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Abstract. In this article, we present the design of a team of heterogeneous, centimeter-scale robots that collaborate
to map and explore unknown environments. The robots, called Millibots, are configured from modular components
that include sonar and IR sensors, camera, communication, computation, and mobility modules. Robots with
different configurations use their special capabilities collaboratively to accomplish a given task. For mapping and
exploration with multiple robots, it is critical to know the relative positions of each robot with respect to the others.
We have developed a novel localization system that uses sonar-based distance measurements to determine the
positions of all the robots in the group. With their positions known, we use an occupancy grid Bayesian mapping
algorithm to combine the sensor data from multiple robots with different sensing modalities. Finally, we present
the results of several mapping experiments conducted by a user-guided team of five robots operating in a room
containing multiple obstacles.
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1. Introduction

A team of robots has distinct advantages over single
robots with respect to sensing as well as actuation
(Arkin and Balch, 1998; Mataric, 1995). When ma-
nipulating or carrying large objects, a given load can
be distributed over several robots so that each robot
can be built much smaller, lighter, and less expensive
(Parker, 1999; Rus et al., 1995). As for sensing, a
team of robots can perceive its environment from mul-
tiple disparate viewpoints. In such a system, a task is
not completed by a single robot but instead by a team

of collaborating robots. Team members may exchange
sensor information, help each other to scale obstacles,
or collaborate to manipulate heavy objects. A single
robot, on the other hand, can only sense its environment
from a single viewpoint, even when it is equipped with
a large array of different sensing modalities. There are
many tasks for which distributed viewpoints are advan-
tageous such as, surveillance, monitoring, demining
and plume detection.

Distributed robotic systems require a new de-
sign philosophy. Traditional robots are designed with
a broad array of capabilities (sensing, actuation,
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communication, and computation). Often, the design-
ers will even add redundant components to avoid sys-
tem failure from a single fault. The resulting systems
are large, complex, and expensive. For robot teams, the
design can be approached from a completely different
angle, namely: “Build simple inexpensive robots with
limited capabilities that can accomplish the task reli-
ably through cooperation.” Each individual robot may
not be very capable, but as a team they can still accom-
plish useful tasks. This results in less expensive robots
that are easier to maintain and debug. Moreover, since
each robot is expendable, reliability can be obtained
in numbers; that is, if a single robot fails, little if any
capabilities are lost, and the team can still continue the
task with the remaining robots.

Because the size of a robot determines to a large
extent its capabilities, we are developing a hierarchi-
cal robot team at Carnegie Mellon University. As is
shown in Fig. 1, the team consists of large All Ter-
rain Vehicles (ATVs) (Diehl et al., 1999; Dolan et al.,
1999), medium-sized Tank robots (based on a remote
control Tamiya tank model) (Conticelli and Khosla,
1999), a set of Pioneer robots and centimeter scale
Millibots (7 × 7× 7 cm). The ATVs have a range of
up to 100 miles, are completely autonomous and carry
extensive computational power. They are capable of

Figure 1. A hierarchical team of robots consisting of Millibots (top), Tanks, Pioneers and ATVs.

transporting and deploying groups of smaller robots
to distant areas of interest while providing higher-
level computational support of the extended team. The
Pioneer robots are platforms for the development of
“Port-Based Adaptive Agents” (Dixon et al., 2000)
that will allow the team to dynamically exchange algo-
rithms and state information while on-line. The Tank
robots are medium-sized, autonomous robots complete
with infrared and sonar arrays, a swivel-mounted cam-
era and an on-board 486 computer. Each tank robot is
capable of individual missions or can serve as the leader
and coordinator for a team of smaller, centimeter-scale
robots called Millibots. These small and lightweight
robots can be easily carried by their larger counterparts
higher-up in the robot hierarchy. They can maneuver
through small openings and into tight corners to ob-
serve areas that are not accessible to the larger robots.
Being small, they are also less noticeable allowing for
more covert operations in hostile territory. Such a hi-
erarchical organization allows us to combine the au-
tonomy and computation power of the large ATVs, the
maneuverability of the tanks and the distributed sens-
ing capabilities of a large number of covertly operating
Millibots. In this paper, we will focus primarily on the
design and operation of the smallest units of our team:
the Millibots.
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2. The Millibots

The primary factor that determines what a robot can
do and where it can go is size. The most obvious ad-
vantage of a smaller robot is that it can access spaces
restricted to its larger counterparts. Small robots can
crawl through pipes, inspect collapsed buildings, or
hide in small inconspicuous spaces. For surveillance
and exploration tasks, this increased accessibility dra-
matically impacts the overall functionality of the robot.
However, with small size comes the disadvantages of
limited mobility range, limited energy availability, and
possibly reduced sensing, communication and compu-
tation ability due to size and power constraints.

2.1. Small Robots

Several efforts for building small mobile robots have
been reported in the literature (Hollis, 1996; McLurkin,
1996; Mondada et al., 1993; Veloso et al., 1998).
Although these robots are feats of technological in-
genuity, they tend to lack the capabilities necessary for
performing tasks going beyond the complexity of fol-
low the leader, move towards the light source, etc. Of-
ten a small robot must sacrifice one feature to achieve
another.

