On Exploring Algorithm Performance Between

Von-Neumann and VLSI Custom-Logic
Computing Architectures

Tiffany M. Mintz
James P. Davis, Ph.D.

University of South Carolina

VLSI Systems Design Lab UNJVEERS.ITY
Yy i
Computer Science and Engineering g)LIIH@ROUNA_

Statement of Research

— Explore the differences between microprocessor-based, and
custom-VLSI logic-based, computing system models .

— Compare the difference in execution between microprocessor
computing and custom logic computing architectures, using a set
of benchmark algorithms.

— Write /select assembler programs that execute on a standard
microprocessor (the Motorola 68000), and create
corresponding custom logic architectures and designs for these
same algorithms using an appropriate VLS| design method.

— Examine the differences in algorithmic processing between the
two classes of computing architectures.

— Draw conclusions about the nature of algorithm processing
between the two computing architecture models—the “old”
and the “new”.

Ui NIV RS RS St LT Y

SOUTHO”\ROUNA_

VLS| Systems Design Lab

Microprocessors vs. Custom Logic Computing Systems

Program Algorithm

Executes as Co Hled 68000 Program
Executes directly as

MC 68000 Microprocessor
(Instruction Set Architecture)

Instruction
Fetch Unit
Registers and
Moo Instruction
Decode Unit

Instruction
Input/Output Execute (ALU)

Native Model Register Transfer Level

SI Logic Hardware

* A microprocessor is itself built from custom-designed VLSI logic, yet its
programming model is based on the “fetch, decode, execute” paradigm
pioneered by Dr. John Von Neumann almost 50 years ago. All standard
microprocessor-based computer architectures are still built around this model.

* An application-specific custom VLS| computing system is not limited by the

Von Neumann “bottleneck”, as its control and data processing is inherently
parallel, and its functions are distributed optimally across the VLS| device.

Wi NSRS RS Sad L Y

VLSI Sy?fems Design L-ob . g)LHH@ROLINA

Computer Science and Engineering

@ Algorithms and Architectures for Computing

Algorithms map onto different architectures over a continuum of design choices.

)
Algorithms & Behaviors

Option 1 Option n

General Purpose
Architectures

Application-Specific
Architectures

High-degree of o Optimized for

programmability Van-Netimann Bit-slicad Array Svector Recanfigundie Custom Lagic application-

Micropro 5 Pro ey Pro 5 Lagic specific

High-degree of processing

reuse

Area, timing,

Not optimized for power
application-specific

rocessin . . i
P . Some architecture choices are better than others T'ght'é’e‘:;'l':;g
for a given problem application. trajectories

U N S ESRS Sahl T oY

VLSI SySTemS Design Lab g)LHH(MOLINA

2oy
* A microprocessor Mooy 08
o . IR AOM Gelo
architecture is based o h-.nglh\ i~ vt (3)
on The “feTChl decodel Fram \ J Micro-operation ROM
execute” cycle, that - N == e
bructl =]
f => fohunit] == - :LEIED
* ' Applications exist as Queve.
d af panding
programs, loaded into misio-ops
% Tadram
memory along with memacy
s, Eiwas staga 4 [ALU| C WA B]a— mMIS1
required data. (@} 3 TE—1

* Program instructions

@ p—p Fiogistors

are sequentially

processed by the ©

processor.

* The resources for all
programs are shared,

!

but dedicated to a

Source: Tanenbaum, 4" ed., © Prentice-Hall Publishers, Inc., 1999.

specific executing
program while running.

VLS| Systems Design Lab
Computer Science and Engineering

JraMEE RS Sad L Y

SOUTH(AROLINA.

present $tate information

next state
information

control outputs Control out

output decoding
logic

Select

Control in .
inputs
input/next state
decoding logic
Control Unit
Status
Data in

clocked
register

Data Path Unit

Data out

>
clocked
register

Control Units

Data Path Units

Modeled using Finite State Machine (FSM)
model.

Modeled using Register-Transfer (RTL) model.

Defines clock-based sequencing of
distributed actions in data path, or of those
occurring external to the block.

