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Abstract

Localization is one of the fundamental problems in mo-
bile robot navigation. Past experiments show that in gen-
eral grid-based Markov localization is more robust than
Kalman filtering while the latter can be more accurate
than the former. Recently new methods for localization
employing particle filters became popular. In this paper

we compare different localization methods using Kalman

filtering, grid-based Markov localization, Monte Carlo
Localization (MCL), and combinations thereof. We give
experimental evidence that a combination of Markov lo-
calization and Kalman filtering as well as a variant of
MCL outperform the other methods in terms of accuracy,
robusiness, and time needed for recovering from manual
robot displacement, while requiring only few computa-
“tional resources. '

1 TIntreduction

Self-localization is the task of estimating the pose (po-
sition and orientation) of a mobile robot given a map of
the environment and a history of sensor readings and ex-
ecuted actions. It is one of the fundamental problems in
amobile robot navigation and many solutions have been
.presented in the past including approaches employing
Kalman filtering [14, 15, 17, 18], grid-based Markov lo-
calization {4, 10], or Monte Carlo methods [9, 16, 20].
For an overview see [7, 11, 19].

By performing localization experiments with a mobile
robot it has been ascertained that grid-based Markov lo-

"+ calization is more robust than Kalman filtering while the

latter - given good inputs ~ is more efficient and accurate
than the former [13]. A combination of both approaches
is likely to inherit the advantages of the underlying tech-
nigues. More recently, new localization methods em-
ploying pasticle filters have been presented [9]. Variants
such as Sensor Resetting Localization [16] or Mixture
MCL [20, 11] further improved the performance of this
localization framework. However, it is an open question
how the Monte Carlo approaches perform in comparison
with previous methods such as Kalman filters, grid-based
Markov localization, or combinations thereof.
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This work is the continuation of the localization experi-
ments reported in [13] with the latest methods available
to the authors [12, 16, 20]. Using a simifar setup as in the
RoboCup Sony legged robot league, where a quadruped
robot observes landmarks with a CMOS camera, we ex-
perimentally compare Kalman filtering (EKF) [2, 18];
a combination of grid-based Markov localization and
Kalman filtering (ML-EKF) [12], Sensor Resetting local-
ization (SRL) [16], Mixtare MCL (Mix-MCL) [20] and
a previously unreported variant of SRL called adaptive .
MCL (A-MCL) with each other.

The contribution of our work is as follows:

1. Experimental evidence that ML-EKF and MCL
methods outperform simple Kalman filters in terms
of accuracy, robustness, and time for recovering
from manual robot displacement. '

2. Results which indicate that ML-EKF compares very
well to MCL methods, outperforming some but not
all of them. -

3. Experiments showing that adaptive MCL partially
outperforms sophisticated localization algorithms
such as ML-EKF.

4. All methods perform equally well when using only
a fraction of the available sensor data, if the sensor
provides measurements at high frame rates.

The remainder of this paper is organized as follows. The
next section provides a brief overview of the different lo-
calization methods compared in our experiments. Section
3 describes the experimental setup, followed by a detailed -
discussion of our results. Finally, Section5 provides a dis-
cussion of our findings.

2 Probabilistic Localization

In probabilistic terms, localization is the process of deter-
mining the probability of the robot being at pose [ given
sensor inputs s, and executed actions a, (n = 1...N).
By assuming independence between observations and be-
tween executed actions, the following update rules can be
formulated in the Markov localization framework [10]:
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where (1) is performed on observations evaluating sensor
model p(s, | {), which returns the likelihood of an ob-
servation for a given pose, multiplied by a normalizing
factor a, and (2) is employed on robot motion evaluating
motion model p(l | an,1’) which delivers the probability
of the robot being at pose [ given it was at ! and executed
action ay;.

Depending on the application and the type of robot, dif-
ferent motion models can be considered. Throughout
this paper we make use of 3 motion models sketched in
Fig. 1 where (a) refers to-a Gaussian model that is widely
used in all kinds of robot systems, (b) is the max dis-
tance model that places equal probability to positions up
to a certain range and is useful e.g. for fegged robots that
might get obstructed at obstacles, and (c) allows a robot
to be manually displaced (kidnapped} to any position in
the environment with a certain displacement probability.
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Fig. 1. Motion models: (a) Gaussian, (b} max distance, (c} dis-
placement model,

{c)

Depending on the representation of p{l) localization
methods can be categorized as Kalman filters, grid-based
Markov localization, or Monte Carlo methods.

