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Abstract: Experiences with heuristics for the state 
reduction of finite-state machines are presented 
and two new heuristic algorithms described in 
detail. Results on machines from the literature and 
from the MCNC benchmark set are shown. The 
area of the PLA implemention of the com- 
binational component and the design time are 
used as figures of merit. The comparison of such 
parameters, when the state reduction step is 
included in the design process and when it is not, 
suggests that fast state-reduction heuristics should 
be implemented within FSM automatic synthesis 
systems. 
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1 Introduction 

Nowadays, technological advances lead to more and 
more sophisticated digital system. It is impracticable to 
realise them without the help of CAD tools [l-31. 
Systems for the design of finite state machines (FSM) 
have been implemented since the early 1960s but, few of 
them included state minimisation because the inherent 
complexity of this process. In particular, it was shown 
that the reduction of completely specified finite automata 
can be achieved in O(n log n) steps [4]. The minimisation 
of incompletely specified finite automata is a NP- 
complete problem [SI. Nevertheless, FSM designers have 
recently pointed out the need for efficient algorithms for 
the minimisation of large machines [lS, 161. 

The minimisation of the number of states is an import- 
ant task in the optimal design of sequential circuits. 
Reducing the number of states corresponds to decreasing 
the number of transitions of the sequencing functions and 
eventually to reducing the number of implicants in a two- 
level logic realisation or reducing the number of literals 
in a multilevel one. Moreover, a reduction of the number 
of states may correspond to a reduction of the number of 
bits that is needed for the state encoding [6]. 

Another area where state minimisation applies is the 
test generation for sequential machines. Many of the 
reported approximations are ineffective when the number 
of states in the circuit is large and the test demands long 
input sequences. 

In this paper we deal with the state minimisation 
problem as a part of an automatic synthesis system. After 

giving some basic concepts to make the paper self con- 
tained, we review existing methods for state minimisation 
of a FSM. Emphasis is placed on heuristic approaches, 
establishing a distinction between constructive heuristics 
and iterative improvement techniques. Two new methods 
for solving this problem are described, each from one of 
the two categories above. Experimental results are given 
and a detailed comparison is carried out mainly in terms 
of silicon area and computer time. 

I state reduction 1 

state assignment 

t 
1 logic minimisation I 
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Symbolic descriptions consist of a set of symbolic 
implicants [7]. Each symbolic implicant has four com- 
ponents : 

i s 6(i, s) L(i,  s) 

and represents the state transition and outputs produced 
when input i is applied to the FSM being in state s. The 
present state s and the next state 6(i, s) are symbolic rep- 
resentations (labels) which will be coded in the state 
assignment phase. Input and output functions can be 
both symbolic, in which case they will also be optimally 
encoded, or binary-valued due to the constraints imposed 
by other components of the system being designed. If the 
next state or outputs are not specified for all (input, 
present state)-pairs the FSM is said to be incompletely 
specified. 

State tables (tabular symbolic descriptions) are the 
starting point of classical state reduction theory [SI. The 
problem can be stated as: ‘given a state table, find 
another one which specifies the same external behaviour 
with a minimum number of states’. 

We briefly review for the sake of completeness some 
basic concepts in state reduction [8-1 11. Internal states s, 
and s j  are compatible if: 

(a)  for any input i, E I such that both I(i, ,  si) and >.(i,, 
s,) are specified 

A(&, si)  = sJ) 

(b) for any input i, E 1 such that both 6(ik, si )  and 
6( ik ,  s,) are specified 

6(i,, si) is compatible to 6(i,, s,) 

A compatibility class or compatible C ,  is a set of states 
such that members of the set are pairwise compatible. A 
compatible which is not a proper subset of any other 
compatibility class is called a maximal compatible (MC). 
If there is an input such that sk is the next state of si and 
sf is the next state of s, and (s,, sf) # (sir sJ) then we say 
that (sk, sf) is implied by ( s i ,  s j ) .  

The class set P i  implied by the compatible C,  is the set 
of all compatibles Cij implied by Ci for all inputs ij ,  such 
that 

(i) Cij  has more than one element 
(ii) Ci, @ Ci 
(iii) C ,  @ C ,  if C, E P ,  

The closure class set E i  of a compatible Ci is a set of all 
compatibles implied by Ci obtained by repeated use of 
transitivity of implication, such that the compatibles 
which are subsets of either Ci or any other member of Ei 
are removed from the set. 

A compatible Ci dominates a compatible CJ if C, 2 C, 
and P i  L P , .  A compatible that is not dominated by any 
other compatible is called a prime compatibility class 
W). 

A collection of compatibles covers all states of a state 
table if every state is contained in at least one compatible 
in the collection. 

A collection of compatibles is closed if for each com- 
patibility class in it, Ci = isil, s i 2 ,  . . . , si,,,} and any input 
i,, the set of states {6(ik, sil), 6( ik ,  si2),  ..., & k ,  si,,,)} is 
contained in at least one compatible of the collection. 

3 Exact minimisation approaches 

A fundamental theorem [lo] states that, given an incom- 
plete state table, another state table specifying the same 
external behaviour corresponds to each closed set of 
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compatibility classes which covers all internal states of 
the given table. Classical approaches to the state 
reduction problem are structured in two well differen- 
tiated steps: 

(a)  generation of the complete set of some kind of com- 
patibility classes (prime compatibles [9], prime closed 
sets [12], etc.) 

