
VLSI Systems Design Lab
Computer Science and Engineering

On Exploring Algorithm Performance Between
Von-Neumann and VLSI Custom-Logic

Computing Architectures

Tiffany M. Mintz

James P. Davis, Ph.D.

University of South Carolina

South Carolina Alliance for Minority Participation

VLSI Systems Design Lab
Computer Science and Engineering

Statement of Research
– Explore the differences between microprocessor-based, and

custom-VLSI logic-based, computing system models .
– Compare the difference in execution between microprocessor

computing and custom logic computing architectures, using a set
of benchmark algorithms.

– Write/select assembler programs that execute on a standard
microprocessor (the Motorola 68000), and create
corresponding custom logic architectures and designs for these
same algorithms using an appropriate VLSI design method.

– Examine the differences in algorithmic processing between the
two classes of computing architectures.

– Draw conclusions about the nature of algorithm processing
between the two computing architecture models—the “old”
and the “new”.

VLSI Systems Design Lab
Computer Science and Engineering

Microprocessors vs. Custom Logic Computing Systems

• A microprocessor is itself built from custom-designed VLSI logic, yet its
programming model is based on the “fetch, decode, execute” paradigm
pioneered by Dr. John Von Neumann almost 50 years ago. All standard
microprocessor-based computer architectures are still built around this model.

• An application-specific custom VLSI computing system is not limited by the
Von Neumann “bottleneck”, as its control and data processing is inherently
parallel, and its functions are distributed optimally across the VLSI device.

MC 68000 Microprocessor
(Instruction Set Architecture)

Instruction
Fetch Unit

Instruction
Decode Unit

Instruction
Execute (ALU)

Registers and
Memory

Input/Output

Executes as Compiled 68000 Program

Program Algorithm

Application
Specific FSM

Application
Specific FSM

Application
Specific
Datapath

State
Machines,

Registers, and
Custom logic

Input/Output

Native Model Register Transfer Level

Executes directly as VLSI Logic Hardware

VLSI Systems Design Lab
Computer Science and Engineering

Algorithms and Architectures for Computing
Algorithms map onto different architectures over a continuum of design choices.

Option 1

Option 2

Option n

Some architecture choices are better than others
for a given problem application.

VLSI Systems Design Lab
Computer Science and Engineering

General Microprocessor Architecture

Source: Tanenbaum, 4th ed., © Prentice-Hall Publishers, Inc., 1999.

• A microprocessor
architecture is based
on the “fetch, decode,
execute” cycle, that
loops repeatedly.

• Applications exist as
programs, loaded into
memory along with
required data.

• Program instructions
are sequentially
processed by the
processor.

• The resources for all
programs are shared,
but dedicated to a
specific executing
program while running.

VLSI Systems Design Lab
Computer Science and Engineering

General Model of VLSI Architecture

Control Unit

steering
logic

register
clocked

logic

register
clocked

Data Path Unit

Data in
Data out

Control in

SelectStatus

Control out

combin.

State
Registers

input/next state
decoding logic CLK

inputs

present state information

next state
information

output decoding
logic

control outputs

^RES

MUX

Defines both synchronous and asynchronous
transformations of data moving through the block.
Data operations are distributed, with fine-grained
parallelism.

Defines clock-based sequencing of
distributed actions in data path, or of those
occurring external to the block.

Modeled using Register-Transfer (RTL) model.Modeled using Finite State Machine (FSM)
model.

Data Path UnitsControl Units

VLSI Systems Design Lab
Computer Science and Engineering

Mapping Algorithms to VLSI Architecture
Software
Algorithm
(C code)

Algorithm
Spec

(Text or Math)

Control Flow
modeling

(Algorithmic
structure)

Data Flow
modeling

(Operation
ordering)

Create Ordered
Sequence of
Operations

Overlay
Operation

Sequence onto
Control Structure

Add Hardware
Semantics

- Clocking
- Operation Scheduling
- Parallelism
- Resource Binding

• Create Ordered Sequence of Operations.
– Starting with Control Flow Graph (CFG) – If you are starting with the structure of an algorithm, such as from a block of C

code, you can follow the structure of the algorithm as a basis for creating an ASM chart.

– Starting with Data Flow Graph (CFG).

• Overlay Operation Sequence onto Control Structure.

• Add Hardware Semantics.
– Quickly create a design model (correct by construction).