Defines both synchronous and asynchronous
transformations of data moving through the block.
Data operations are distributed, with fine-grained
parallelism.

LSI Systems Design La

N ES RS SatL Y

SOU[H(?\ROUNA

Mapping Algorithms to VLSI Architecture

Control Flow
Software modeling
Wi ; o
Algorithm (Algorithmic
(C code) structure)

Create Ordered

Sequence of
Operations

Algorithm
Spec
(Text or Math) i3k F.l W
modeling
(Operation
ordering)

* Create Ordered Sequence of Operations.
— Starting with Control Flow Graph (CFG) —

— Starting with Data Flow Graph (CFG).

* Add Hardware Semantics.

— Quickly create a design model (correct by construction).
* Create signal/bus declarations using Bus Table.

macro-function assignments).

— Verify the Model (using digital cycle-based Simulator).

Overlay
Operation Add Hardware
Sequence onto Semantics
Control Structure
- Clocking
- Operation Scheduling
- Parallelism

- Resource Binding

If you are starting with the structure of an algorithm, such as from a block of C
code, you can follow the structure of the algorithm as a basis for creating an ASM chart.

* Overlay Operation Sequence onto Control Structure.

* Draw the flow-chart description of the state machine.
* Annotate states, conditions, cases, conditional output objects with RTN expressions (using assertions, assignments and

* Define clocks, resets, and other synchronous/asynchronous event signaling.

VLS| Systems Design Lab
Computer Science and Engineering

JraMEE RS Sad L Y

SOUTH(AROLINA.

A

d<=a+b+c;

d<=at+b+c;

> control step 1

control step 2

Exploring a VLSI Systems Architecture

Process starts with abstract description
of algorithmic behavior written in C or
some other language, with no timing
info.

— Task #1: Compile source code into
intermediate format, for example, control-flow
graph, dataflow graph.

— Task #2: schedule data operations to occur on
specific control cycles, determined by clocking.

— Task #3: allocate data operations to RTL
components implied by use of language
operators <+, -, ¥..>.

— Task #4: bind specific operations to individual
RTL components, to construct complete circuit
topology.

We look for efficient architectures that
speed up computation with minimal
use of resources. This involves trading
off speed versus resource usage.

| Systems Design La

N ES RS SatL Y

SOU[H(?\ROUNA

MLTTONMA
present state information
next state B
information SR,
inputs outputs | %

input
synchronifing
registers

State A output
Registers \/ filtering
registers
»

input/next state r output decoding P>
decoding logic logic
CLK oL CLK

inputs

Components of FSM Model

— State registers, input synchronization registers (optional) and output filter registers (optional).
— Next state decoding logic, and output decoding logic - combinational logic blocks.

— Input signals to the state machine, which are inputs to the next state and output decoding logic blocks
(could be synchronized to clock with input registers).

— Next state information, which is generated as a result of input/next state decoding logic.

— Present state information, output from the state registers, which is fed back as an input to both next state
and output decoding logic blocks.

— Outputs from the state machine - either generated synchronously from the output of the state registers
(also used as present state information), or asynchronously as output of the output decoding logic block
(which takes input and present state information to produce outputs). Could be filtered using output
registers to eliminate possible signal transients.

JraMEE RS Sad L Y

SOUTH(AROLINA.

VLS| Systems Design Lab
Computer Science and Engineering

&

=
=)

VLSI Systems Modeling-2

4——-—~tp1 <————~tp2-——>{

r\
:

g

Data path “pipeline” - Data path “pipeline” -

Combinational Storage _ | Combinational Storage
==Inputs{ . . ' . . e Outputs -
Logic block Registers Logic block Registers
Synchronizing~ Synchronizing~

Clock| Signal Clock| Signgl

* Use of memory elements in the data path to store signal
values.

— Purpose is to synchronize the behavior of complex circuits.

— Benefits of circuit synchronization:
* Eliminate ‘unpredictability of output behavior due to timing skew.
* Create signal stability, as they must have stable values for certain period of time.
* Better isolate signals from noise transients.

* Use of memory to create complex control structures.

— Controller sequences operations in the data path.
— The sequencing is modeled as a finite state machine, represented as a graph structure.