2.1 Kalman Filter

Kalman filtering emerges when representing all densities
by Gaussians: p(l) ~ N(I, i), p(sall) ~ N(4n, Zs,),

and p(llan,l') ~ N(én,E,,). The update rules (1, 2)
become:
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where W = £, VATE; is the filter gain, v = 3, — h(f)
the innovation, £, = VAL VAT + Z,, its covariance,
h and f are the measurement and process equations, and
Vh and V f their Jacobians. Note that the EKF does not
necessarily assume Gaussian densities but is a linear es-
timation tool for any random variable given it can be ad-
equately represented by the first and second moments of
its density function [2].

Kalman filtering has been successfully applied for mobile
robot localization in many systems [13, 14, 15, 17]. The
inherent problem in this approach is that only one pose
hypothesis can be represented making the method in gen-
eral unable to globally localize the robot or to recover
from total localization failures.

2.2 Grid-based Markov localization and ML-EKF

If p(I) is represented by a piece-wise linear function, we
obtain grid-based Markov localization [10]. Advantages
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of this method are its global search space and flexibility
for different motion and sensor models. Depending on
the dimension, resolution and size of the grid, the method
might not be feasible for real-time applications without
further optimizations.

Recently a novel approach combining Markov localiza-
tion and Kalman filtering (ML-EKF) for localizing robots
observing known landmarks has been presented. For de-
tails about the ML-EKF algorithm, see [12].

The basic idea is that Markov localization is used for
global search of the robot position providing high ro-
bustness on sensor noise and fast recovering from man-
uval robot displacement, whereas Kalman filtering is used
locally for precisely computing the robot pose. The ML-
EKF system consists of 3 modules depicted in Fig. 2.

Fig. 2, Markov-Kalman (ML-EKF) localization system

A 2D Markov localization grid at coarse resolution rep-
resents possible (z,y) positions of the robot but does not
contain information about orientation. Because of being
2D, on observations only the distance to landmarks are
considered and on motion all directions are treated with
equal probability. This setup allows for very fast updates
as we will see in Section 4.

The heart of this localization system is the EKF con-
troller that filters observations and reinitializes the EKF
when necessary. All robot motions are integrated into
the Markov grid and the EKF. The latter uses a Gaussian
motion model (optimistic assumption, Fig. 1{a)) whereas
the Markov grid employs a mixture of max distance
and displacement motion mode] (pessimistic assumption,
Fig. 1(b) and 1(c)).

Landmark observations are first integrated into the
Markov grid. If the given observation is plausible based
on the Markov state, it is also integrated into the EKF. The
plausibility check examines p{s,|I), where [ is the maxi-
mum likely cell in the grid. If this probability is smaller
than a threshold ¢,,,, the observation is rejected for the
EKEF. After accepting and integrating an observation into
the EKEF, the distributions of Markov grid and EKF are
compared using a %2 test. If the test exceeds a threshold

t,a, the Kalman filter is reinitialized with { and the max-
imum likely orientation computed by prq]ectmg the last
unfiltered observation to .

The output of the ML-EKF system is the EKF state.



A limitation of this approach is that integration of obser-
vations into the 2D Markov grid must be feasible, i.e.

2
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can be computed efficiently. This is true for landmark
based navigation but might not be the case for methods
using dense sensor matching {10, 13, 20].

2.3 Monte Carlo Localization (MCL)

The key idea of Monte Carlo localization (MCL) is to
represent p(I) by sets of n weighted samples {I;, w;) [9].
Each [; corresponds to a robot position, and the w;
are non-negative numerical factors called importance
weights, which sum up to one. The prediction and correc-
tion update of the sample sets is achieved by a procedure
often referred 1o as sequential importance sampling with:
resampling [6]. The basic algorithm takes as input a sam-
ple set S representing the current position estimate p(l), a
_ sensor measurement sy, and action information a,,. Each
sample representing the posterior distribution for p(l) is
generated according to the following three steps:

Resampling: Draw with replacement a random sample
I' from the sample set § according to the (discrete) distri-

_bution defined through the importance weights w;. This
sample corresponds to an instance of g(I') in (2).

_Sampling: Use I" and the control information a, to sam-
ple { from the distribution p(! | ay,!"). This sample rep-
resents p{l} on the left side (2).

Importance sampling: Weight the sample { by the im-
portance weight p(sy, | 1), the likelihood of the sample {
given the measurement s,,.

