[28] H. Savoj and R. K. Brayton, “The use of observability and external don’t
cares for the simplification of multi-level networks,” in Proc. Design
Automation Conf., Orlando, FL, pp. 297-301, June 1990.

[29] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang, “Technology mapping in MIS,” in Proc. IEEE Int. Conf.
Computer-Aided Design, Nov. 1987, pp. 1 1 6 1 19.

VLSI, Aug. 1989, pp. 187-196.

88-9 1.

June-Kyung Rho received the B. S. degree in elec-
trical engineering from Seoul National University in
1982 and the M. S. degree in electrical engineering
from Korea Advanced Institute of Science and Tech-
nology (KAIST) in 1985 all in Seoul, Korea. He
recived the Ph. D. degree in electrical engineering
from the University of Colorado at Boulder in 1993.

He is currently a Senior Engineer at Gold Star
Information and Communication Inc., Seoul, Korea.
He worked for Cadence Design Systems, Lowelll,
MA, Mitsubishi Electric Reasearch Laboratories,

Cambridge, MA, and Synopsys, Mountain View, CA as a summer intern. His
research interests include logic synthesis, finite state machine optimization,
and formal verification.

RHO et al.: MINIMIZATION OF INCOMPLETELY SPECIFIED STATE MACHINES 177

Gary D. Hachtel (S’62-M’65-SM’74-F’80) re-
ceived the B. S. degree from the California Institute
of Technology in 1959 and the Ph. D. degree from
the University of California, Berkeley, in electrical
engineering.

He has taught at U.C. Berkeley, at New York
University, at U.C.L.A., where he was Regents
Lecturer in 1974, and at the University of Denver
(Department of Mathematics). From 1965 to 1981
he was with IBM at the Thomas J. Watson Research
Center at Yorktown Heights, NY, where he was

manager of Modeling and Systems Design in the Mathematical Sciences
Department. Since 1981 he has been Professor of Electrical and Computer
Engineering at the University of Colorado (Boulder). Since 1981 he has
been a principal investigator on research and equipment grants, which have
brought more than $3M to the University of Colorado. He is currently
overall grant administrator and coprincipal investigator on a three-year joint
$2.3M Boulder/Berkeley/Stanford research grant(Bou1der share $.7M), jointly
sponsored by NSF and DARPA, for which $2.7M renewal proposal has just
been forwarded to NSF from the University of Colorado. His current research
is on theory and algorithms for sequential and combinational logic synthesis,
simulation, testing, layout, spare matrices, and optimization.

Dr. Hachtel was an Associate Editor for the International Journal for Nu-
merical Merhods zn Engineering and for the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS. He is now an Associate Editor for the International Journal
for Mathematics and Computation in Electronics and Electrical Engineering
and for the Journal of Formal Methods in System Design. He received an
IBM Outstanding Contribution Award for integrated circuit device modeling
in 1968 and an IBM Outstanding Invention Award for the Tableau Approach
to Circuit Simulation and Design. In 1971 he was corecipient of the best paper
award from the Circuits and Systems Society and in 1979 he was corecipient
of the W.R.G. Baker award for the best IEEE Proceedings or Transactions
article to appear in calendar year 1978. In 1981 he was a distinguished
lecturer of the Circuits and Systems Society. In 1989 he was corecipient of an
outstanding paper award from the 1989 Hawaii International Conference on
System Science, and was awarded the annual Faculty Research award from the
College of Engineering at the University of Colorado. In 1991 he was awarded
a Fulbright Fellowship, as well as a Faculty Fellowship from the University of
Colorado, to study at the Universidad Politecnica de Madrid for the 1991-1992
academic year. He is coholder of U.S. 3,750,409, the second software patent
issued. He is a co-organizer of IBM/Boulder/Berkeley/Stanford Summer Logic
Synthesis Seminar, held annually since 1980.

Fabio Somenzi (M’88) received the Dr. Eng.
degree in Electronic Engineering from Politecnico
di Torino, Italy, in 1980.

He was with SGS-Thomson Microelectronics
from 1982 to 1989, responsible for computer-
aided digital design. From 1984 to 1987 he taught
digital logic design at the Computer Science
Department of the University of Milano, Italy.
In 1987 he visited the Electrical Engineering and
Computer Science Department of the University of
California, Berkeley. Since 1989, he has been with

the Department of Electrical and Computer Engineering of the University
of Colorado, Boulder, where he is currently an Associate Professor. His
research interests include synthesis, simulation, verification, and testing of
logic circuits.

Reily M. Jacoby received the B. S. degree in
physics from the University of Hawaii in 1977 and
the B. S. E. E. degree from the same institution in
1978. He was awarded the M. S. E. E. degree and
the Ph. D. degree in electrical and computer engi-
neering from the University of Colorado, Boulder,
in 1986 and 1989, respectively.

He spent five years in industry working for Mo-
torola and GenRad designing and implementing
software systems. At GenRad he participated in the
design and implementation of a functional level test

systems. Since 1989 he has been working for Cadence Design Systems in
Lowell, MA. His current research interests involve developing and implement-
ing algorithms for logic verification of combinational logic circuits, automatic
test pattern generation, multiple-level logic synthesis, and optimization. He
has coauthored seven papers in these areas during the last four years.