The allowed compatibility classes are those for which 
there is assurance a minimum cardinality closed cover 
exits which is composed uniquely of them. There are 
drawbacks related to both steps. Concerning the first one, 
the number of those compatibility entities might be too 
large precluding an efiicient generation. The second step 
implies the solution of a minimum closed covering 
problem, which is known to belong to the class of NP- 
complete problems for incompletely specified finite state 
machines. Then, the very nature of this problem has pre- 
cluded the inclusion of a state minimisation step in many 
FSM design systems during the 1970s and early 1980s. 

However, advances both in computing power and heu- 
ristic algorithms have convinced researchers that revising 
state minimisation concepts is worthwhile [13-161. But 
nowadays FSM designers are no more interested in sym- 
bolic descriptions with a minimum number of states; 
instead they focus the FSM synthesis process as a global 
optimisation task aimed at obtaining minimal cost imple- 
mentations both in terms of silicon area and design time. 
It is well known that a symbolic description with a 
minimal number of states is not necessarily the appropri- 
ate starting point when minimal area implementations 
are looked for; however, usually a reduction in the 
number of states leads to a reduction in the complexity of 
the resulting FSM. Then, there is a need for developing 
efficient algorithms which are able to produce FSMs 
optimised in terms of silicon area, speed, testability, etc. 

(b)  extraction of a minimum closed cover. 

4 Heuristic minimisation approaches: previous 

There are several styles of heuristic strategies for solving 
combinatorial optimisation problems. We classify these 
strategies into two categories: constructive approaches, 
and iterative improvement methods. In constructive heu- 
ristics, a good solution to the problem being solved is 
built up piece by piece. This kind of approach to the 
state-reduction problem follows the structure of classical 
methods but, instead of attempting to determine 
minimum solutions, near-minimum (minimal) ones are 
heuristically selected through 

(a)  generation of a set (usually, a complete set) of some 
kind of compatibles 

(b) heuristic selection of minimal closed cover. 

Heuristic algorithms were developed as early as 1972 by 
Bennets 1181. In this pioneering work it was pointed out 
that the type of initial compatibles on which they are 
based is not so critical. Bennets proposed a reduction 
algorithm based on the maximal compatible sets, MCs. 
Using this subset of the prime compatible set reduces (in 
some cases drastically) the number of candidate compat- 
ibles. The procedure consists of selecting one of the essen- 
tial (or quasi-essential) MCs and attempting to satisfy its 
closure requirements (generating one of the smallest set 
of MCs that satisfies the violated closure requirements 
for the MC selected). The result will be a closed set of 
MCs that may or may not provide full covering on the 

work 

I E E  PROCEEDINGS-E, Vol.  139, No .  6 ,  NOVEMBER 1992 



initial set of states. The procedure is repeated until a full 
cover is achieved. 

Very recently, several heuristic algorithms for FSM 
minimisation have been proposed. Kannan and Sarma 
[lS] begin by generating the set of all the maximal com- 
patibles. Then a minimal set of maximal compatibles 
which covers all the states is built up. Finally, if the FSM 
is incompletely specified and the minimal cover is not the 
complete set of maximal compatibles, this minimal cover 
is expanded to obtain an optimal closed cover. Two dif- 
ferent heuristic algorithms are proposed for the last step. 
In the ‘large set’ approach, each compatible in the 
minimal cover is checked for closure and appropriate 
compatibles are added to fulfill closure requirements. At 
every step, extra states are tried to be added to compat- 
ibles in the cover. New sets are created only if absolutely 
necessary. In the ‘lean set’ approach, all the states that 
occur more than once in the set of maximal compatibles 
in the minimal cover are removed. Then closure require- 
ments are satisfied adding states to the existing compat- 
ibles or adding new compatibles. 

Hachtel et al. [16] stated that exact state minimisation 
is feasible for a large class of practical examples but have 
also pointed out the interest of heuristic techniques for 
the state minimisation of FSM generated by sequential 
synthesis systems. Two heuristic approaches are pre- 
sented to solve the problem. In both of them they 
attempt to reduce the time and memory requirements by 
generating only a subset of the prime class set for the 
subsequent closed covering problem. First, a closed cover 
composed of maximal compatibles uniquely is found. 
Then, only the prime classes contained in the maximal 
compatibles of the previous solution are computed and 
used to formulate a binate covering problem [9, 101 
which is then solved exactly. There are two different heu- 
ristics reported to find a closed cover of maximal com- 
patibles. One of them is suitable for machines with a high 
number of maximal compatibles and is based on the 
concept of isomorphic states so that not all the maximal 
compatibles are taken into account in the process of 
building up a closed cover. The other one is for machines 
with a large number of prime classes. In this case, the 
complete set of maximal compatibles is generated and a 
minimum closed cover is found. 

Although these recent references appear as very inter- 
esting, the field is worth exploring further. 

In iterative improvement strategies an existing solu- 
tion is perturbed in the direction of a lower cost one. 
These strategies have been only applied to the final steps 
of some methods and thus they may be considered as 
refinements [13, 161 of solutions obtained by constructive 
approaches. But in our opinion, iterative improvement 
strategies have not been explored in depth. There seems 
to be a parallelism between the history of logic mini- 
misation and that of state reduction. Approaches to logic 
minimisation exist which simultaneously identify and 
select implicants for a cover. This is the case of the well 
known logic minimiser Espresso [19]. No similar 
approach exists for state reduction. So an interesting 
objective is developing state-reduction algorithms which 
simultaneously identify and select compatibles for the 
closed cover, and comparing them with existing 
approaches. 