One exception is the Khepera robots that have
achieved both small size and computing complexity
(Mondada et al., 1993). Khepera robots are 5 cm in
diameter and are capable of significant on-board pro-
cessing. Khepera robots are modular and support the
addition of sensor and processing modules. They are
designed to work alone or communicate and act with
other robots. However, the Khepera robot lacks a sig-
nificant feature that would allow it to operate in an
unknown environment, combine sensor information
and act as a central, cohesive unit:self-localization.
Khepera must either rely on a fixed position global
sensor (overhead camera) or internal dead-reckoning.
Both methods make them ineffective as a deployable
set of robots. As we will discuss later, the Millibots have
developed a set of sensor modules that allows a group
of Millibots to self-localize and move as a coordinated
entity while maintaining relative position information
about the group.

Another potential limitation of the Khepera robots is
their choice of propulsion. Khepera robots achieve mo-
bility from a pair of centimeter sized wheels housed in
the center of the robot. This form of mobility is good
for flat surfaces but restricts the robot’s clearance to

about 3 mm—significantly limiting the environments
in which the Khepera robots can operate. On the other
hand, Millibots can be configured with various mo-
bility platforms allowing them to operate in different
environments. For example, when configured with a
thick rubber tread design, Millibots have a clearance of
about 15 mm allowing them to climb inclines and small
obstacles. The same Millibot can be equipped with a
wheel and caster design when operating on a flat hard
surface.

A set of robots, called Ants (McLurkin, 1996), is also
on the same scale as the Millibots. These robots are also
designed to be used in groups or teams. However, since
these small robots were developed primarily to explore
reactive social behaviors they are very limited in sens-
ing. They do not support a real-time communication
link nor are they equipped to exchange sensor infor-
mation necessary to produce maps or models of the en-
vironment. Rather they are designed to convey simple
messages such as “have food” or “it” via a short-range
infrared transmitter, sense objects with a simple touch
switch and sense orientation with a simple light de-
tector. Millibots, on the other hand, are equipped with
various sensor arrays such as a multi-element sonar and
on-board video that provide more detailed information.
These sensors are capable of identifying objects and
building maps of the environment.

To achieve their scale, the Ants were built with a
fixed architecture. Propulsion, sensing and processing
are combined to optimize size constraints such that
the addition of any new functionality would require
a complete redesign. The Ants suffer from the inabil-
ity to localize as well. They rely on the presence of
a strong light source for orientation and encoders for
dead-reckoning. Even if they were able to communi-
cate more detailed information between them, without
a means for determining position, they would have little
context in which to evaluate the data.

Examples of small-scalecooperatingrobots are the
FIRA and RobotCup competitions (Federation of In-
ternational Robot-soccer Association) (Veloso et al.,
1998). Each team of soccer robots consists of a group of
five robots that are limited in size to 7.5×7.5×7.5 cm.
These robots coordinate to perform complex actions
like passing a ball and defending a goal against a co-
ordinated attack. Like Millibots, the team of soccer
robots acts as a set of distributed mobility platforms
tasked by a central controller. However, most soccer
robot teams are extremely limited in their sensing
capabilities. Position sensing for the soccer robots is
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accomplished via a global camera positioned above the
playing field. Most teams have little or no sensors on
the robots themselves. Without the external camera, the
robots are blind and unable to respond to real-world
events.

The examples discussed above illustrate some of the
limitations imposed by small scale. Small robots must
sacrifice mobility, sensing and power to achieve their
desired scale. To remain effective, they must adopt new
techniques to overcome these limitations.

3. Specialization and Collaboration

Our approach to overcoming the disadvantages im-
posed by small robots is based onspecializationand
collaboration(Section 4). Specialization is achieved by
exploiting the nature of a heterogeneous team. Instead
of equipping every robot with every sensor, computa-
tion, and communication capability, we are building
robots that are each specialized for a particular aspect
of the task. In one type of scenario, the robot team may
be composed of robots with various range and position
sensors but only limited computation capabilities. In
this case, the robots act as distributed sensor platforms
remotely controlled by a team leader who performs the
high-level planning. In another task, the same group
of Millibots may be equipped with more computation.
Data can be collected and stored locally until it is ready
to be retrieved. Some missions may dictate a collec-
tion of robots of differing strengths. The choice of plat-
forms and how the platforms are used depends only on
the task.

By omitting the capabilities that are unnecessary for
a particular scenario, power, volume, and weight of the

Figure 2. The Millibot’s architecture and subsystems.

robot can significantly be reduced. However, special-
ization has the disadvantage that many different robots
need to be available to address the specific requirements
of a given task.

3.1. Modular Architecture

To achieve this level of specialization without the need
for a large repository of robots, we have chosen to de-
velop the Millibots in a modular fashion. A Millibot is
constructed by assembling a set of sub-systems ranging
from computation to communications to sensors. Even
the mobility platform is modular and can be selected
based on the terrain of the mission. To support modu-
larity, each of the subsystems has been implemented as
a self-contained module complete with processor and
interface circuitry.

