4

University of
Massachusetts
Ambherst

Introduction to Electrical and Computer Engineering
Enginl112 — Lecture 35

Control Logic

Maciej Ciesielski
Department of Electrical and Computer Engineering
12/06/06

[Recap from last lecture

= Programmable logic
* Register Transfer Level (RTL) design
e Algorithmic State Machine ASM

» Today’s lecture

¢ Algorithmic State Machine (ASM)
» Datapath design
» Control design
* Example: sequential multiplier design

12/06/06 Engin 112 - Intro to ECE

[Verilog Hints

= Compilation errors
* READ error messages !!
» Watch for the first error message, other errors often depend on the 1st one

= |oqgical errors, eg. Lab5 (TLC) code:

¢ You intended to have:
» HG =1 if state is (SO OR S1 OR S2)

* You wrote:

» assign HG = (state == SO | S1 | S2); // compiles OK, but is this correct?

» NO: check the value of (SO | S1|S2)
= Eg. If SO =000, S1 =001, S2 =010, then SO |S1|S2=..........
= |s this what you wanted? When is HG=1 ?
e Correct code (do you see the difference?):
» assign HG = (state == S0) | (state == S1) | (state == S2);
— — M

1 OR 1 OR 1

12/06/06 Engin 112 - Intro to ECE

[Separation of Control and Data

= Data processing path (Datapath)
* Processes data, discrete elements of information
e Part of the system, which operates on data
» Registers, adders, comparators, ALU, etc.
» Well structured, design well understood
» Common to many systems, implemented with standard components

= Control logic

* Part of the system which controls datapath
» Provides command signals

Status conditions

» Much smaller
than datapath

Commands

» Unique to every ckt
» Requires custom design Control

* Control and External Input
datapath inputs data

K Datapath
logic

12/06/06 Engin 112 - Intro to ECE

Output
data

[Algorithmic State Machines (ASM)]

= Control logic
* Controls sequence of operations in the datapath
» E.g., triggers transfer of register value followed by addition

e Sequential circuit with different control states

» Representation of control logic:
* “Algorithmic State Machine” (ASM)

= ASM flow chart describes sequence of events
e Contains “state box,” “decision box,” and “conditional box”

From exit path of decision box

Binary
Name code |
T
Register operation 0 1 S .
or oulput Register operation
or oulput
Exit path Exit path)
12/06/06 Engin 112 - Intro to ECE 5

[ASM Block |

= State boxes form
state diagram:

= All operations
between states
happen in synch and in one clock cycle

12/06/06 Engin 112 - Intro to ECE 6

[Design Example — binary multiplier]

= Example:
* 10111 x 10011
» B =10111 = 23,, multiplicand
» Q =10011 = 19,, multiplier

10111
10011
10111
10111
00000
00000
10111
0110110101 = 437,,

12/06/06 Engin 112 - Intro to ECE 7

[Multiplier Operation J

= Design of a sequential multiplier
= Block diagram:

. Z=1i{P=0
* How does it work?
Multiplicand Chock for A
Register B ESTD Control
] (o)) logic
A P counter
Cout
Parallel adder T :
n (start)
\ y Sum Multiplier
00— C [— Register A Register Q

Product

12/06/06 Engin 112 - Intro to ECE 8

[Multiplier Operation]

= |nitialization:
* Load Multiplicand into B
* Load Multiplier into Q Z=1ifP=0
* Load number of bits ninto P

Multiplicanc /
\ - Check for 4
. Qo logic
= Start: -

* Multiplication begins (o
when S=1

Parallel adder

1

(start)

= Each step:
e IfQ,(LSBinQ)is1
thenA« A+B ~ N -~
e Shift right CAQ, C <~ 0 Datapath

= Control logic activates all functions at the right time
12/06/06 Engin 112 - Intro to ECE 9

[Multiplier ASM |

= ASM representation of multiplier?