REDUCES(T) 
/* state reduction algorithm based on maximal compatibles 
(MCs) *,’ 
{ 
CCSS = Get-MC(T); 
Q = GetLconstraints(CCSS. T ) ,  
cc = {a}; 
while(CC! =closed cover) 
{ if (CC ! = closed) 

CC = +Select-CC(violated closure constraints) : 
else 
{CC = +SelecttCC(violated covering constraints), 
} 

1 I ; = Get-Table(CC); 

Select-CC(violated type constraints) 
{ Cand = Mosttrestrictive(vio1ated type constraints), 

for (each CC in (2nd) 
Compute-CO; 
return (M ,  maximises C); 

> 

5 A new constructive heuristic 

We have developed a state-reduction algorithm, Reduces 
[20], using a constructive heuristic based on maximal 
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compatibles. The state reduction is achieved by pro- 
cessing the state table T ,  from which the set of maximal 
compatibles CCSS is obtained. The global process is 
described using Pidgin-C in Fig. 3. Then, a table Q with 
the covering and closure constraints is derived by Get- 
constraints() in Fig. 3. Covering and closure constraints 



member of a closed cover set and c, = 0 if M ,  is not selec- 
ted. These covering and closure constraints are shown in 
Fig. S. 

Initially, C C  = 0 and the procedure Select-CC() is 
called with the set of covering constraints (1-9 in Fig. 5) as 
argument. Expr. 4 in Fig. S is the most restrictive violated 
one, as it is satisfied only by the selection of M I  or M ,  
(these MCs are the only ones that cover state s,). 

Fig. 4 

Table 1 : FSM example 121 I to  clarify how new algorithm 
works 

A B C D  

Maximal compatibles for FSM in Table I 

s2.-  sa . -  - s3, - 
S s , -  sg,- - - 

s,,- s,, - 
s z , -  SI,- S g , -  s 5 , -  

s e *  - 
s,. 0 - s q .  - -, 1 
s5,  1 s2,-  - - 
s 5 , - -  - s,. 0 
s5, -  S ) ,  - - - 

- -  

_ - -  

(1) 
(2) 
(3) 
(4) 
( 5 )  
(6 )  
(7) 
(8 )  
(9) 

(1 0 )  
(11) 
(1 2) 
(1 3) 

-1 + c ,  +cs +cg +c,o > 0 
-1 + c 2  + C )  + c5 + ce + c ,  + c ,  +cg + c , o  
-1 + c 3  + C6 + c ,  + c , o  > 0 
-1 + c 1  +ca 2 0 
-1 + c ,  + c 2 + c 4 + c 5 + c ,  + c g  b 0 
-1 +c.+c5 + c 6 + c 9 + c , o  > 0 
-1 + c 1  + C , + C , > O  

-1 + c , + c 2 + c , + c , + c , > o  
-1 + c ,  + c 2  + c 3  + c ,  +c5 + C 6  2 0 
-c, + c2 + c5 + c ,  + c g  > 0 
-c ,  +C, +c,o > 0 
- c ,  +cg > 0 
-c* +c4 + c 5 + c g  > 0 
- c , + c , + C , b o  
-c2 + cg + C I O  b 0 

(16) -c3 + c 4  + c 5  +cg > 0 

-c4 + c ,  +cg > 0 (1 8) 
(1 9) -cq +cg +c,o 2 0 
(20) -c, +c5 + C 6 + C 9  +c,o 2 0 
(21 ) -c5 +cg > 0 
(22) -c5 + c g  + C 6  2 0 

-c,+c,>O (23) 

-c,+c,+c,>O 

(26) -c, + c ,  +c4 > 0 
-c, + c , o  > 0 
-c, + C 5  +cg > 0 (28) 
-c ,  + c ,  + c 4  > 0 

(30) -c9+c ,  +c,>o 
(31) -c,+c,+c,,>O 

(32) -c,o+c, + c , > o  

(33) - c , , + c , + c , b o  

-c,,+c,+c,>o (34) 

Covering and closure constraints for  FSM in Table I 

0 

(14) 
(1 5) 

(1 7) -c3 + c ,  + c ,  b 0 

-ce +c2 + c ,  > 0 (241 
(25) 

(27) 

(29) 

~ i ~ .  5 
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It is clear that M ,  and/or M ,  will be members of any 
closed cover set, including that of minimum cardinality. 
Then, Cand = { M , ,  M , } ,  and C is computed for both 
MCs: 

b for M ,  

P C ( M , )  = S because MI = (s,, s 5 ,  s, , s,, sg) covers five 
uncovered states of the original table. That is, the selec- 
tion of this MC satisfies five violated inequalities: expr. 4, 
5, 7, 8 and 9. N C ( M , )  = 3 because the consequence of 
selecting M ,  is the violation of inequalities 10, 11, 12 
which express the closure requirements of MI. That is, if 
M ,  is selected as a member of a closed cover, MCs con- 
taining compatibles (s,, s 2 ,  sJ, (s2, s5) and (s,, s 5 ,  s,) will 
have to be included too. 