Specialization through modularity also allows the
Millibots to optimize resources. By constructing a
robot with only mission specific modules, the size and
cost of the robot can be kept to a minimum. Reduction
of unnecessary payload means the robot will have less
weight and consume less power. Furthermore, some
robots require less computational complexity allowing
them to be equipped with smaller processors that in
turn consume less power. Smaller and cheaper means
that robots can be built and deployed in large numbers
to achieve dense sensing coverage, team level adapt-
ability, and fault tolerance.

As shown in Fig. 2, each Millibot is composed of a
main processor with optional communication and sen-
sor modules housed on a mobility platform. The mod-
ules interface with each other through a standardized
bus for power and inter-module communication. Each
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module contains its own microprocessor that imple-
ments the inter-module communication protocol and
performs low-level signal processing functions for sen-
sor and actuator control.

Coordination between modules is accomplished in
two ways. Data and timing signals can be shared ei-
ther through a set of dedicated slots or via a common
I2C bus. The dedicated slots are fixed connections that
can support up to six sensor or actuator modules. The
choice of module and slot is determined by the operator
and fixed in software. Information is passed back and
forth via these slots in the form of serial communi-
cations. Dedicated slots are reserved for modules that
may need additional data lines or cannot handle the
computational complexity of I2C.

An I2C bus (Lekei, 1997) provides a second option
for connection of modules. I2C is a bus design and com-
munications protocol that allows multiple modules to
be connected to a common two-wire bus. One wire pro-
vides a high speed, synchronous clock while the other
provides a two-way data communication line. Target
modules are distinguished from one another by pre-
appending each message on the data line with an ad-
dress header. Only the module that matches the address
acts on that message. This interface is less restrictive
than the dedicated slot method because it allows many
modules to be connected to the same processor without
having to designate on which pins the modules reside.
The choice of which type of connection is determined
by the operator and easily configured in software.

Any module that does not violate the size and power
constraints of the Millibots and provides a serial inter-
face for data exchange can be utilized by the Millibot.
Sensor modules of this type include ranging sensors,
proximity detectors, chemical sensors, magnetic field
detectors, and radiation monitors.

3.2. The Millibot Subsystems

Currently the Millibots can be composed from a suite of
seven subsystems: the main processor module, a com-
munication module, an IR obstacle detection module,
two types of sonar modules, a motor control module,
and a localization module.

Communications is essential in a coordinated team.
Without explicit communications, a robot can only
interact with team members using its sensors (e.g.
vision-based “follow the leader” behavior) (Brooks,
1986; Mataric, 1995). However, collaborative map-
ping and exploration requires the exchange of detailed

and abstract information that cannot be easily con-
veyed implicitly. To provide two-way communications
within the group, each Millibot is equipped with a ra-
dio frequency transmitter and receiver. These units can
exchange data at 4800 bps at a distance of up to 100 me-
ters. The choice of units is based primarily on size and
power considerations. Units with higher data transfer
rates exist but at the prohibitive cost of size. This trade-
off between size and functionality is a common theme
in constructing small robots. We expect that smaller
more powerful transmission units will become com-
mercially available in the future as miniaturization in
solid state progresses.

To perceive the world, a robot must have sensors.
There are currently three sensor modules available to
each Millibot. The first two are a set of ultrasonic sonar
modules that provide focused range information about
obstacles. One sonar module type provides short-range
distance information for obstacles between 0 and 0.5 m.
The module consists of eight sonars arranged in a ring
around the center of the robot. Though limited in range,
this module provides detailed information about the
area directly surrounding the robot. A short-range sen-
sor module such as this is ideal for Millibots that have
to work in tight or cluttered areas. For robots at this
scale, the ability to measure extremely short range is
essential.

The second sonar module type provides long-range
information for obstacles between 0.15 m and 1.8 m.
Long-range sensors are more effective in environments
that are more open such as hallways or open office
spaces. Because of the construction of this type of
detector, a Millibot can currently support only one
sonar pair per robot. This unit can return long-range
distance information but in a tightly focused cone of
only 40 degrees. To obtain more complete information
about the environment, this type of detector would have
to rely on movement of the robot to increase coverage.
For some tasks, it may be desirable to have both short
and long-range sonar sensing available. This can still
be achieved by equipping some Millibots on the team
with short-range modules and some with long-range
sonar modules.

A potential complication with any ultrasonic based
sensor is the probability of interference with similar
modules on other robots. Most sonar elements operate
at a fixed frequency determined by their mechanical
construction. Therefore, two robots using ultrasonic
sensors in the same area will most likely cause inter-
ference for the other. To overcome this problem while
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still providing continuous rudimentary obstacle detec-
tion, a Millibot may opt to carry an infrared proximity
module. The proximity module provides an array of
five tunable, infrared emitter-detector pairs that trigger
when an obstacle intrudes within its cone of emission.
The proximity elements can be calibrated to provide
readings of up to 0.25 m. Although the proximity de-
tectors cannot be reliably used for range determination
of objects, they can be used very effectively in con-
junction with a sonar detector module. The proximity
module can be continuously sensing an area around
the robot. Upon detection of an object by the proxim-
ity detector, the robot can coordinate with the team to
acquire better range information through its sonars.