Ty i
Z=1ifP=10

Mu
Check for

0
o onin
»| Control

logic

P
en §
(xlarl)

~
\AG—A +&L’4—CDU|J

Shift right CAQ, C « O

0 1
z

12/06/06 Engin 112 - Intro to ECE 10

Multiplier Control Operation

= Example:
£=1igr=0
e 10111 x 10011
° B = 10111 Multiplicand - 7
‘ Check for ‘
° Q = 10011 zero Control
+ Qy logic
|
. Cou
= Control steps: Parallel adder |
* Start (star)
» S_l Multiplic
T . Register @
* Initialization
»A«0 Product
» C«0
» P« 5
* Multiplication
12/06/06 Engin 112 - Intro to ECE 11
B =10111
(e} A Q P ZalifP=i
After initialization 0 00000 110011 5 B = 10111
dec P; Q,=1; add B B= 10111 Register it
1st partial product 0 10111 110011 4
shift right CAQ 0 01011 1]12001
dec P; Q,=1; add B 10111
2nd partial product 1 00010 1j1001 3 o hemao |
shift right CAQ 0 10001 01/100
A = 00000 Q = 10011
dec P; Q,=0 no add
3 partial product 0 10001 01/100 2
shift right CAQ 0 01000 101]10
dec P; Q=0 no add
4th partial product 0 01000 101/10 1
shift right CAQ 0 00100 0101]1
dec P; Q,=1; add B 10111
5t partial product 0 11011 01011 0
shift right CAQ 0 01101 10101|
P=0 stops multiplier 01101 10101
—_—————

12/06/06

Result = 0110110101

Engin 112 - Intro to ECE

12

[Multiplier State Diagram }

» State diagram representation of ASM

nl |

=0
=1
- D

= RTL operations:

poont]
Pen o Ty initial state
= . T, A«0,C«0,P«0
PeP-1
rerot | . Ty PeP-1

if (Q,=1) then
(A « A+B, C « Cout)

(Aea +gc‘_cnu.) . L
o Ty shift right CAO, C « 0
0 1
z
12/06/06 Engin 112 - Intro to ECE 13

[Control Logic Design]

= Control logic for multiplier:

= To
z Control 2
s logic T,
Qp

* L denotes if addition is performed
e T, — T, control the operations according to RTL specification

= Control logic design
* State assignment: binary
» Conventional combinatorial circuit design
* State assignment: one-hot (only one bit is high)
» Direct translation from state diagram

12/06/06 Engin 112 - Intro to ECE 14

[Multiplier Control Logic

» Binary coded state assignment

Current state Input Next state Outputs
G, | 6 | s |z Gl ||]]|
0 0 0 X 0 0 1 0 0 0
0 0 1 X 0 1 1 0 0 0
0 1 X X 1 0 0 1 0 0
1 0 X X 1 1 0 0 1 0
1 1 X 0 1 0 0 0 0 1
1 1 X 1 0 0 0 0 0 1

e State transition 01 — 10 and 01 — 11 independent of input
e Output is basically decoding of binary state coding

= D flip-flop input equations:
¢ Dg, =T, +T,+T,Z
* Dgo=ToS+T,

12/06/06

Engin 112 - Intro to ECE

15

[Multiplier Control Logic

= Binary coded states

>

1

2X4
decoder

0

1
2
3

Ty

Ty

T,

T

Z
D
1
)
Clock
12/06/06 Engin 112 - Intro to ECE

16

[Multiplier Control Logic }

» Binary coding of states can yield complex circuits
* Multiplier example works nicely because of in-order transition of state

= Alternate approach: one-hot coding
* One flip-flop per state
* Current state indicated by single 1
* State transitions achieved by “passing the 1”

= Direct translation of state diagram!

5=0

@ -
Ty /7?‘ T3} T3
e /

* Incoming arrows on state diagram determine input logic
* Dpg=ToS +T3Z; Dy =ToS; D =Ty + TZ' 5 Dps=T,

12/06/06 Engin 112 - Intro to ECE 17

[Multiplier Control Logic]

= One-hot coded

states
s > g - ‘
* One FF per state] R —
z —\ -
S .
= T
-
[>o D) D Tz
(&
=
-

Clock

12/06/06 Engin 112 - Intro to ECE 18

E

Automated Design

= RTL-based desi

n is automated (sy

esis & verification tools)

!

HDL description Valid Synthesis .
> Of design design tools Netlist
Synthesis
Simulate Simulate
RTL design Test bench zate-level
. design
Design|& l
simulation Verification !
Result Result
Good Good
Nee Needs
correction correction
Compar Fabricate
No match Match IcC
12/06/06 Engin 112 - Intro to ECE

19

E

Homework

= Read Mano
. 8-8

12/06/06

Engin 112 - Intro to ECE

20

10