C ( M , )  = P C ( M , )  - 2 N C ( M , )  = - 1 

b for M ,  

PC(M,)  = 4 N C ( M , )  = 3 
C ( M , )  = PC(M,)  - 2NC(M,)  = -2 

M ,  is selected (CC = { M , } )  because it maximises the 
parameter C .  Now there are some closure constraints 
violated (expr. 10, 11, 12) and the algorithm tries to 
satisfy them firstly, so procedure Selec-CC() is called for 
these constraints. Among this set, expr. 12 is the most 
restrictive one and Cand = { M , } .  In this case, as there is 
only one candidate MC, we do not need to compute C .  
M ,  becomes a member of C C .  

Now, the set of violated closure constraints is {(ll), 
(31)) and 

C a n d = { M , , M , , M l o )  
C ( M , )  = 0 C ( M , )  = 2 C ( M , , )  = - 1  

M ,  is selected. The only inequality not satisfied is expr. 
31 and the algorithm evaluates C for each of the MCs 
whose selection satisfies that constraint, i.e. : 

Cand = { M 6 .  Mlo} 

C(M,)  = -1 C ( M , , )  = -1 

Arbitrarily, M ,  is selected. As a consequence of adding 
this MC to C C ,  expr. 24 is violated: 

Cand = { M 2 ,  M 3 }  

C ( M , )  = 1 C ( M 3 )  = 1 
M ,  is added to CC (CC = {MI,  M , ,  M , ,  M , ,  M ? ) )  
which now is a closed cover of the original table descnb- 
ing the FSM. 

6 Iterative improvement heuristic 

6.1 Motivations 
The strategy we propose herein is similar to that in 
Espresso [19] for the heuristic minimisation of com- 
binational functions. That is, a set of basic operations is 
defined which transforms a symbolic description of the 
FSM in another one with a smaller number of states. 
Our algorithm Arnes [22, 231 may be described, from a 
high level point of view, as a sequence of transformations 
(functions) which, starting with the initial description of 
the FSM, results in a sequence of intermediate descrip- 
tions of such a machine with a decreasing number of 
states. The process finishes when the application of the 
functions implemented by the algorithm does no longer 
reduce the number of states. The main advantage of this 
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approach is the avoidance of generating any complete set 
of compatibles, as in classical state reduction algorithms. 

6.2 The new algorithm 
Primary objective in Arnes is reducing the number of 
states in the symbolic description of a FSM being used as 
an input to other phases of the design process of sequen- 
tial circuits. Moreover, once it obtains a solution with a 
reduced number of states, Arnes operates on it to maxi- 
mise the number of 'don't cares' in excitation functions. 
This aims at simplifying the task of state assignment 
programs and logic minimisers [13, 161, so better solu- 
tions are obtained. 

In Fig. 6 the algorithm control block is described 
using Pidgin-C, where T is a symbolic description of a 
FSM using state tables, C is a closed cover for table T ,  
that is, a closed set of compatibles which covers all inter- 
nal states in T ,  and (€J is the number of compatibles in C 
(number of internal states in the description of the FSM). 
Procedure init(T) initialises C to the set of internal states 

ARNES(T) 
{ C=" init(T), 

@* = 9 = cost(C). 
(@, C )  = expand(C. T ) ,  
(@, C )  = reduction(C, 77. 
T' = table(C. 77.  
I f (@ < @*) 
{ ARNES(T'). 
> 

} 

Fig. 6 Pidgin-C description of control block oJthe algorithm 

expand(C. T )  
/*given a closed cover of T, returns a closed cover composed by 

larger compatibles (eventually prime compatibles) without 
having generated them previously*l 

{ @* = @ = cost(C). 
for ( I  = 1 ,  i G IC1 , I + + )  

{ expandl (C,), 
@ = cost(C). 

} 
If (@ i @*) 
{expand(C. 77.  
> 

Fig. 7 Pidgin-C description ofprocedure expand 

in the initial description T which is a closed cover of the 
FSM. Function cost(C) evaluates the cost of a solution, 
C. There are two main functions in Arnes: expand and 
reduction which we describe in detail. Once C has been 
transformed by the application of basic previous func- 
tions, procedure table(C, T) builds a symbolic description 
T for the FSM defining an internal state for each com- 
patible in C. If the cost of this new description is smaller 
than that of the initial one, the whole process is repeated 
for T .  

Now, we explain the main procedures of Arnes. Pro- 
cedure expand adds states to each compatible Ci in C, 
includes those compatibles needed to fulfill closure 
requirements of C,? (expanded compatible) and elim- 
inates those in C that are now covered. Given Ci to be 
expanded, an optimum expanded compatible Cppt is 
defined such that 

a = card (W(Cpp')) 

- card (DIMP(CPpi)) is maximum (1) 

(2) 
where DIMP(CP") is the closure set 4"' of CYp elim- 
inating those compatibles which are members of C, 
W,{Cppt) is the set of compatibles which can be elim- 
inated from C, when substituting C i  by Cpp' because they 
are included in C:p', and W,(CPpr) is the set of compatibles 
which can be eliminated from C, when substituting Ci by 
Cppi because they are included in one compatible in 
DIMP(CYp'). If all compatibles C 3 C i  could be enumer- 
ated, we would select one satisfying eqn. 1. Instead, since 
this operation is computationally too expensive, the basic 
operation expandl obtains C: that is a good approx- 
imation to eqn. 1. In Fig. 7 and 8 procedures expand and 
expandl are described using Pidgin-C. 