N ES RS SatL Y

3! Systems Design La SOUTHOAROT INA

X

The Algorithmic State Machine (ASM) Chart

=)

r\
:

|

Captures both the control path and data path design

in a single design representation. It is used to model custom

logic architecture.
Clocking definition ' =) CLKI (rising)
ARES
Enabling event definition %
Moore Machine Actions:

(both synchronous and asynchronous)

% Signal Assertion
signall
State é
Areg <-'0' @ Bus Assignment
Input Conditions:

Binary Decision Condition inputl & input2 @ Boolean input expression
(If-Then)]
Multiway Branch Condition Mealy Machine Actions:
(C/\SE) both synchronous and asynchronous
10bus Isignal5 !
| Breg <- input2
1001 0110 default bR cay
I 29 Assignment

MDR <- ScratchPad [MAR]

\ Memory Read/Write

with Relative Addressing

A<-'0" Areg <- inputl Isignal4
Output <- NMUX (Areg,Breg,inputl)

VLSI Systems Design Lab R i g A
y i
Computer Science and Engineering g)LHHQ\ROLINA

-\% . .
laDM Benchmarking the Architecture Models

ST
* Using a 68000 microprocessor: * Using the ASM design method:

— A well-understood CPU model, — A well-understood custom logic
design method, having been

used for almost 30 years.

— Used in CSCE 491, 611 classes
for custom logic VLSI design.

as the micro is now 20 years old.

— Used in CSCE 313 class for
embedded systems design.

— Select a set of baseline — Follow the same program

programs representing standard algorithms, using RTL macro

algorithms that have been operations in place of 68000

studied in the past. instructions, yet inserting
scheduling and clocking for

— Using the cycle counts for each
instruction, tally up the total
cycles for the program, given the
initial data elements defined for
the benchmark programs (cf.
MacKenzie, 1995).

synchronization.

— Count the number of discrete
states visited during the logic
execution, given the same data
elements defined for the
baseline programs.

U N S ESRS Sahl T oY

VLSI Sysfems De5|gn qu S()LHH(%ROLINA

N

b Counting Cycles in Custom Logic

A\
AL

Using the graphical view of the simulator waveform display, we can easily count
the cycles required to execute an algorithm in.a given VLSI architecture.

)

:
~| Wave Viewer
N

L [= Wave View — Research_ASCBIN-030423 wav
- =
==
=l o
i
=
= S
signal

VLSI Systems Design Lab ot e e
y i
Computer Science and Engineering g)LIIHQ\ROL[NA

\\\Vé-
@ Benchmark Cycle Count Comparison

Benchmark Clock Cycles ., | Clock Cycles (,.om Logic

NEG 2: counting 194 15

negative numbers in
a sequence.

ASCB.IN: 882 24

converting ASCII

string into equivalent
binary number.

SQRT: bubble. 782 35

sorting elements in a
sequence.

SQRT: taking the 1 376 36

square root of an
unsigned integer.

Benchmark Source: MacKenzie, © Prentice-Hall Publishers; Inc., 1995. N o 1' e : l o we r‘ is b 61'1' e r‘ l
.

Ui NIV RS RS St LT Y

VLS| Systems Design Lab S()UTH(%ROLINA

The NEG2 Benchmark - 68K

F WISM68 - Windows MC68000 Simulator,
File Edt CPU Memory Interrupts Breskpaints Window Assembler Help

- [2]x]

