DSP Processors, Embodiments, and Alternatives

DSP Processors

- DSP systems and, in particular, real-time DSP systems contain mainly repetitious application of data-driven behaviours defined by mathematical algorithms under strict timing constraints
- DSP processors are designed for repetitive, numerically intensive tasks
- DSP applications define two main requirements:
 - timing
 - sequence of operations must be performed in a given time
 - error
 - accuracy of results must be less than specified
- DSP processors contain features to improve the accuracy and performance of computations

DSP Processors: The Most Important Features

- Fast multiply-accumulate
 - single-instruction cycle MAC
 - multiplier and accumulator integrated into main arithmetic unit (data path)
- Multiple-access memory architecture
 - parallel instruction fetch and operand accesses
- Specialized addressing modes
 - dedicated address generation units
- Specialized execution control
 - efficient looping capabilities
- Specialized features to improve numerical accuracy
- Peripherals and input/output interfaces

Embodiments (1)

- DSP found in new application areas with new requirements
 - No single processor can fulfill all the requirements
 - Increase of integration levels
 - New packaging techniques
- Single-chip processor
- Multi-chip modules (MCM)
 - multiple dies combined into a single package
 - higher packaging density
 - higher operation speed
 - reduced power dissipation
- Multiple processors on a chip
- Microprocessor or -controller and DSP processor are integrated into a single chip
 - increased performance
 - reduced power consumption
- TI: two TMS320C40 processors with 128k*32 SRAM
- Motorola: M86356 contains M68000 and DSP 56000
Embodiments (#2)

- **Chip sets**
 - Processor is divided into several packages
 - Processor is complex or requires large number of I/O pins
 - Separate packages allow use of smaller and cheaper package
 - Increased flexibility

- **Multiprocessors**
 - High-performance systems requiring programmability
 - Some DSP’s have been designed especially for multiprocessor systems
 - TMS320C4X and ADSP-2106X have dedicated communication ports for inter-processor communications.
 - TMS320C8X contains four DSP processors and a RISC processor in a single chip.

- **Butterfly DSP: LH9124 processor and LH9320 address generator are separate components. Several address generators can be used with a single processor.**

DSP Cores

- **Final chip is combination of**
 - DSP processor
 - Programmability
 - Existing development tools
 - Existing SW libraries
 - User defined custom logic
 - Low production cost
 - Small size
 - Low power consumption

- **Used in high-volume designs**

DSP Core Based ASICs

- **Custom HW**
 - Final chip is combination of:
 - DSP processor
 - Programmability
 - Existing development tools
 - Existing SW libraries
 - User defined custom logic
 - Low production cost
 - Small size
 - Low power consumption
 - Used in high-volume designs

DSP Core Based ASICs

- **Foundry-Captive Cores**
 - Core vendor provides also the foundry services for ASIC fabrication
 - TI: standard DSP processors are macrocells which are surrounded by full-custom layouts, standard cells, or gate arrays or mixture of these.
 - SGS-Thompson: D950-CORE is offered as macrocell in standard ASIC library.

- **Licensable Cores**
 - Core vendor licenses the core design to the customer, who selects an appropriate foundry
 - Typically optimized full-custom layout compatible with fabrication process of a particular foundry
 - Also synthesizable HDL designs
 - Modifications possible
 - Foundry selected freely
Customizable DSP Processors

- Modification of the core itself rather than including additional surrounding circuitry
 - DSP processor, which may be extended or modified
 - additional functional units in data path
 - error coding unit
 - bit manipulation unit
- Modifications in core must be reflected also to the development tools
 - AT&T Microelectronics: DSP1600 was designed for easy attachment of extra execution units into the data path and the development tools support new units.
 - Philips: EPICS core has been demonstrated with different word widths.

Alternatives to Commercial DSP Processors (1)

- General-Purpose Microprocessors in Embedded Systems
 - for less-demanding DSP applications
 - compared to DSP processors
 - more cost effective
 - development tools more sophisticated and powerful
 - RISCs have features to support multimedia applications
 - single instruction cycle MAC (under certain circumstances)

- PCs and Workstations
 - software-only DSP with loose requirements
 - scientific and engineering DSP simulations (no real-time requirements)
 - cost effective (no extra hardware required)
 - DSP capabilities can be extended with add-on boards
 - on-board DSP processors
 - A/D and D/A converters
 - telephone line interfaces

Alternatives to Commercial DSP Processors (2)

- Custom Hardware
 - the best performance
 - the lowest production cost
 - board level realization the most common
 - standard logic devices
 - FPGA's
 - fixed-function or configurable arithmetic units
 - application-specific processors
 - development may be time-consuming
 - difficult to modify (fixed nature)

- Implementation options are not mutually exclusive
- In reality, DSP systems are designed with different technologies for different parts of the system