Procedure expandl begins by computing the set of 
states that are compatible to all states in Ci and storing 
them in set comp. Then, for each potential expanded com- 
patible C + j  = Ci U s j ,  where s j  is a state in set comp, a is 
evaluated. One of the expanded compatibles which maxi- 
mises 1 is selected to be Ci and procedure expandl is 
repeated for this new C i .  The expansion of one compat- 
ible finishes when there are not compatible states to the 
current expanded compatible or a is negative for all 
potential expanded compatibles. After expanding a com- 
patible, C i s  still a closed cover for T .  Moreover, expand- 

W(CPP') = W , ( C y )  U W,(cppr) 

expandl (C,) 
/*given C, , compatible in C. returns C,' which is a good approximation to (1 ) * 
{ flag = 1 , 

while(flag= = 1 ) 
{ comp = compatibles(C,) 

if(comp1 ={a}) 
{ for(each s, E comp) 

*stores in comp those states which are compatible to all states in C,*/ 

CT' = c. v s,, 
select C:' which maximises 2. and store in C' 
C =  (C U C: U DIMP(C:)) ~ C, - W(C:) 

/*C: is a compatible which contains C,* 
/*DIMP(C,*) is the closure set €7 of C: minus those compatibles in C* 
l*W is the set of ComDatibleS in C contained in C' or in any compatible in DIMP'I 
if(a < 0 for all C:') 

flag = 0 ,  /*C, expansion is not continued because expanding means increasing the number of compatibles in C'/ 

&se 
flag = 0 .  /*C, expansion is not continued because there are not compatible states to C,*/ 

Fig. 8 Pidgin-C description of procedure expandl 
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ing is only allowed if it does not mean an increment in 
the cardinality of C. 

Procedure reduction transforms C in a new C* where 
each Ci is sequentially substituted by a reduced compat- 
ible C ;  c Ci, such that 

{C - C,} U C; is a closed cover 

For reducing each Ci, first the set of states in C, covered 
by unless another compatible in C, H ,  is derived. All 
states in H could be removed from Ci and C still would 
be a cover of T but may be not a closed set of compat- 
ibles, Procedure MCEE selects the largest subset of H 
that can be eliminated from Ci, such that C is still a 
closed cover of T .  

Procedure reduction allows to move away from one 
solution to another of less cost, as the application of the 
whole procedure to state table T ,  might lead to less 
costly solutions. Moreover, reduction eliminates states 
that are covered by more than one compatible. The mini- 
misation of such number of states leads to the maximisa- 
tion of ‘don’t cares’ in excitation functions [13]. In Fig. 9 
we describe the procedure. Fig. 10 contains a description 
of the basic function in reduction (procedure MCEE). 
MCEE complexity increases exponentially with the 
number of states in the set H .  From our experience we 
conclude this is not a problem, even for large machines. 

We use again the machine described in Table 1 to 
show how the algorithm works. As seen from the fore- 
going description there are three main blocks in the algo- 
rithm: initialisation, expansion and reduction. 

6.3 Example 
Initialisation: We initialise C to the set of internal states 
in the original state table and evaluate the cost of such 

Expansion: Procedure expand1 is called for the first com- 
patible in C. That is, C ,  = (s,). States which are compat- 
ible to all states in C, are stored in comp: 

comp = i s z ,  s 3 ,  ss, s 6 ,  sa} 

(x is evaluated for each C:J = C, U s j ,  where s j  is an 
element from comp. 

for sz: 

c:’ = (SI, s2) 

DIMP(C:’)  = { ( S Z s 6 ) ?  (s4s9), (sIs6), (sIs3), 

(szssb (S3%)> (s1sa)l 

W,(c:? = ( ( s 2 ) J  

W,(C:’) = {(s,), (s4), (s9b ( S d  (SSL (sa)} 

I t  can be eliminated from C because it is covered by C : 2 ;  

They can be eliminated from C because they are covered 
by compatibles in D I M P .  

card(W(C:’)) = 7 

card(DIMP(CT2)) = 7 

a = 7 - 7 = 0  

This means, expanding s1 with sz leads to a closed cover 
with the same number of compatibles. 

reduction(C T )  
/*returns C* where each compatible C is substituted sequentially by C minimum Compatible which when substituting C,, verifies that 

C* is still a closed cover of T* 

for(;= 1 ;  i < ICI; i ++ )  
{ 

{ H = { 0 > ;  
for(/ = 1 ; I  < IC1 : I + + )  
{ If(i1 =/) 

{H = H U (C, n C,), 
> 

I j*H is the set of states in C, covered by at least another compatible in C’ 
If(HI = 0)  

Fig. 9 Pidgin-C description of procedure reduciion 

MCEE(H) 
/‘given H, a set of states in C, covered by at least another comparible in C returns the largest subset of H that can be eliminated from C, 

{ if (all states in H can be eliminated) 
{ return ( H )  

else 
{ s, = select-state(H) 

H- = MCEE(H, ), 
H i  = MCEE(H;) 
H‘ = merge(H H ’ )  
return (H‘), 

such that (C - (C,)) U (C, - MCEE(H)) isstilla closedcover of T* 

> 
‘selects the first stare in H still not selected’ 

/*tries a solution without eliminating s, from C,* 
‘tries a solution eliminating s, from C 
*selects the set with the largest cardinality* 

> 
} 

Fig 10 

496 

Pidgin-C description of procedure M C E E  

I E E  PROCEEDINGS- t ,  Vol 139, N o  6,  N O V E M B E R  1992 



Summarising the results of the evaluation of z for each 
state s j  from comp: 

C:” 

s3 is selected to expand C , .  C is updated. New closed 
cover and cost are 

= {(sIs3), (s3 (s1s8)? ( s Z s S ) 3  (s4)3 (s6), (s7)> (s9)} 

@ = 8  

New compatible C, in Cis  expanded 

Cl = {(s1s3)} 

camp = {SZ > s6 > sa} 

Again, a is evaluated for each C;’. 

