Vision-Guided Motion

Presented by Tom Gray

Overview

Part I

- Machine Vision Hardware
- Part II
 - Machine Vision Software
- Part II
 - Motion Control
- Part IV
 - Vision-Guided Motion The Result

Harley Davidson Example

Vision-Guided Motion Overview

Capture Image

Transform XYO

Send Data

Determine XYO

Make Move

Overview

Part I

- Machine Vision Hardware
- Part II
 - Machine Vision Software
- Part II
 - Motion Control
- Part IV
 - Vision-Guided Motion The Result

Part I – Machine Vision Hardware

- Components of a SmartSensor
- How a CCD works
- Image Acquisition:
 - Environmental Protection
 - Triggers
 - Lighting
 - Lenses

SmartSensor Components

- CCD or CMOS for image capture
- RAM for memory storage
- FLASH for non-volatile storage
- Circuit Board for Components
- Image Processor
- Communications/IO Ports

CCD Technology

- CCD Charged
 Coupled Device
- An array of diodes that turn Photons into Electrons
- More photons produce more electric charge

CCD Manufacturing

CCD Structure

CCD Conveyor Analogy

CCD Layers

CCD Charge Shifting

CCD vs. CMOS

- CMOS sensors connect standard transistors and wires to every pixel. Each pixel value is read independently
- CMOS sensors have lower light sensitivity
- CMOS sensors are slower and more susceptible to noise.
- CMOS sensor can be produced on standard silicon lines and are thus cost effective.

CCD - Mixing Colored Light

 Red, Green and Blue light combine to form every color in the spectrum.

CCD - Capturing Color

- The light is filtered before it hits the CCD
- The most expensive systems use 3 CCDs
- A rotating filter can allow only one CCD
- A Bayer filter improves speed and cost

Image Acquisition

- Environment
- Triggers
- Lighting
- Lenses

Acquisition - Environment

- Controllable
 - Temperature
 - Wash-Down
- Maintainable
 - Grease
 - Dust
- Difficult
 - Smoke
 - Flying Debris

Acquisition - Triggers

Hardwired I/O

- Almost every vision system requires a sensor to trigger the inspection
- Communications
 - Commands from Motion Controllers,
 PLCs and PCs can also trigger inspections

Acquisition - Lighting

- The goal of lighting is to increase the contrast of the features you want to inspect
- Successful lighting involves a combination of up front design and experimentation
- Fortunately light generally travels in straight lines.

Lighting - Diffuse

Lighting – Co-Axial DOL

Lighting – Polarized/Filtered

Acquisition - Lenses

- Lenses selection is primarily driven by:
 - Field of View/Resolution
 - Object Distance
 - Depth of Focus
- Lens sizing charts help with field of view and object distance
- Telecentric, Aspherical or Zoom lenses add extra capability

Calculating Resolution

2 in / 640 = .0031

Series 600 Field of View Chart (in inches)

(All FOVs are approximate and are horizontal. To get vertical FOV multiply by 0.75.)

(Note, Extension Tube ler	ngths (DVT PartN	lumber LNC-XKI C/CS	T) are in parathe mount spacer)	eses where ne	eeded. This is	s in addition to t	he 5mm
Lens	LNS-02FNO	LNS-04FNO	<u>LNS-</u> 08FNO	LTC-16F	LTC-25F	LTC-50F	LTC-75F
Focal Length	2.8 mm	4 mm	8 mm	16 mm	25 mm	50 mm	75 mm
Angle of View (H)	86.2	62	35.5	16.9	11	5.4	3.45
Min Obj Dist (in)	Fixed	11.7	11.7	11.8	9.8	11.7	19.7
Object Dist (in)							_
4				1.3 (2mm)	0.8 (5mm)	0.1 (55mm)	
6	11.2	7.2	3.8	1.8 (2mm)	1.1 (2mm)	0.4 (25mm)	0.4
8	15.0	9.6	5.1	2.4 (1mm)	1.5 (1mm)	0.6 (15mm)	0.5
10	18.7	12.0	6.4	3.0 (1mm)	1.9	0.8 (5mm)	0.6
12	22.5	14.4	7.7	3.6	2.3	1.0 (5mm)	0.7
14	26.2	16.8	9.0	4.2	2.7	1.1 (3mm)	0.8
16	29.9	19.2	10.2	4.8	3.1	1.4 (1mm)	1.0
18	33.7	21.6	11.5	5.3	3.5	1.5 (0mm)	1.1
20	37.4	24.0	12.8	5.9	3.9	1.9	1.2
24	44.9	28.8	15.4	7.1	4.6	2.3	1.4
28	52.4	33.6	17.9	8.3	5.4	2.6	1.7
32	59.9	38.5	20.5	9.5	6.2	3.0	1.9
36	67.4	43.3	23.0	10.7	6.9	3.4	2.2
40	74.9	48.1	25.6	11.9	7.7	3.8	2.4
45	84.2	54.1	28.8	13.4	8.7	4.2	2.7
50	93.6	60.1	32.0	14.9	9.6	4.7	3.0

Overview

- Part I
 - Machine Vision Hardware
- Part II
 - Machine Vision Software
- Part II
 - Motion Control
- Part IV
 - Vision-Guided Motion The Result

Part II – Machine Vision Software

- Binary Thresholding
- Sub-pixel Values Intensity, Gradient, Centroid
- Image Processing Tools:
 - Intensity
 - Edge Finding
 - Precision Measurement
 - Blob Analysis
 - Object Location
 - Color Matching.