B66688F74d
60AB8F8 A
BeAABF9 A
BO008FA G
B66688FB A

=
* NEGZ_SRC *
D ble from: [0000B000 =
CODE EQU $8000 ;program starts at $8000 (sassemate flom: =
DATA EQU $o000 idata starts at $9000 $000868008: MOVEA.L #500000000,A0
00008006: MOUE.B AD)+,DO
ORE CODE ;program at $8000 90863068 CLR.G Enng»
WOUEA.L #DATA,RO 0000866A: HOUEA.L (ne),n1
HOVE .B {AB)+,DB ;use D@ as counter 00808 BBC : TST.B 1)+
GLR.B ~ (A0)+ sclear RESULT 0000866E: BPL.S *+506 ;600008014
HOUEA.L (A6),A1 ;A1 points to numbers 00008610: ADDO.B #51,-50001¢A0)
TST.B)+ stest number 000808614: SUBQ.B #3108
BPL.S SKIP ;negative? 00008616: BNE.S pars ;$0000800C
ADDQ.B #,-1(A0) syes: increment RESULT 988086018 TRAP %>
suBQ.B #1,00 ;no: decrement counter NIIIIIBIHR: ORI.B #500,D8
BHE Loop ;repeat until count = 0 0000861E- ORI.E #500.08
TRAP L 00008622: ORI.B #300,D8
00008626: ORI.B #$00,08
directives to initialize RAM 08808026 : ORI.B ugnn Do
0REG DATA ;data at {9008 gmgﬂggf 32}'2 “S:HS
DC.B 4 = = =
DC.B [} E| CPU Regjsters E]lgl@
pC.L $o0u8
Registers Status Flags
ORE 9010
DC.B gzs $80,$7F,§55 D0: [00000000 01: [00000000 D2 [00000000 ©3: [0000CO0D d i“FEW'SD'M”‘jE
- r ' ’ race
EHD NEG2 D4; (00000000 DS: [00000000 D6 00000000 D7: (00000000

Source: MacKenzie, © Prentice-Hall Publisheys, I

Inc., 1995,
AQ: (00000000 A1: 00000000 A2: |00000000 A3: [00000000

Intemunt Mask: [7 <]

8B6B8FCES et lovet D
0BRBBFDA: BETERIEE
BOGOBFED. a4 [00000000 45 [00000000 A6: (00000000 A7: [00000000 -

BOOBRFF A: Can (£)

: 90400068 3| - FCistack Poirters I Overflow [¥)
88009010: I Megative [N)
88089020- PC: [o0008000 > [MOVEAL H$DODDSDDDAD I Zoo @)
86609030: I Extend)
886889040: 25867F55 00BHBBEE BO00GBEE BBE6GBOE UsP: 00000000 S5P- on 90000000
86669050: 90000000
00009060: S5F:|0R000000 ns 90000000
00009070: oC 88000000
90009080 10 00008660

68660890898:
LLLTE T H

Processor Fieady

JraMEE RS Sad L Y

SOUTH(AROLINA.

VLS| Systems Design Lab

Computer Science and Engineering

| Data — Matrix Table

)

The ASCBIN Benchmark - 68K

=
=2

i N
LT A
B WISH68 - Windows MC6B000 Simulator,
Fie Edt CPU Memory Interrupts Breakpoincs Windaw Assembler Help
=
% ASCBIN.SRC
D ble fom: 0000000 =
CODE EQU $8000 istart at $8000 essEmBlz o =
DATA EQU $9000 sdata starts at $9088 % 00008000: HOUEA.L #580009062 A8
0REG CODE ;progran at $8000 233323335 ﬁt” DL
ASCBIN HOUEA.L #STRING,AO 5800888A: HOUE .4 4000005
CLR.W D6 ;D6 accumulates ans. ﬂﬂl]l]ﬂ[![!E; MHUE:B o)+ I;,'
CLR.L D& ;D4 holds ASCII char. 00008010 BEQ.$ §12 +$ 00008022
HOUE.W #18,05 ;05 = 18 (always) 8000BE12: HULU.W 0505
HOUE.E (AB)+,D4 ;get character BBODBA1E: ANDI B HOOF . Db
BEQ.S DONE ;if null, done 0BB0BG18: ADD.L Dl D6
HULY Dg"’ﬁ 3if not, old x 10 0000801A: BRA.S *-$0C +$0000800E
:EEILB l‘]'u"gé"" :"sg““ new tgﬂ“““ 0000BGC: MOUEA.L #$00009600, A1
- ’ ;add new to o 00008022: HOUE.W D6, (A1)
BRA Logp srepeat 00808024: TRAP
HOUEA.L H#RESULT,A1 00008026: ORI.B #300,00
DONE HOUE.Y D6,(A1) ;save result fRAREA7A- ORI R wenn D
TRAP e - S —
* E CPU Registers EHE‘E
* Use DG directives to initialize RAM
- Fiegisters Status Flags
RESULT :guw l;nm idata at §9000 D0: [00000000 01: [00000000 D2: [00000000 D3 (00000000 gs“‘PEW'SD'MDdE
- Trace
:222:2.‘ STRING DC.B 8,100,007 6,087,300 D4:[00000000 DS (00000000 De: [00000000 D7 0000000
END ASCBIN | =
00008F9 0 Intemupt Mask: [7 =]
::gg:::: Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995. 0100000000 - AT: 0000000042 J0000D000 43 00000000 Intermupt level: 0
ooeear 44 [00000000 45: [00000000 46: [00000000 47: (00000000
00668FCOS F caw(
00OBSFED: PLC/Stack Pointers :: Overflows [/)
008B8FFO: Negative (M)
: 20373838 a0 0768 3 p:[oooosood o [MOVEAL H$0000900240 I Zao@)
00669010: I Extond
80869820: Usp:[00000000 SsP- [ee Ge@BAAER]
: 04 00000000
: 258B7F55 P 1l 5P |00n00000 93 BE0B00RE
00609050: 8C 80000808
00669060: 10 88000000
88669070:
Processar Fizady