• Create signal/bus declarations using Bus Table.
• Draw the flow-chart description of the state machine.
• Annotate states, conditions, cases, conditional output objects with RTN expressions (using assertions, assignments and

macro-function assignments).
• Define clocks, resets, and other synchronous/asynchronous event signaling.

– Verify the Model (using digital cycle-based Simulator).

VLSI Systems Design Lab
Computer Science and Engineering

Exploring a VLSI Systems Architecture
d <= a + b + c; d <= a + b + c;

+

+

a b

c

d

control step 1

control step 2

+
+

a b c

d
control step 1

+

+

a

b d

c

s

+

MUX

MUX

s

a

b

d
c

• Process starts with abstract description
of algorithmic behavior written in C or
some other language, with no timing
info.

– Task #1: Compile source code into
intermediate format, for example, control-flow
graph, dataflow graph.

– Task #2: schedule data operations to occur on
specific control cycles, determined by clocking.

– Task #3: allocate data operations to RTL
components implied by use of language
operators <+, -, *...>.

– Task #4: bind specific operations to individual
RTL components, to construct complete circuit
topology.

• We look for efficient architectures that
speed up computation with minimal
use of resources. This involves trading
off speed versus resource usage.

VLSI Systems Design Lab
Computer Science and Engineering

VLSI Systems Modeling-1

Components of FSM Model
– State registers, input synchronization registers (optional) and output filter registers (optional).

– Next state decoding logic, and output decoding logic - combinational logic blocks.

– Input signals to the state machine, which are inputs to the next state and output decoding logic blocks
(could be synchronized to clock with input registers).

– Next state information, which is generated as a result of input/next state decoding logic.

– Present state information, output from the state registers, which is fed back as an input to both next state
and output decoding logic blocks.

– Outputs from the state machine - either generated synchronously from the output of the state registers
(also used as present state information), or asynchronously as output of the output decoding logic block
(which takes input and present state information to produce outputs). Could be filtered using output
registers to eliminate possible signal transients.

CLK

State
Registers

input/next state
decoding logic

inputs

present state information

next state
information

output decoding
logic

CLK

input
synchronizing
registers

CLK

control
outputs

output
filtering
registers

inputs

VLSI Systems Design Lab
Computer Science and Engineering

VLSI Systems Modeling-2

• Use of memory elements in the data path to store signal
values.

– Purpose is to synchronize the behavior of complex circuits.
– Benefits of circuit synchronization:

• Eliminate unpredictability of output behavior due to timing skew.
• Create signal stability, as they must have stable values for certain period of time.
• Better isolate signals from noise transients.

• Use of memory to create complex control structures.
– Controller sequences operations in the data path.
– The sequencing is modeled as a finite state machine, represented as a graph structure.

Storage
Registers

Combinational
Logic block

Synchronizing
Clock Signal

Storage
Registers

Combinational
Logic block

Synchronizing
Clock Signal

Inputs Outputs

tp1 tp2

Data path “pipeline” -
stage 1

Data path “pipeline” -
stage n

VLSI Systems Design Lab
Computer Science and Engineering

The Algorithmic State Machine (ASM) Chart

s0

s1

s3
s5

input1 & input2

10

^RES
CLK1 (rising)

signal1
Areg <- '0'

Areg <- input1

Breg <- input2

Output <- NMUX (Areg,Breg,input1)
MDR <- ScratchPad [MAR]

!signal4s4

0110 default

s2

1001

Clocking definition

Enabling event definition

State

Moore Machine Actions:

Signal Assertion

Bus Assignment

Macro-function

Input Conditions:

Binary Decision Condition

Multiway Branch Condition Mealy Machine Actions:
(both synchronous and asynchronous)

 Boolean input expression

A<- '0'

(both synchronous and asynchronous)

(CASE)

Assignment

!signal5

(If-Then)

Memory Read/Write

with Relative Addressing

IObus

Captures both the control path and data path design
in a single design representation. It is used to model custom

logic architecture.

VLSI Systems Design Lab
Computer Science and Engineering

Benchmarking the Architecture Models

• Using a 68000 microprocessor:

– A well-understood CPU model,
as the micro is now 20 years old.

– Used in CSCE 313 class for
embedded systems design.

– Select a set of baseline
programs representing standard
algorithms that have been
studied in the past.