After n iterations, the importance weights of the newly
generated samples are normalized so that they sum up
to 1. It can be shown that the sample set consisting of
these samples in fact approximates the posterior density
for p(1) [6]. While these steps suffice to efficiently track
a robot’s position and solve the global localization prob-
lem, this basic algorithm is highly inefficient in solving
the kidnapped robot problem. Fox and colleagues [9]
showed how adding random samples at each iteration al-
lows the algorithm to efficiently recover from localization
failures,

In this paper we compare three different methods for
adding samples. The first heuristic, sensor resetting
localization, adds samples drawn according 1o landmark
observations [16]. Sensor resetting determines the
number fi of additional samples based on the likelihood
of the current observation:

n

P
n-.m -
ax(0, 1 Pe) (6)
Here p = ), p(8n | Li}/n is the average likelihood of
the observation, and p; is a threshold determined manu-
" ally. Whenever p is above this threshold, no samples are
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added, and whenever § < p;, a small fraction of sam-
ples is added from the observation. The second approach
to adding samples from observations, mixture MCL, ad-
ditionally weighs these samples with the cutrent proba-
bility density p(I) [20). This approach has been devel-
oped specifically for extremely accurate sensor informa-
tion, and the weighting makes it consistent with the re-
cursive posterior estimation. In our experiments, mixture
MCL adds a fixed number of samples to the distribution.

The third approach uses sensor resetting in combination
with a more elaborate strategy to determine the number
of samples to be added from observations. This approach
has been applied by the University of Washington’s entry
in RoboCup 2002 [5]. The key idea of this approach is to
use a combination of two smoothed estimates of the ob-
servation likelihoods. The first estimate, 57, determines
the long-term average of observation likelihoods, and the
second estimate, p,, determines the shori-term average
observation likelihood. While p; estimates the slow
changing noise level in the environment and sensors,
P> is used to detect rapid changes in the likelihood due-
to a failure of the position estimate. The number i of
samplé§~tg be added is determined as follows:

o« arnG-m)
Ps P_a'f'ﬂa(ﬁ"p-u)
A =“ s, max(0, 1=, ™

Asin (6) P represents the likelihood of the current obser-
vation. The only difference between g and g, lies in the
smoothness factors 1 and 5,. The desired smoothing is
achieved by setting 0 < 1, << 1, € 1. The parameter
v allows to adjust the level at which samples are added.
In essence, this approach only adds samples if the short-
term estimate of the observation likelihood is less than
1/v the long-term average.

~

In the remainder of this paper, we denote the first method
SRL, the second Mix-MCL, and the third A-MCL (adap-
tive MCL).

3 Experimental Setup

For our experiments we employed an ERS 2100 robot
system, a developer version of the commercial AIBO
robot (see Fig. 3(a)), connected to a Linux PC by wireless
LAN. We programmed the robot to observe color land-
marks as shown in Fig. 3(b) that are also used in RoboCup
competitions in the Sony legged robot league.

The detection of color tubes is realized by employing
the CMVision software library [3] on color labeled im-
ages provided by the robot’s vision hardware. By tak-
ing into account the kinematic chain of the robot’s head,
distance and bearing to landmarks in 2D coordinates are
computed. Due to the rastering oato pixels and noise in
the joint-angle sensors, the obtained distance and bearing
values are erroneous and have been modeled as Gaussian



(a)

®)
Fig. 3. (a) AIBO Entertainment Robot System and (b) color
landmark tubes as observed by the robot's CMOS camera,

densities [12). For landmark distance, a standard devi-
ation of about 15 % of the measured distance and for
bearing, a fixed value of 10° was used throughout the ex-
periments. Motion and sensor models are implemented
on the robot providing their estimates to the localization
system on the PC,

For evaluation, we butlt an environment of size 3x2m
with 6 landmarks (see Fig. 4) almost identical to the setup
vsed in the RoboCup Sony legged robot league. Several
positions inside the field were marked by tape and the
robot was joysticked around while swinging its head for
about th. All sensor and motion data has been logged to
a file adding a special tag each time the robot passed over
one of the tape markers (as observed by the operator).

Fig. 4. Environment for performing localization experiments.

4 Results

Using the recorded data we conducted a series of exper-
iments to determine accuracy, robustness and relocaliza-
tion speed of the following localization methods:

EKF: A simple extended Kalman filter integrating all
motions and observations.