Except under the most controlled conditions, the
sensors discussed so far cannot provide enough detail
to resolve many of the problems facing a real robot.
Real situations are fraught with anomalies. A method
is needed to provide high bandwidth information dur-
ing a mission for analysis by a higher level process
or operator. To provide this service, Millibots can be
equipped with a camera module. The camera module
provides an external mini camera, video transmitter
and power circuitry. Currently because of the limited
processing capabilities of the Millibot, video signals
cannot be processed on-board. A small video trans-
mitter is included with the module to transmit the raw
video signal to an external processor or remote view-
ing station. The camera module includes circuitry that
allows the camera and its transmitter to be switched
on and off via control signals from the Millibot. Con-
trol of the camera aids in effective power management.
The camera need only be powered when an image is de-
sired. The ability to remotely power down an individual
transmitter also allows multiple robots to carry similar
camera modules while using the same transmitter fre-
quency. Interference is prevented by powering only
one transmitter at a time. Additionally resources are
minimized since only one receiving station and asso-
ciated monitoring device is needed per Millibot group.
However, though the camera module provides valuable
visual information, it operates on the threshold of the
Millibot’s power budget. The current camera dissipates
about 1.5 Watts of power during operation. Due to the
limited size of the battery, this type of sensor cannot be
used continuously like other sensor packages.

Not all scenarios will support robots designed with
the same modes of propulsion. For example, a small
robot equipped with a set of thin rubber tracks will per-
form well on a flat, slippery surface, such as a floor or

table but performs poorly on a shag rug. Conversely,
the same robot may outperform a robot equipped with
wheels in another scenario. In the Millibot group, mod-
ularity has been extended to the mobility platforms as
well. A mobility platform is selected for a particular
Millibot and the main processor and its set of support
sensors is added to make it a robot. In most cases, the
mobility platforms will utilize a similar set of dc mo-
tors. Therefore, the same motor control module can be
selected and only the software needs to be changed.
For platforms that differ, they need only to include
their own motor control module and conform to the
software interface. Currently the Millibots have im-
plemented three sets of platforms each utilizing skid
steering. Some Millibots are equipped with a plastic
chain design which is ideal for rough surfaces like rugs
while others are equipped with rubber tread designs of
differing widths which allows them to crawl on smooth
inclined surfaces.

4. Collaboration

In addition to specialization, Millibots use collabo-
ration to overcome the limitations imposed by small
scale. By nature, Millibots are small, mobile robots
with limited capabilities. Yet, by collaborating with
each other as a team, they are able to overcome their
individual limitations and accomplish important tasks
ranging from localization to surveillance, mapping, and
exploration.

When distributed robotic applications require robots
to share sensor information (e.g. mapping, surveil-
lance, etc.) it is critical to know the position and orien-
tation of the robots with respect to each other. Without
this knowledge, it becomes impossible to interpret the
sensor data in a global frame of reference and integrate
it with data obtained by other robots. Millibots exploit
collaboration to obtain relative position and orientation
of the team with respect to each other, even as the team
moves. Without an external means of localization, this
knowledge is essential for the team to move to predeter-
mined locations, avoid known obstacles, or reposition
themselves for maximum sensor efficiency.

Conventional localization systems do not offer a vi-
able solution for Millibots. Dead reckoning, a com-
mon localization method, generally suffers from ac-
curacy problems due to integration errors and wheel
slippage (Borenstein et al., 1996). This is even more
pronounced for systems that rely on skid steering for
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which track slippage is inherent to the steering mech-
anism. Camera-based localization, such as those used
by the soccer robots, is not feasible in many of the
environments in which small robots can be exploited.
On the other hand, larger robotic systems often rely
on Global Positioning Systems (GPS) and compass for
determining their position and orientation in a global
frame of reference (Getting, 1993). However, due to its
size, limited accuracy, and satellite visibility require-
ments, GPS is not appropriate for use in small robots
that operate mostly indoors. Conversely, systems that
are based on landmark recognition (Atiya and Hager,
1993; Jenkin et al., 1993) or map-based positioning
(Stuck et al., 1994) require excessive local computa-
tional power and sensing accuracy to be implemented
on Millibots.

To overcome the problems encountered in the imple-
mentation of existing localization methods for a team of
Millibots, we have developed a novel method that com-
bines aspects of GPS, land-mark based localization,
and dead reckoning (Navarro-Serment et al., 1999).
This method uses synchronized, ultrasound pulses to
measure the distances between each robot on a team
and then determines the relative positions of the robots
through trilateration. Similar systems have been devel-
oped (ISR—IS Robotics, Inc., 1994). However, they
are both too large and too expensive for operation on
Millibots. Moreover, the system described in this ar-
ticle is more flexible because it does not require any

Figure 3. Ultrasonic distance measurement.

fixed beacons with known positions, which is an im-
portant relaxation of the requirements when mapping
and exploring unknown environments.