– Using the cycle counts for each
instruction, tally up the total
cycles for the program, given the
initial data elements defined for
the benchmark programs (cf.
MacKenzie, 1995).

• Using the ASM design method:
– A well-understood custom logic

design method, having been
used for almost 30 years.

– Used in CSCE 491, 611 classes
for custom logic VLSI design.

– Follow the same program
algorithms, using RTL macro
operations in place of 68000
instructions, yet inserting
scheduling and clocking for
synchronization.

– Count the number of discrete
states visited during the logic
execution, given the same data
elements defined for the
baseline programs.

VLSI Systems Design Lab
Computer Science and Engineering

Counting Cycles in Custom Logic
Using the graphical view of the simulator waveform display, we can easily count

the cycles required to execute an algorithm in a given VLSI architecture.

VLSI Systems Design Lab
Computer Science and Engineering

Benchmark Cycle Count Comparison

361376SQRT: taking the
square root of an
unsigned integer.

35782SORT: bubble
sorting elements in a
sequence.

24882ASCBIN:
converting ASCII
string into equivalent
binary number.

15194NEG2: counting
negative numbers in
a sequence.

Clock Cycles Custom LogicClock Cycles CPUBenchmark

Benchmark Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995. Note: lower is better!

VLSI Systems Design Lab
Computer Science and Engineering

The NEG2 Benchmark – 68K

Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.

VLSI Systems Design Lab
Computer Science and Engineering

The NEG2 Benchmark - ASM

VLSI Systems Design Lab
Computer Science and Engineering

The ASCBIN Benchmark – 68K

Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.

VLSI Systems Design Lab
Computer Science and Engineering

The ASCBIN Benchmark - ASM

VLSI Systems Design Lab
Computer Science and Engineering

The SORT Benchmark – 68K

Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.

VLSI Systems Design Lab
Computer Science and Engineering

The SORT Benchmark - ASM

VLSI Systems Design Lab
Computer Science and Engineering

The SQRT Benchmark – 68K

Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.

VLSI Systems Design Lab
Computer Science and Engineering

The SQRT Benchmark - ASM

VLSI Systems Design Lab
Computer Science and Engineering

Comparing Cycle Counts – NEG2

Using the MacKenzie benchmark data set of N=4 elements, we look at two
pieces of information: (1) what is the difference in the cycle counts between
the different computing architecture styles; and, (2) what is the rate of
change in cycle counts if we increased the number of negative elements
in the sequence of length N that we needed to add to the running count.

NEG2: Elements in List = 4 (Original MacKenzie benchmark)

180.0 185.6
194.0

222.0 230.4 236.0

11.0 11.4 12.0 14.0 14.6 15.0

0.0

50.0

100.0

150.0

200.0

250.0

0.00% 10.00% 25.00% 75.00% 90.00% 100.00%
% Negative Elements in List

N
u

m
b

er
 o

f
C

lo
ck

 C
yc

le
s

M68K Instruction Benchmark
ASM Model Benchmark

VLSI Systems Design Lab
Computer Science and Engineering

Comparing Cycle Counts – NEG2

Extending the original benchmark scope with N=8k elements, we look at the
two questions again: (1) what is the cycle count difference between
the microprocessor and custom logic executions; and, (2) what rate of
change in cycle counts occurs as we increase the number of negative elements
in the sequence as a percentage of the total elements.

NEG2: Elements in List = 8192 (Benchmark modification)

258,116.0

229,444.0
240,912.8

315,460.0 332,663.2 344,132.0

16,387.0 17,206.2 18,435.0 22,531.0 23,759.8 24,579.0

0.0

50,000.0

100,000.0

150,000.0

200,000.0

250,000.0

300,000.0

350,000.0

400,000.0

0.00% 10.00% 25.00% 75.00% 90.00% 100.00%
% Negative Elements in List

N
u

m
b

er
 o

f
C

lo
ck

 C
yc

le
s

M68K Instruction Benchmark
ASM Model Benchmark

VLSI Systems Design Lab
Computer Science and Engineering

Comparing Complexity - NEG2

Extending the original benchmark scope yet again by varying N, we look at the
two questions: (1) what is the cycle count difference between the microprocessor
and custom logic executions as N increases; and, (2) what rate of change in cycle
counts occur as we increase the number of negative elements in the sequence as
a percentage of the total elements while N grows? Does % Neg Elements matter?