C:’* 

As a is positive, state s2 is added to C,. New closed cover 
and cost are 

= {(s1sZs3s8), (sZs5s6) ,  (s1s6), (s4sY) ,  (ST)} 

@ = S  

There are not compatible states to C, = {(s,szsJs8)}, and 
so the expansion of this compatible is not continued. 
Now the algorithm tries to expand compatible C, in C. 

The expansion of C, is not continued because z is 
negative for all states in comp. The number of states in 
closed cover C would increase if we used s, or s9 to 
expand C, = {(s2s5s6)}. 

The algorithm goes on with C3 

I(sls6sZ)<o I ( s l s 6 s 3 ) < 0  1 ( s I s 6 s S ) < o I  

a is negative for each C: and C3 is not expanded. 
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C is updated by expanding C, with s, . 

= {(slsZ s3 ( s 2  s5 s 6 ) 3  (Sls6), (s4 s7 s9)} 

@ = 4  

Now C, = {(s4s7 sg)} comp = {ss, sE) 
C: ’a 

j(s,s7s9s5)<O I ( s 4 s 7 s , s 8 ) < o ~  

C, is not expanded because a is negative for all potential 
expanded compatible Caj.  

Reduction ; Procedure reduction sequentially removes 
from the compatibles in C, those states which are not 
necessary to fulfill covering constraints nor closure ones. 
In this example no state is eliminated. 

As @ = 4 is less than @* = 9 the whole procedure is 
repeated for the new state table derived from the final 
closed cover. No improvement is achieved in this case. 

7 Experimental results 

Experiments have been carried out on a large set of 
FSMs to test the algorithms previously described. Both 
of them have been coded in C. The program implement- 
ing the constructive one is called Reduces and the iter- 
ative improvement one, Arnes. Results both for machines 
from the literature and for machines in the MCNC 
benchmark set [24] are shown. 

7.1 Figures of merit 
We focus on three figures of merit: the final number of 
states in the FSM representation, the area occupied by 
the combinational component in a PLA-based implemen- 
tation of the FSM, and the time which is required for 
design. We introduce them in more detail: 

(a) the number of states in the symbolic description 
after state reduction. This is an important parameter to 
evaluate how well the state reduction algorithms work. It 
is the main concern of all the algorithms described in 
classic papers on the subject. If state assignment prog- 
rams which use minimum length codes are employed, the 
number of states determines the number of memory ele- 
ments. 

(h) the area of the combinational component. We use a 
PLA to implement the combinational component of the 
FSM. The area in this case is 

area = Kp(2ni + 3n, + ne) (3) 
where ni is the number of input variables, n, is the 
number of state variables, and no is the number of output 
variables. 

(c) design time. This parameter reports the time needed 
for passing from the initial symbolic description to the 
minimised Boolean representation of next state and 
output functions. It is composed of three partial times: 

t ,  time for state reduction phase (if implemented) 
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tz time for state assignment phase 

t ,  time for final logic minimisation 

time = t ,  + t ,  + t 3  

7.2 Results on machines from the literature 
We have tried many examples of machines from switch- 
ing circuit textbooks and journal papers about mini- 
misation [26]. In many of them the gains were 
significant. Table 2 shows the number of states (ns), the 
number of product terms ( t p )  and the size of the PLAs 
implementing the combinational part of the machines 
after state assignment and logic minimisation for four dif- 
ferent initial descriptions: state tables as they appear in 
the literature, state tables reduced by the application of 
an implementation of a classic state reduction algorithm 
(Bennets algorithm [18]), state tables reduced by the 
application of Reduces, and state tables obtained by 
Arnes. This parameter size has been obtained with a 
K ,  = 1 in eqn. 3. Reported times in the last three include 
the time invested in the state reduction step. In all cases, 
the optimal state assignment algorithm we used was the 
'i-hybrid complement' algorithm in Nova [25]. 

From Table 2 Arnes obtains minimum cardinality 
solutions in 14 of 15 cases, including the well known (and 
difficult) 22-state machine (FSM6) in Reference 17. Also, 
from this table, it should be clear that the size of the final 
circuit when Arnes is applied is lower than the size when 
starting with original FSMs except for FSMlO (equal 
size). In ten machines Arnes gave less area realisations 
than solutions supplied by the well-known Bennets algo- 
rithm. Only for FSMl and FSM10 did the implementa- 
tion of Bennets algorithm achieve better size results than 
Arnes. Summarising the comparison between Reduces 
and Arnes, in nine machines Arnes gave area savings 
while Reduces obtained better results for three machines. 

For each of the machines in Table 2 two ratios have 
been calculated 

0 1 -  

(4) 
size, time, 

A = -  and T = v  
sizeo time, 

FSM12r 
FSM9r -FSM15 

I 

This is the area occupied by the PLA, obtained using 
Arnes, divided by the area resulting when the original 
description is used for state assignment. In the same way, 
the design time with state reduction using Arnes is 
divided by the design time without state reduction step. 