U NS ER RS Sk LY O F

VLS| Systems Design Lab
Computer Science and Engineering LIIHQ\ROL[NA_

~‘ flowHDL — Research_ASCBIN—030423.flo— ASC|
Edit Paketle View Tables Tools Options

Ui N MU ECR. Sal

UTHOAROLINA

The SORT Benchmark - 68K

Bl SORT. lst - WordPad

File Edit View Insert Format Help
DEE S & =] By
jpooooooo 1w i
| oooooooo 2 * SORT.SRC «
00000000 3w «
00000000 =00008000 4 CODE EQU $8000 ;program starts at $8000
00000000 =00009000 S DATR EQU $9000 ;data starts at $9000
00000000 &
00008000 7 ORG CODE ;program at §5000
00008000 207C 00005000 & MOVEA.L HEVTES, AO
00008006 3E3C 0004 9 MOVE.W §COUNT-1,D7
00008004 6102 10 BSR.S SORT
0000800C 4E4E 11 TRAP #14
0000600E 12
0000800E 13 % «
0000600E 14 * SORT ascending SORT of 8-bit signed bytes «
0000600E 15 * «
0000600E 16 * ENTER A0 = address of list *
0000600E 17+ D7 = length of list *
0000800E EE «
0000800E 2248 19 SORT MOVEA.L A0, A1 ;save pointer
00008010 2049 20 LOOPZ HOVEA.L A1,A0 jreset pointer
00008012 4245 21 CLE.W DS juse D5 as SVAP Ilag
0ODo0BO14 5347 2z SUB.W #1,D7 snumiper of comparisons
00008016 3CO7 23 HOVE.W D7,D6 ;use D6 within loop
00008018 1818 23 LOOP MOVE.B (A0)+,D4 sget first byte
0000B01A BELO 25 CHMP.B (40) ,D4 jcompare with next
0000801C 6FOE 26 BLE.S SKIF ;if 1st bigger, svap
DOO00BO1E 1150 FFFF 27 MOVE . B (&0) , -1 (A0} .put zZnd into 1st
00DOg0Z2 1084 28 HOVE.B D4, (i0) .put ist into Znd
00008024 5245 29 ADDQ.W #1,D5 jset SWAP flag
00006026 S1CE FFFO 30 SKIP DERAL D&, LOOP ;if last comparison,
000080ZA 4445 31 TST.W DS ;any hytes swapped?
0000802C 66E2 EH BNE.S LOOP2 ;yes: repeat
000080ZE 4E7S 33 DOME RT3 ;no: done
00008030 LI
000068030 35 * Use DC directives to initialize RAN
00008030 36
00009000 a7 ORG DATA ;data at §9000
00009000 05 08 02 FF 07 38 BYTES DC.B 5,8,2,-1,7
00009005 =00000005 39 COUNT EQU *—BYTES
00009005 40 END SORT
No errors detected
No warnings generated Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.
For Help, press FL