Binary Thresholding

Original Image

Threshold

1		

Threshold

Sub-Pixel Values - Intensity

- Linear
 - Interpolates to find an edge at an intensity level
- Adjusting the lighting can effect the edge value

Sub-Pixel Values -Gradients

Fit parabola to gradient values More resistant to small lighting changes

X = Edge Location

- p = Pixel Position
- g_p = Gradient between p and p+1

$$x = p + \frac{g_p - g_{p-1}}{2g_p - g_{p-1} - g_{p+1}}$$

Sub-Pixel Values - Centroid

- The center of an object can also be located to sub-pixel precision with a simple centroid calculation.
- 1/10 to 1/100 of a pixel can be achieved

Intensity

- Algorithm
 - Binary Threshold of pixels
 - Count the percent of light pixels
 - Compare with an acceptable value
- Applications
 - Determine if the lens cap is on
 - Determine that a coating has been applied

Edge Finding/Counting

- Algorithm
 - Determine Pixel
 Values along a
 line
 - Count an edge
 each time the
 values cross the
 threshold
- Application
 - Connector Quality
 - Short-Shot
 - Detection

Precision Measurement

- Algorithm
 - Perform Edge
 Detection at
 multiple locations
 - Exclude outliers and average the values
- Application
 - Rivet hole location
 - Knife blade quality

Blob Analysis

- Algorithm
 - Binary Threshold
 - Image
 Preprocessing
 - Group touching pixels
 - Filter and sort results
- Application
 - Candy Bar Sorting
 - Plywood Knot

Check -

₽₿

Object Location

- Algorithm
 - Find Edge Points
 - Create Edge
 Segments
 - Compare with learned Segments
- Application
 - Pick and place robot
 - Label location

Color Matching

- Algorithm
 - Teach multiple colors in RGB space
 - Detect an average color in an area
 - Compare with trained list
- Application
 - Print Registry
 - Gatorade Color Check

_	

Machine Vision Software Demo

Overview

- Part I
 - Machine Vision Hardware
- Part II
 - Machine Vision Software
- Part II
 - Motion Control
- Part IV
 - Vision-Guided Motion The Result

Part III – Motion Control

- Architectures: Standalone, PCbased, Integrated
- Information Flow: Motion Controller, Drive/Amplifier, Motor, Mechanics.
- Feedback Loops: Torque, Velocity, Position, Application Level

Info Flow - Motion Controller

- Input
 - Stored Program
 Commands
 - Serial/Ethernet
 Commands
- Output
 - +/- 10 V signal (servo)
 - 5V TTL pulses (stepper)

Info Flow - Drive/Amplifier

- Input
 - +/- 10 V signal
 - 5V TTL pulses
- Output
 - Commutated
 Current to motor
 windings

Info Flow - Motor

- Input
 - Commutated current to motor windings
- Output
 - Rotary or linear motion

Info Flow - Mechanics

- Input
 - Rotary or Linear
 Motion from motor
- Output
 - Rotary or Linear
 Motion with
 mechanical
 advantage.

Info Flow - Feedback Device

- Input
 - Encoder Pulses
 - Resolver Position
- Output
 - Quadrature signal
 - Analog Position
 Signal

Feedback - Position Loop

Feedback - Application Logic

Inputs

Overview

Part I

- Machine Vision Hardware
- Part II
 - Machine Vision Software
- Part II
 - Motion Control
- Part IV
 - Vision-Guided Motion The Result

Part IV – Vision-Guided Motion

- Communications: Ethernet, Serial, Hardwired I/O
- Coordinate Transformations/Mapping
- Vision-Guided Motion Review
- Candy bar demonstration

Communications

Ethernet

Serial I/O

- The Vision Sensor must be able to send coordinates to the motion controller
- The Motion controller must be able to accept commands
- This means drivers

Coordinate Transforms

- The vision pixel coordinates must be converted to real world coordinates
- Done by:
 - Vision Sensor
 - Additional PC
 - Motion Controller

Vision-Guided Motion Review

Capture Image

Transform XYO

Determine XYO

Make Move

Demonstration

Thank You

http://www.howstuffworks.com

Parker Compumotor Michael Schreiber – DVT Brent Carlson – NRCC Simon Tulluch - INGT