We represent the pair (A ,  T )  for each machine in a 
design space whose Y-axis represents the time ratio and 
the X-axis the area ratio. There are two significant lines 
in this space, defined as A = 1 and T = 1, respectively. 
For any machine FSMi with coordinates ( A i ,  7J below 
the line defined by T = I, the design time decreases when 
state reduction is included in the synthesis process. For 
any machine FSMi with coordinates ( A i ,  TJ on the left of 
the line defined by A = 1, the state-reduction step is 
advantageous in terms of silicon area. 

Advantages in both area and time correspond with 
machines inside the region limited by those lines. Also its 
borders represent favourable situations. That is, they rep- 
resent cases where state reduction achieves a decreasing 
in one of the design coordinates without changing the 
other one. In Fig. 11, pairs (A ,  T )  for the machines in 
Table 2 have been drawn. The point labelled [FSM] 
(0.45, 0.22) represents the average for the machines in 
Table 2. 

n 0 41 

P I  

I 
FSM4r I 

I 
FSM3r 

B I 

Table 2: Minimisation results for machines from literature 

Original FSM Bennets FSM 

n,  no ns tp size, time, ns, tp size time 

Reduces FSM 

nsR tp size time ns, 

Arnes FSM ns,,, 

tp size, time, 

FSMl 
FSM2 
FSM3 
FSM4 
FSM5 
FSM6 
FSM7 
FSM8 
FSMS 
FSMlO 
F S M l l  
FSMl2 
FSM13 
FSM14 
FSMl5 

2 1 5 7 98 2 7  4 4 44 1 4  
2 1 9 10 170 1 2 1  6 10 140 3 7  
2 1 7 9 126 4 8  4 7 77 1 5  
2 1 6 7 98 3 1  4 4 44 1 0  
2 1 6 8 112 4 3  4 6 66 1 2  
2 1 22 25 500 261 2 12 16 272 1803  
2 1 9 14 238 1 6 5  5 10 140 2 6  
2 1 6 8 112 5 0  4 6 66 1 4  
3 1 9 15 285 3 5 2  4 9 117 3 0  
3 1 8 14 224 1 6 4  5 13 208 4 8  
2 1 6 9 126 6 1  5 9 126 3 5  
2 1 9 11 187 1 5 3  4 7 77 1 7  
3 1 6 1 1  176 66 3 5 65 1 3  
2 1  6 7 9 8  2 8 2  3 2 4  0 6  
3 1 10 10 190 2 3 6  4 7 91 1 9  

4 4 44 1.2 3 
5 10 140 3 1  4 
4 7 77 1.2 4 
3 4 44 0.8 3 

4 6 66 1.2 3 
11 12 204 23.9 9 
6 10 140 2.7 4 
4 6 66 1.3 3 
4 11 143 2.7 3 
5 13 208 4.7 5 
5 9 126 3.2 4 
4 7 77 1.4 3 
3 5 65 1.4 3 
2 3 24 0.6 2 
4 6 78 1.9 4 

5 55 0.8 3 
7 77 1.8 4 

5 55 1.8 4 
4 44 1.2 3 
5 55 1.2 3 

13 231 55.9 9 
8 88 1.8 4 
6 66 1.2 3 
5 65 1.7 3 

14 224 7.5 4 
7 77 1.5 4 
6 66 1.3 3 
4 52 1.2 3 
3 24 0.4 2 
5 65 1.5 4 

n,. number of input variables; n o .  number of output functions; ns. nsg. nsR,  ns,. states in descriptions obtained from 
papers. Bennets algorithm. Reduces and Arnes. respectively; ns,,,, minimum number of states; tp, number of product 
terms; size. PLA size evaluated by Nova: time, time in seconds on a Sun 3/260 workstation 
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Table 3: Minimisat ion results for machines i n  MCNC benchmark 

Original FSM Reduces FSM Arnes FSM 

n ,  n o  ns tp size, timeo ns; tp size time ns; tp size, time, 

t .  t ,  + t ,  t .  r,+t, 

0 
B 0 0 -  
m 
b 

-o 0 6 -  

z" 
0 4 -  

bbara 
bbsse 
beecount 
ex1 
ex2 
ex3 
ex5 
ex7 
lion9 
markl 
opus 
scf 
se .  bbsse 
tbk 
train1 1 

I I .bbora I 
A- tmcnc,- beecount ~ 

e x 3 r  I I 

4 2 10 25 

3 4  7 1 0  
9 19 20 50 
2 2 19 36 
2 2 10 18 
2 2  9 1 8  
2 2 10 17 
2 1  9 9 
5 16 15 17 
5 6 10 16 