U NS ER RS Sk LY O F

VLS| Systems Design Lab LIIH@ROUNA

Computer Science and Engineering

— flowHDL — Research_SORT—030219.flo — SORT_SUB_RT [T
Edit Sheet Paletle View Tables Tools Options

Memory Table — Research_SORT-030219.flo

Nare Address Uidth data width Access Tups

16 3 R HWL3
RAr

Bytes — Matrix Table

=

FINISH

Ui NIV RS RS St LT Y O F

The SQRT Benchmark - 68K

o
= SQRT.SRC Disassemble from: 00008000
oRe B SORT.Ist - WordPad
HOVE L File Edt View Insert Format Help
BSR.S
TRAP dDEE &R A B &
IPEPERE—————] el alala] 1 * *
« SQRT calculate || 00000000 Z % 3QRT.SRC *
* 00000000 3 * *
= ENTER 00008000 4 ORG $8000 ;program at $8000
* EXIT 00008000 203C 00000ZBC 5 HOVE.L #700,D0 sfind sgrt of 700
peesxxxxxxxxxnxxel 0000006 6102 6 BSR.S SORT sdo it!
SQRT HOUEH.L 00008008 4E4E 7 TRAP #14 jreturn to monitor
HOUE..L 00008004 8
NEXT hgﬁéwL j ceooseen g * i
i 00008004 10 * SORT caleulate SQuare RooT of a 32-hit numder *
0000800 11 = 3
?E:Eww 00008004 12 % ENTER DO = 32-bit integer (M) *
BEQ.S d| oooosoos 13 % EXIT D1 = 16-bit square root *
CHPI.w 4| 0000BO0A 14 * *
BEQ.S dl oooosoo: 4sET 3000 15 BQRT MOVEM.L D2/D3,- (%P} ;save DZ and D3
CHPI.w | 0DOOOSOOE 2200 16 MOVE.L DO,D1 sput copy of N in D1
BEQ.S g 00008010 Ezas 17 LSE.U #1,D1 ;lst estimate = N/2
ADD .Y 00008012 2400 18 NEXT MOVE.L DO,D2 sput N in D2
LSR.W #| 00008014 @4ct 18 DIV D1,Dz sdivide N by estimate
BRA 00008016 3602 z0 MOVE.W Dz,D3 inew estimate in D3
EXIT HOVEN.L 00008018 9641 21 SUB.W D1,D3 last two eqmal?
RTS 00008014 6712 22 BEQ.S EXIT iyes: finished
END 0000801C 0OC43 FFFF 23 CHPI.W #-1,D3 rdiffer by +17
00008020 670C 24 BEQ.§ EXIT ;yes: good enough
00008022 0OC43 0001 25 CHPI.W #1,D3 ;differ by +1?
e} oo0DB026 6708 26 BEQ.§ EXIT ;yes: good enough
06668FER: 60000000 O) o0o00S0ZE D24z 27 ADD.U D2,D1 saverage last two
BO0B8FFO: 80000000 O} pooos0za EZ40 28 LER.T #1,D1 ;D1 = (D1 +D2) / 2
00000000: 050802FF O poopsozc 60E2 z9 BRA NEXT
00609010: 80000000 B ooopgozE 4CDF 0OOC 30 EZIT NOVEN.L {SP)+,D2/D3 ;restore registers
maveze: sniaans o ocecr: Lo o
z 00008034 32 END SQRT
B8BB9640: 25807F55 6] E
oe0s9os0: eoaceoo of o
BBEAYB6A: BANOAAO00 O . i i ;.
00009670 00000000 of Vo varnings generated Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.
Processor Ready For Help, press F1

VLS| Systems Design Lab

Computer Science and Engineering

u

N

JraMEE RS Sad L Y

O F

SOUTH(AROLINA.