VLSI Systems Design Lab
Computer Science and Engineering

Comparing Complexity- NEG2
Complexity Comparison: M68K vs ASM

0.0

2,000,000,000.0

4,000,000,000.0

6,000,000,000.0

8,000,000,000.0

10,000,000,000.0

12,000,000,000.0

4 16 64 256 1024 8192 65536 1E+06 2E+07 3E+08

Number of Elements in List (N)

N
u

m
b

er
 o

f
C

lo
ck

 C
yc

le
s

M68K: 25% NEG

M68K: 75% NEG
ASM: 25% NEG

ASM: 75% NEG

Complexity Comparison: M68K vs ASM (Zoomed view)

0.0

2,000.0

4,000.0

6,000.0

8,000.0

10,000.0

12,000.0

4 16 64 25
6

10
24

81
92

65
53

6

10
48

576

16
77

721
6

2.6
8E

+08

Number of Elements in List (N)

N
u

m
b

er
 o

f
C

lo
ck

 C
yc

le
s

(M
ill

io
n

s) M68K: 25% NEG

M68K: 75% NEG
ASM: 25% NEG

ASM: 75% NEG

Complexity Comparison: M68K vs ASM (log scale)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

100,000,000,000

4 16 64 256 1024 8192 65536 1E+06 2E+07 3E+08

Number of Elements in List (N)

N
u

m
b

er
 o

f
C

lo
ck

 C
yc

le
s

M68K: 25% NEG

M68K: 75% NEG
ASM: 25% NEG

ASM: 75% NEG

What we learned: (1) the custom logic architecture
is an order of magnitude more efficient, in terms
of number of clock cycles, in performing the same
computational task, (2) this ratio is consistent as
N grows large, but (3) the “number of probes” of
the list (represented by % of negatives for NEG2)
does not seem to be a relevant metric of complexity
for this algorithm.

What we have yet to calculate: (1) the actual
time to perform the task, given some clock frequencies
for the microprocessor and the custom logic device,
(2) the computational throughput (calculations per
unit time), which can be affected by pipelining of data
operations, CPU instruction caching, etc.

VLSI Systems Design Lab
Computer Science and Engineering

Future Work
• Extend the scope of coverage to incorporate time complexity

analysis of the other benchmarks, to see what happens to
computation with both architecture models as N grows large,
and as we increase the number of “probe points” in the data set
at each value of N.

• Examine the time complexity characteristics O(n), Ω(n) and other
identified metrics for VLSI custom logic architectures in other
benchmarks that have different algorithmic control structures.

• Modify the custom logic models by exploiting inherent
parallelism afforded by VLSI device structure. Here, we might
exploit parallelism & pipelining to increase performance of the
VLSI design, by changing the “shape” of the algorithm.

• Explore more generally how time complexity and other
characteristics are affected by different architecture topologies
for various standard algorithms in both models.

VLSI Systems Design Lab
Computer Science and Engineering

References

• I. S. MacKenzie, The 68000 Microprocessor, Prentice-Hall Publishers, Inc., 1995.

• A. Tanenbaum, Structured Computer Organization, 4th ed., Prentice-Hall Publishers, Inc., 1999.

• flowHDL Reference Manual, Knowledge Based Silicon Corporation, 1996.

• Buell, D. A., Davis, J. P., and G. Quan, "Reconfigurable Computing Applied to Problems in
Communications Security", in Proceedings MAPLD-2002 Military Applications of Programmable
Logic Devices, Advanced Physics Laboratory, Johns Hopkins University, 2002.

• Davis, J., Nagarkar, S., and J. Mathewes, “High-level Design of On-Chip Systems for Integrated
Control and Data Path Applications”, Proceedings Design SuperCon 1996 On-chip System Design
Conference, Hewlett Packard Company & Integrated Systems Design Magazine, 1996.

• D. Wood, Data Structures, Algorithms, and Performance, Addison Wesley Publishing Co., Inc.,
1993.

• B. Codenotti and M. Leoncini, Introduction to Parallel Processing, Addison-Wesley Publishing Co.,
Inc., 1993.

• M. A. Weiss, Data Structures and Algorithm Analysis in C, Benjamin/Cummings Publishing Co., Inc.,
1993.

• L. Banachowski, A. Kreczmar and W. Rytter, Analysis of Algorithms and Data Structures, Addison-
Wesley Publishing Co., Inc., 1991.