4.1. Collaborative Localization

The Millibot localization system is based on the trilat-
eration (Borenstein et al., 1996), i.e., determination of
the position based on distance measurements to known
landmarks or beacons (Kleeman, 1992; Leonard and
Durrant-Whyte, 1991). GPS is an example of a tri-
lateration system; the position of a GPS unit on earth
is calculated from distance measurements to satellites
in space. Similarly, the Millibot localization system
determines the position of each robot based on dis-
tance measurements to stationary robots with known
positions.

To derive team positions, each Millibot is equipped
with a localization module that utilizes ultrasound
and radio pulses to measure the distances between it
and other robots. Each localization module is designed
to act as both emitter and receiver. Periodically, each
module emits a series of localization pulses that emit ra-
dially away from the robot. To synchronize the timing
between robots without having to use accurate timers,
each module actually emits both a radio frequency (RF)
pulse and a series of ultrasonic pulses. As is illus-
trated in Fig. 3, the RF pulse, traveling at the speed of
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Figure 4. The acoustic reflector.

light (3× 108 m/s), arrives at each receiver almost in-
stantaneously. The ultrasonic pulses, traveling only at
343 m/s (assuming 20◦C air temperature), arrive at each
receiver delayed by a time proportional to its distance
to the emitter. The timing between each robot pair is
stored locally by the module until it can be reported to
the team leader.

Following each sequence, the team leader collects
the timing information between each pair. This infor-
mation is used to determine the actual position of every
Millibot using a maximum likelihood estimator. In the
future, we plan to calculate the Millibot positions on
the local processor of each Millibot. However, the cur-
rent processor does not have the necessary computation
power to perform these floating-point computations.

To produce and detect beacon signals, each Millibot
is equipped with a modified, low-cost ultrasonic trans-
ducer. This transducer can function either as a receiver
or as an emitter. For localization to be effective, it is im-
portant that the sensor is able to detect signals coming
from any direction around the Millibot. As illustrated
in Fig. 4, an ultrasonic transducer is positioned to face
straight up and all incoming and outgoing sound waves
are reflected by the aluminum cone. The result is a de-
tector with a coverage of 360 degrees in the horizontal
plane. The ultrasonic transducer with reflector is about
2.5 cm tall. It can measure distances up to 3 m with
a resolution of 8 mm while consuming only 25 mW.
The construction and design of this detector was
paramount in achieving a localization system at this
scale.

4.2. The Localization Algorithm

To determine the position and orientation of the robots
relative to each other, we use a maximum likelihood
estimator. If all the distance measurements were per-
fectly accurate, we could use a simple geometric tri-
lateration algorithm to determine the position of the

robots relative to each other. However, measurements
are noisy and sometimes missing. As a result, the set of
equations resulting from a purely geometric approach is
over-constrained and does not always yield a solution.
Instead, we use a maximum likelihood estimator that
determines the most likely position and orientation of
all the robots, given their previous positions and orien-
tations, their movements, and the sonar-based distance
measurements.

Assume that we know the position an orientation,
(x0, y0, ϕ0), of all the robots at timet0. The question
is: how do we determine the position,(x1, y1, ϕ1),
of the robots at timet1, after they have moved? We
can estimate the new positions based on the following
information:

• Dead reckoning: Since all the Millibots are
equipped with encoders, their position at timet1 can
be estimated by integrating the encoder signals. This
can be further simplified in our case, because the
Millibots always move according to “vector com-
mands” (i.e., rotation in place over an angleα,
followed by a forward straight-line motion over a
distance,d). A stiff controller guarantees that the
commanded motion,(α, d), is realized, eliminating
the need to query the robot after the motion is com-
pleted. In addition to the parametersα andd, we
assume that the vector command is characterized by
the angleβ. As is illustrated in Fig. 5,β is the angle
over which the robot rotates while moving forward.
This unplanned rotation is due to wheel slippage and
calibration errors in the controller. There is a one-
to-one mapping between the incremental motion of
the robot, from(x0, y0, ϕ0) to (x1, y1, ϕ1), and the
parameters(α, β,d):

d =
√
1x2+1y2

α = 2 tan−1(1y/1x)−1ϕ (1)

β = 21ϕ − 2 tan−1(1y/1x)
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Figure 5. Vector command,(α, d), with the deviation from straight-line motion.

• Distance measurements:After all the robots have
come to a halt, each robot that moved pings its lo-
calization beacon to determine its distance to all the
other robots. The resulting distance measurements
provide accurate data that allow us to overcome the
drift typically encountered in localization algorithms
based on dead reckoning alone.