7 7 16 29 
6 3 32 170 
2 1 11 12 

7 7 16 29 

27 56 121 146 1 

550 
957 
1 90 

2600 
756 
324 
324 
306 
153 
646 
448 

91 26 
957 

51 00 
204 

17.1 
47.0 

7 8  
350.3 

95.0 
14.5 
11.6 
17.3 
8.7 

51.5 
11.6 

9676.6 
49.4 

7840.0 
14.5 

7 20 
13 29 
4 9  

18 43 
10 19 
6 10 
4 8  
4 7  
4 7  

12 17 
9 16 

97 128 
13 29 
16 52 
4 6  

380 
957 
144 

2236 
342 
150 
96 
84 
77 

646 
448 

16768 
957 

1404 
66 

0 8  
4 1  
0 3  

32 3 
3 6  
0 9  
0 8  
0 9  
0 5  
4 1  
1 1  

5 0  
39 5 
0 5  

137 

8.1 7 
435.2 13 

3.4 4 
281.5 18 

13.8 7 
3.5 5 
2.3 3 
2.3 4 
2.4 4 

225.6 12 
10.0 9 

7234.0 97 
459.2 13 

1426.9 16 
2.6 4 

20 
29 

9 
43 
13 

9 
6 
9 
7 

16 
16 

128 
29 
52 

6 

380 
957 
144 

2236 
195 
135 
72 

108 
77 

608 
448 

16768 
957 

1404 
66 

0.2 
3.5 
0.2 

24.3 
4.3 
0.9 
0.3 
0.4 
0.1 
4.2 
0.4 

3.5 
30.8 

0.1 

112 

8.8 
39.8 

3.7 
281.5 

6.9 
5.1 
2.3 
3.1 
2.6 

44.1 
9.8 

7234.0 
40.0 

1425.3 
3.4 

shown in the column labelled t ,  for each of our algo- 
rithms. The columns labelled t ,  + t 3  give the time in- 
vested in state assignment and logic minimisation with 
the 'i-greedy complement' option in Nova. 

From the Table for almost half of the machines area 
savings of more than 50% are achieved when the reduced 
machine obtained with Arnes or Reduces is used as input 
for the state assignment phase. The time to obtain such 
solutions with Arnes ( t l  + t ,  + t ,  in time, column) is less 
than that resulting from applying Nova to the original 
machine (time, column) for all of them. Concerning the 
state assignment and minimisation steps, there are three 
machines (bbsse, sse, markl) for which the Nova time 
when using Reduces ( t 2  + t ,  in Reduces column) is higher 
than the Nova time when the original description is used. 
It is due to the symbolic descriptions generated by the 
state minimisers which are then used as input to the state 
assignment phase. In some cases, they are descriptions 
with a large number of symbolic implicants and the logic 
minimisation step slows down. However, this is a feature 
of the algorithm's implementation which can be cor- 
rected. In Fig. 12, pairs ( A ,  T )  for the machines in Table 3 
have been drawn. 

t-- l 0 C - -  - _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ -  
A bbsse,sse 

.ex1 )opus 

1 r s c f  , A I MC N C I  

0 0 2  0 4  0 6  0 8  1 0  

A ~ r n e s . ~ c v a ' A o r l g .  N~~~ 

Fig. 12 
mark 

Experimental results when Arnes I S  applied fa M C N C  bench- 

Nevertheless, the discussion of results would be incom- 
plete if we did not consider what happens with machines 
for which state reduction does not achieve any reduction. 
When provided with a description of a machine to be 
implemented, we do not know beforehand whether there 
are compatible states or not. This means the state reducer 
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will be invoked and a certain amount of time invested in 
checking if there are compatible states. If so, a descrip- 
tion with less states will be tried, but the state reducer 
can fail in finding such one. Thus, the result of this pro- 
cessing being the same initial description and co- 
ordinates for this machine ( A  = l ,  T > l). It is difficult to 
carry out an estimation of how this increasing in the 
computer time may affect. To give a rough idea, we have 
evaluated coordinates (A ,  T )  for the whole MCNC set 
(about the half of the machines do not have compatible 
states), the average result leading to the point (0.76, 0.83), 
point [MCNC] in the Figure, which is inside the striped 
region in Fig. 12. Of course, the average value for those 
MCNC machines admitting minimisation is much better 
(point [mcnc] with coordinates (0.63,0.53) in the Figure). 

From the set of machines from the literature, the 
superiority of Arnes against Reduces in area is evident. 
They are similar in time. The superior performance of 
Arnes is not so clear for the machines in the MCNC 
benchmark. The key point to understand the differences 
is whether the selection of maximal compatibles as vari- 
ables to formulate the LP integer problem (Reduces) 
implies a limitation to the quality of the solutions it can 
obtain. This is the case for the literature machines but, 
obviously, it is not for the MCNC benchmark. 

Since there have been two other approaches recently 
[IS, 161, it is convenient to compare our results with 
them. From the published results, we have elaborated 
Table 4 where the minimisation achieved on MCNC 

Table 4: Comparison of minimisat ion results achieved on  
MCNC machines 

Kannan Hachtel Reduces Arnes 
er a/ 1151 er a/ 1161 

ns * ns* ns* ns* 

bbara 7 7 7 7 
bbsse - 13 13 13 
beecount 4 4 4 4 
ex1 - 18 18 18 
ex2 10 5 10 7 
ex3 4 6 5 
ex5 4 3 4 3 
ex7 4 3 4 4 
lion9 - 4 4 4 
markl 12 12 12 12 
opus 9 9 9 9 
scf 97 97 97 97 
sse 13 13 13 13 
tbk 16 16 16 16 
train11 4 4 4 4 

ns', number of states in reduced descriptions 

~ 
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machines is depicted. Concerning the state reduction 
itself, that is comparing the number of states in the 
reduced descriptions (ns*) obtained with each approach, 
Arnes gave results similar to those reported in References 
15 and 16. However, we have not been able to compare 
them in terms of silicon area because we do not have 
enough detail from the papers. Comparing computer 
time is not significant because the machines used have 
very different power. 

8 Conclusions 

The experiments carried out suggest that fast state 
reduction heuristics should be included within FSM 
automatic synthesis systems to achieve both area and 
time savings. 

Probably new improvements of all of these methods 
will come about in the future, but they are promising in 
terms of augmenting the present capabilities of design 
automation for FSM. In that sense, Arnes opens the door 
to a new way of solution compared with traditional 
approaches like Reduces or other, more recently re- 
ported, contributions. 
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