flowHDL — Research_SQRT-030424-22.flo — SORT

File Edil Paketle View Tables Tools Options

45301

ADDNCCt

3\? Comparing Cycle Co - NEG2

ML
NEG2: Elements in List = 4 (Original MacKenzie benchmark)
—e— M68K Instruction Benchmark
—&— ASM Model Benchmark
250.0
55T 2304 2360
3 20001 194.0
(% 130.0 185.6
% 150.0 -
°
3]
k]
° 100.0 -
3
2
£
4 50.0
1.0 114 120 14.0 14.6 15.0
- = 5 = & =
0.0 T T T T T
0.00% 10.00% 25.00% 75.00% 90.00% 100.00%
% Negative Elements in List

Using the MacKenzie benchmark data set of N=4 elements, we look at two
pieces of information: (1) what is the difference in the cycle counts between
the different computing architecture styles; and, (2) what is the rate of
change in cycle counts if we increased the number of negative elements

in the sequence of length N that we needed to add to the running count.

Wi NSRS RS Sad L Y

SOUTH(AROLINA.

VLS| Systems Design Lab
Computer Science and Engineering

/.
= o
an C Cycle Counts - NEG2
ane omparing Cycle Coun
ML
NEG2: Elements in List = 8192 (Benchmark modification)
400,000.0
—e— M68K Instruction Benchmark
350,000.0 +—— —=— ASM Model Benchmark
3326632 3441320
$ 300,000.0 A
°
>
:-: 250,000.0
S smoaaan | 2409128
G 200,000.0
-
o
§ 150,000.0
£
Z 100,000.0
50.000.0 16,387.0 17,206.2 18,435.0 22,531.0 _45’/59-3 2_’5 ®
0.0
0.00% 10.00% 25.00% 75.00% 90.00% 100.00%
% Negative Elements in List

Extending the original benchmark scope with N=8k elements, we look at the
two questions again: (1) what is the cycle count difference between

the microprocessor and custom logic executions; and, (2) what rate of

change in cycle counts occurs as we increase the number of negative elements
in the sequence as a percentage of the total elements.

U N S ESRS Sahl T oY

SI Systems Design Lab | SOUTHOAROT INA

Numbnr of Elemants Being Prnu:sed N
Siz

r Size7 | Sized

Benchmark Reference Sizel Size2 | Sized Sized Sizes
NEGZ: FigE.p 135 facior=2"'2 faclor=2""4 faclor=2""6 faclor=2""10 ."R'Tr"-""r? faclor=2"*16 | facto !-""'7\1
Count Negative Numbers M= 4 f.J_ Pl 1024 8192
inaList Elemers{NE) = 0.00% 0.00% 0.00% 0.00%
k. ElemarsiMNE) = 10.00% 10008 10.00% 10.00% 1
ElemerisiNE) = 75 00% Z 75.00% 75 00% 25 0%
12.00% i .J.J 'S .00% 1%.00% 3 J500% % D“"B %.00%
S0.00% S0.00%) G0.00% S0.00% S0.00% 00% a0.00%
‘<.N q EIeNen‘=¢l\E‘ 100.00% 100.00%| 100.00% 100.00% 100.00% 100.00% 100.00%
MEBK Instruction Benchmark
Megative Murnbers in List Te = 68 + 18°M + 10°(1-NE] + 24"HE cyckes

Te=

ASH Model Benchmark

Megative Nurbers inList Te= 2+ N[2 + NE{1]) +1 cycles
Te= 000 1.0
10 (| 114

120
14.0
146
100 00%) 150

Extending the original benchmark scope yet again by varying N, we look at the
two questions: (1) what is the cycle count difference between the microprocessor
and custom logic executions as N increases; and, (2) what rate of change in cycle
counts occur as we increase the number of negative elements in the sequence as

a percentage of the total elements while N grows? Does % Neg Elements matter?

VLS| Systems Design Lab
Computer Science and Engineering

24

nHI | IHH
ML

What we learned: (1) the custom logic architecture Complexity Comparison: M68K vs ASM

is an order of magnitude more efficient, in terms 12.000.000.000.0

of number of clock cycles, in performing the same T e

computational task, (2) this ratio is consistent as 10,000,000,000.0 +——| = wBaK: 75% NEG "
N grows large, but (3) the "number of probes” of P /r

the list (represented by % of negatives for NEG2)
does not seem to be a relevant metric of complexity
for this algorithm.