We have carefully calibrated the motion controller
and localization beacon so that, in addition to the
nominal measurement, we have an estimate of the
corresponding standard deviation. As illustrated in
Navarro-Serment et al. (1999), the distribution of the
localization data closely resembles a Normal distribu-
tion. Assuming that both the dead reckoning data and
the distance measurements are normally distributed,
we can compute the likelihood of a particular set of
measurements occurring for a given robot position:

• Dead reckoning: The likelihood that a robot moved
over an angle,α± σα, and a distance,d± σd, given
its initial position (x0, y0, ϕ0) and final position
(x1, y1, ϕ1) is:

P
(
α, d

∣∣ x1
i , y1

i , x1
j , y1

j

)
= N

(
α − α̂
σα

)
N

(
β − β̂
σβ

)
N

(
d − d̂

σd

)
(2)

• Distance measurements:The likelihood that the
measured distance between two robots,i and j , is

equal toDi j is:

P
(
Di j

∣∣ x1
i , y1

i , x1
j , y1

j

)
= N

(
Di j −

√(
x1

i − x1
j

)2+ (y1
i − y1

j

)2
σD

)
(3)

The total conditional likelihood function
Ptot(αi , di , . . . , Di j , . . . , | x0

1, y0
1, ϕ

0
1, . . . , x

0
n, y0

n,

ϕ0
n, x1

1, y1
1, ϕ

1
1, . . . , x

1
n, y1

n, ϕ
1
n) is the product of all

the conditional likelihoods introduced above. The
most likely robot positions are found by maximiz-
ing Ptot with respect to the new robot positions
(x1

1, y1
1, ϕ

1
1, . . . , x

1
n, y1

n, ϕ
1
n).

The maximum likelihood estimator requires that the
initial positions of the robots are known with respect
to one another. This requires a slightly modified ap-
proach at start up. After collecting distance measure-
ments between all possible robot pairs, a conditional
probability density function is defined which only con-
sists of distance measurement terms. In addition, one
arbitrary robot is assigned the position (0,0) and a sec-
ond robot is assigned a position on theX-axis. This
defines a frame of reference in which the position of
all other robots is determined by maximizing the condi-
tional probability density function. However, based on
distance measurements alone, there remains an ambi-
guity about the sign of theY-coordinates of each robot.
To resolve this ambiguity, the team leader commands
one robot to follow a short L-shaped trajectory and re-
computes its position. If the robot turned to the left,
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but the assigned coordinate system indicates a right
turn, the signs of theY-coordinates of all robots are
reversed.

4.3. Implementation Issues

The optimization of the conditional probability den-
sity function can be formulated as a weighted nonlinear
least-squares problem, which we solve using the BFGS
nonlinear optimization algorithm (Fletcher, 1987). The
dead reckoning data provides a good starting point, so
that only a few optimization iterations are necessary to
reach the optimum. During the initialization stage of the
robot team, when no prior information about the robot
positions is available, the BFGS algorithm may get
stuck in a local minimum. Based on experimentation,
we have found that taking the best-out-of-five ran-
domly initialized runs never fails to find the global
optimum.

To obtain good results with the above algorithm, it
is very important to filter the raw measurement data.
Even though the sensors are very accurate and reliable,
it is possible that they have returned false measure-
ments. This occurs for instances where the direct path
between two robots is obstructed by an obstacle or an-
other robot. The beacon sensors will always return the
time corresponding to the first incoming ultra-sound
pulse. In this case, the first pulse is the result of some
multi-path rather than the direct-path pulse. As a result,
the measured distance can be significantly larger than
the actual distance. A similar error occurs when there
is a multi-path pulse that destructively interferes with
the direct pulse. In this case, the ultrasonic pulse is not
detected at all.

It should be noted that the difference between a good
and a bad distance measurement cannot be recognized
based on the measurement data alone. Indeed, multi-
ple measurements will all result in the same (possibly
erroneous) reading. Erroneous readings can still be re-
jected, however, based on dead reckoning information.
Even though dead reckoning is unreliable when inte-
grated over a long time, for a single robot action, it can
provide a reasonable estimate of the robot’s position.
By comparing the encoder distance measurements with
the distances computed for the estimated positions, it
is possible to reliably reject erroneous measurements
due to multi-path.

Furthermore, the accuracy of the algorithm was im-
proved significantly by using more than the minimally
required three robot beacons. In our experiments, we

used a team of five robots in which, at any time, four
served as beacons. The extra distance measurements
improve the accuracy of the position estimates, espe-
cially, when the direct path to one or more of the robot
beacons is obstructed by obstacles. Further accuracy
improvements were obtained by pinging each beacon
multiple times. Median and mean filtering were then
used to significantly reduce the standard deviation of
the distance measurement, resulting in a more accurate
position estimate.

5. Mapping and Exploration

The primary utility of the Millibots is exploration
and mapping. The team coordinates movements and
collection of sensor data to produce maps and ex-
plore unknown spaces. It is difficult for a single robot
to map any significant area, especially for robots at
this scale. Even with its long-range sonars, the Mil-
libot is limited to a detection range of only about 50
centimeters. However, a group of Millibots can be
equipped with similar sensors to cover more area in
less time than a single robot. During operation, each
robot collects information locally about its surround-
ings. This data is transmitted to the team leader where
it is used to build a local map centric to that robot. The
team leader (or human operator) can utilize the robot’s
local map information to direct the Millibot around
obstacles, investigate anomalies or generate new
paths.

For missions in an unknown environment, mapping,
exploration, and movement are a coordinated effort.
Robots move to collect new information about the en-
vironment and build composite maps. In turn, the maps
provide clues about the most viable areas of exploration
that will further increase the knowledge about the en-
vironment. In addition, evaluation of the map aids
in path planning for the movement and positioning of
the team during exploration. Planning is necessary
to establish good sensor coverage while maintaining
localization.

This last part is essential in that the team relies on
line-of-sight beaconing for maintaining position. If an
individual robot moves out of sight of too many robots,
the team will lose positioning of that robot and possibly
corrupting the map. Movement around obstacles in the
field requires coordination at the team level.

More importantly for the group, the team leader can
merge the information from several local maps into a
single global map to provide a more comprehensive
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view of the environment to the user. To produce maps
of the environment, one of our methods is to build an oc-
cupancy grid with a Bayesian update rule. This method
allows the combination of sensor readings from differ-
ent robots and different time instances (Elfes, 1989;
Moravec, 1988; Salido et al., 1999; Thrun, 1997). In
an occupancy grid, the environment is divided into ho-
mogeneous cells. For each cell, a probability of oc-
cupancy is stored. An occupancy value of zero cor-
responds to a free cell, a value of one corresponds
to a cell occupied by an obstacle. Initially, nothing is
known about the environment and all the cells are as-
signed a value of 0.5 (equally likely to be occupied or
free).

The mapping algorithm uses a Bayesian update rule
(Moravec, 1988):
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(4)

Equation (4) updates the occupancy probability for cell
c, Occup(c | S(1), . . . , S(T)), based on the current sen-
sor reading, Occup(c | S(T)), and the a priori probabil-
ity, Occup(c | S(1), . . . , S(T−1)). Any sensor that can
convert its data into a probability that a particular cell
is occupied can be merged into the same map. This
means that data generated by a short-range proximity
detector can be merged with data from a sonar range
module or even a camera.

The tests were conducted with a team of five robots
and a single team leader. For this experiment, three
of the Millibots were equipped with an eight-element

Figure 6. Mapping experiments.

sonar array and a localization module. The remain-
ing two were equipped with cameras that were used to
provide fault recovery and obstacle identification. The
map from each run was merged to generate a composite
map of the room. In these experiments, the robots col-
laborated to determine their position and to combine
their sensor data into a global map. However, the plan-
ning of individual robot motions was performed by the
human operator.

6. Results

We have conducted a series of experiments to test the
effectiveness of a team of Millibots to explore and map
a given area (Fig. 6). Each series of runs was designed
to slowly increase the complexity of operation to ex-
pose the strengths and weaknesses of the team. The task
in each mission was to explore and map as much area
as possible before the team failed. Possible failures
included: loss of localization, loss of battery power
or loss of communications. As an added utility, each
series of runs was performed in different sections of
the hallway. By merging maps from these individual
runs, we were able to construct a composite map that
represented the entire area (Fig. 7). The operator was
positioned away from the experiments and could only
receive information about the environment via the team
by viewing video from the robot cameras and observing
sensor information.

For each experiment, the team was composed of five
Millibots. Three of the Millibots were equipped with
sonar arrays for collecting map information while the
remaining two were equipped with camera modules
to aid in obstacle identification and provide a level of
fault tolerance. In addition, each robot also housed
a localization module that allowed them all to par-
ticipate in localization. This heterogeneous makeup
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Figure 7. Merging maps.

mixed the utility of sonar for extended range map-
ping with the utility of high bandwidth cameras. A
homogenous team of either type would have proved
ill prepared for the tasks. A team of camera robots
could not produce effective range maps while a team of
sonar robots would be unable to detect certain types of
obstacles.

Five robots were chosen to provide a degree of fault
tolerance. Under a few initialization assumptions, three
robots are sufficient to achieve and maintain localiza-
tion. With four robots, one moving robot can be unam-
biguously localized with respect to the three station-
ary robots. A fifth robot provides a measure of fault
tolerance such that the loss of a single robot does not
compromise the ability of the remaining robots to main-
tain knowledge of their positions.

Tasking of the team was accomplished through a
distributed control system called CyberRAVE (Dixon
et al., 1999). CyberRAVE is a client-server architec-

ture that allows multiple, heterogeneous teams to co-
ordinate operation and share data via a central control
server and a set of distributed Graphical User Interfaces
(GUI). Through the GUI, the operator is able to direct
the robots by setting goals, querying maps and view-
ing live sensor data. The operator can task individual
robots or the team as a whole. The operator’s control
ranges from tasking of high-level operations such as
‘explore area’ or ‘track target’ to low level actions such
as ‘go-to-goal’ or ‘ping sonars’.