8,000,000,000.0 — //

6,000,000,000.0

4,000,000,000.0 §

Number of Clock Cycles

Complexity Comparison: M68K vs ASM (Zoomed view)
2,000,000,000.0

12,000.0
. |
é 10,000.0 +—| +Z‘;;Kz’55/%;;6 0.0 1 e |
H ASM 75% NEG 4 16 64 256 1024 8192 65536 1E+06 2E+07 3E+08
8 8,000.0 1 Number of Elements in List (N)
3
€ 60000
8
o Complexity Comparison: M68K vs ASM (log scale)
%5 4,000.0
E 100,000,000,000
2 |
3 2,000.0 10,000,000,000 ook 25% NEG /
1,000,000,000 —— _a we8K: 75% NEG
004 - :*; PR ‘@ o s 100000000 | st d
& 4 Gl A N kS g %
h R \Qb@ b’(\/ﬂ/ & s 10,000,000 | ASM: 75% NEG //
¢ 2
h v s 1,000,000
Number of El in List (N) o
umber of Elements in List (N) b 100,000 4
2 10,000
What we have yet to calculate: (1) the actual £ 1000
time to perform the task, given some clock frequencies | * "o
for the microprocessor and the custom logic device, 10
(2) the computational throughput (calculations per 1

4 16 64 256 1024 8192 65536 1E+06 2E+07 3E+08
Number of Elements in List (N)

unit time), which can be affected by pipelining of data
operations, CPU instruction caching, etc.

N ES RS SatL Y

VLS| Systems Design Lab S()LHH(%ROLINA

==
1)l Future Work

LT

=

* Extend the scope of coverage to incorporate time complexity
analysis of the other benchmarks, to see what happens to
computation with both architecture models as N grows large,
and as we increase the number of “probe points” in the data set
at each value of N.

)
-

* Examine the time complexity characteristics O(n), €2(n) and other
identified metrics for VLSI custom logic architectures in other
benchmarks that have different algorithmic control structures.

* Modify the custom logic models by exploiting inherent
parallelism afforded by VLSI device structure. Here, we might
exploit parallelism & pipelining to increase performance of the
VLSI design, by changing the “shape” of the algorithm.

* Explore more generally how time complexity and other

characteristics are affected by different architecture topologies
for various standard algorithms in both models.

VLSI Systems Design Lab ot e e
y i
Computer Science and Engineering g)LIIHQ\ROL[NA

_&Vé—.—
Trﬁﬁf‘ b References

I. S. MacKenzie, The 68000 Microprocessor, Prentice-Hall Publishers, Inc., 1995.

* A Tanenbaum, Structured Computer Organization, 4" ed., Prentice-Hall Publishers, Inc., 1999.

* flowHDL Reference Manual, Knowledge Based Silicon Corporation, 1996.

* Buell, D. A, Davis, J. P., and G. Quan, "Reconfigurable Computing Applied to Problems in
Communications Security”, in Proceedings MAPLD-2002 Military Applications of Programmable
Logic Devices, Advanced Physics Laboratory, Johns Hopkins University, 2002.

* Davis, J., Nagarkar, S., and J. Mathewes, “High-level Design of On-Chip Systems for Integrated
Control and Data Path Applications”, Proceedings Design SuperCon 1996 On-chip System Design
Conference, Hewlett Packard Company & Integrated Systems Design Magazine, 1996.

* D. Wood, Data Structures, Algorithms, and Performance, Addison Wesley Publishing Co., Inc.,

1993.

¢ B. Codenotti and M. Leoncini, Introduction to Parallel Processing, Addison-Wesley Publishing Co.,
Inc., 1993.

* M. A. Weiss, Data Structures and Algorithm Analysis in C, Benjamin/Cummings Publishing Co., Inc.,
1993.

* L. Banachowski, A. Kreczmar and W. Rytter, Analysis of Algorithms and Data Structures, Addison-
Wesley Publishing Co., Inc., 1991.

Ui NIV RS RS St LT Y

VLSI Sysfems De5|gn qu S()UTH(%ROLINA