At this stage of development, much of the high level
skills are provided by the operator in response to feed-
back from the robot teams via the interfaces. Based
on the information presented by the GUI, the operator
tasks the team. For instance, he decides which robots
to move, plans the overall movement of the team, and
identifies obstacles. Low-level skills, such as multi-
ple step moves and the coordination of localization
and sonar pings, are controlled automatically by the
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robot team. Research is ongoing to transition from
operator-assisted control to a fully autonomous system
for which only high-level tasks are required, such as
‘map room’ or ‘find target.’ As we develop better plan-
ning and control algorithms, operational functionality
will move from the operator to the team leader and
eventually to the Millibots themselves.

6.1. Operation of the Team

In the first series of experiments, the robots were po-
sitioned in the lower right corner of a hallway without
obstacles as shown in Fig. 7. These experiments were
primarily used to test and verify the team’s ability to
localize and collect map data. At the same time, the
operator learned how to coordinate the efforts between
robots, that is, which robot to use for mapping, where
to explore, and when and how to use the cameras.

The second series of experiments started at the center
right of the hallway which included a cluster of objects
against one of the walls. The robots were able to detect
and avoid the obstacles and remained operational for
more than an hour. During one experiment, the battery
on a camera robot failed. Since the team was composed
of five robots, the loss of a single robot did not jeop-
ardize the group’s ability to continue. The inoperative
robot was left behind and the mission was continued
with the four remaining robots.

In the third and most difficult series of experiments,
we added a large number of obstacles, some of which
were small and low to the ground making them invisible
to the sonar sensors. In these experiments, the camera
modules played a significant role. Prior to moving any
robot, the camera was used to scan the area in front
of the robot. If an object was detected, the area was
marked manually on the GUI display and the robots
were directed to move around it. The extensive use of

Figure 8. Experiment data.

the cameras reduced the exploration speed, but allowed
the team to progress without colliding with obstacles.
This series of tests exposed the inherent weakness of
relying on a single mode of sensing and illustrated the
utility of a heterogeneous team.

The last experiments were conducted in the top right
of the hallway. These tests focused on how much area
the robot team can map in a fixed amount of time.
At this point the exploration rate is relatively small,
because a significant amount of time is needed for the
human to react to sensor feedback and make decisions.
We expect the exploration rate of the robot team to
increase significantly when more low-level tasks are
handled by the team rather than the human operator.

6.2. Metrics

To evaluate and compare the performance of the team,
we have developed a set of metrics. Well- defined met-
rics allow comparison between Millibot teams with dif-
ferent compositions, teams using different algorithms,
as well as other robots and teams of robots.

Figure 8 lists the metrics obtained for the four runs
described above. The first three columns report the lo-
gistical measures including the number sensing and
acting commands. The last four columns represent the
performance metrics.

The column labeled “# Vector Cmds” lists the num-
ber of motion commands given to the team during a run.
Each motion command corresponds to a vector with a
relative angle and distance. The robot first turns over
the specified angle and then moves forward over the
commanded distance. The next two columns report the
number of distance measurement pairs and the number
of sonar readings taken by the team. After each motion
command, the team performs distance measurements
using the beacon sensors to update the robot position
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estimates. To improve sensing reliability, both distance
measurements and sonar reading are the filtered result
of eight separate measurements.

The performance of the robot team is characterized
by the duration to perform a mission, the area explored
per unit of time (coverage rate), the dimensional ac-
curacy, and the power consumption. The dimensional
accuracy is obtained by comparing the distance be-
tween mapped features (e.g., two walls) with the ac-
tual distance. The energy consumption is measured
by comparing the battery charge for each robot before
and after the experiment. An electronic battery moni-
tor allows us to measure the remaining battery charge
accurately.

The metrics reflect the difficulties encountered in
the experiments. For example, the third run (with a
large number of obstacles) required the extensive use
of the camera. This resulted in a reduced coverage rate
and larger power consumption. The final experiments
also resulted in larger power consumption, because
the robots spent relatively more time moving around,
which is very energy intensive. The dimensional ac-
curacy reflects a combination of sonar accuracy and
localization accuracy. A deviation of less than 3% in
the distance measurement between two walls of the
mapped hallway is surprisingly good for team of robot
of this size.

7. Summary

In this article, we have presented the design of a dis-
tributed robotic system consisting of very small mo-
bile robots called Millibots. Although the Millibots are
small, they still contain a full set of integrated capabil-
ities including sensing, computation, communication,
localization, and mobility. To expand the capabilities
even further, the Millibots have been designed in a mod-
ular fashion allowing one to easily create specialized
robots with particular sensing configurations. By com-
bining several such specialized robots, one can create a
team with a very broad range of capabilities while still
maintaining a small form factor.

An important component of the Millibots is a novel
ultrasound-based localization system. This system has
the important advantage over currently existing sys-
tems that it does not require any fixed beacons. By
using the Millibots alternately as beacons and as lo-
calization receivers, the team as a whole can reposition
while maintaining accurate localization estimates at all
times.

Tracking robot positions accurately is especially im-
portant for the mapping and exploration application

that we have implemented. Each robot explores an
unknown environment with its sonar and IR sensors.
A team leader collects all the sensor information and
integrates it into a global view of the environment. The
team leader uses an occupancy grid representation with
a Bayesian update to fuse the sensor data over time to
build a composite map of the area.
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