ML-EKF: The ML-EKF system using the parameters
cell size = 10 cm, ¢,3, = 0.001, and ¢,2 =9.

SRL (1/2): Sensor Resetting Localization according
to [16). The experiments were conducted with dif-
ferent values for the threshold p; used in (6) to
determine the number of additional samples. We
report results for two different values: SRIL1 for
pt = 0.000025 and SRL2 for p, = 0.0000025.
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Mix-MCL: Mixture MCL has been presented in [20].
‘We found the best performance by adding 2 observa-
tion samples per iteration. The probability of these
observation samples was determined by a grid with
cell size = 30cm and angular resolution = 20deg.

A-MCL: The adaptive MCL method determined the
number of observation samples based on (7). We
used values of 0.1 and 0.001 for 5, and #;, respec-
tively. The parameter » was set to 2.

All sample-based approaches used 30 samples to repre-
sent p(I). Note that we experimentally tuned the parame-
ters of all methods in order to obtain best results,

The leftmost data points in Fig. 5 show the mean absolute
position error of the different localization methods when
processing the original data of the logged motions and
observations. In this and all following figures error bars
indicate 95 % confidence intervals.
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Fig. 5. Accuracy of localization methods under different levels
of sensor data sparsity.
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The absolute error of all methods is between 87 mm (A-
MCL) and 122 mm (Mix-MCL). It should be noted that
part of the absolute error is due to the problem of joystick-
ing the robot exactly onto the tape markers, human obser-
vation of the robot being on a marker, and a marginal un-
certainty in time when adding a tag to the log. For these
reasons, the true absolute ezrors are slightly smaller than
the ones reported here.

By discarding landmark observations from sensor data
we can infer how accurate the different methods are un-
der sensor data sparsity. Fig. 5 plots the mean position
error when only a fraction of available sensor data is pre-
sented to the localization methods. All algorithms show
almost equal performance with the mean error increasing
when reducing the number of landmark observations.

To find out about robustness under sensor noise, we re-
placed a certain fraction of landmark observations by ran-
dom landmark data. Fig. 6 shows the mean error for
all methods under different levels of such sensor noise.
Whereas ML-EKF, SRL1, and A-MCL are still capable
of providing accurate position estimates for sensor noise
up to 50%, EKF and SRL2 produce significantly worse
results. For the parameters used in this experiment, Mix-
MCL produces results lying between SRL1 and SRL2.
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Fig. 6. Accuracy of localization methods under different levels
of sensor noise. Results for EKF have been cut af a noise level
of 70 % as the error was above I m.

The extended Kalman filter is not able to deal with
such noise, most probably because of its limited den-
sity representation and the linearizations performed in
the update equations (additional noise filter techniques
should increase the noise robustness of the EKF). SRL2
fails because the parameter setting forces the algorithm
to add observation samples on each noisy observation.
These additional saraples inject further uncertainty into
the sample sets and cause larger localization errors. Note
that Mix-MCL also adds observation samples at each
iteration, but in contrast to SRL, Mix-MCL addition-
ally weighs these samples with the current density p(l),
thereby increasing robustness to noise. The robustness
of ML-EKF is due to the sensor filtering based on the
Markov grid. On higher noise levels all methods signif-
icantly degrade, with A-MCL producing better estimates
than all others. This superior performance of A-MCL is
due to the ability to adapt to different levels of noise.

In the next set of experiments we analyzed the ability of
the methods to solve the kidnapped robot problem. To
do so, we computed the average time the methods needed
for relocalizing the robot after it has been manually dis-
placed. Fig. 7 shows that ML-EKF, SRL.2, Mix-MCL and
A-MCL recover in a very short time (about or less than 2
seconds) and are significantly faster than EKF and SRL1.
Whereas ML-EKF and the MCL methods use explicit
motion models for manual robot displacement, Kalman
filtering runs into severe problems most probably because
the Gaussian motion model does not account for such re-
placements. SRL1 fails because of its parameter setting,
allowing almost no samples to be drawn from the obser-
vations (which caused SRL1 to be pretty robust to sen-
sor noise, cf. Fig. 6). The parameter settings in SRL are
a problem in general as we found no good trade-of be-
tween robustness against sensor noise and ability for fast
recovery from robot displacement,

As a final measure we computed the computational com-
plexity of the different algorithms when processing the
1 hour log file containing about 48,000 landmark obser-
vations and about 8,300 motion steps performed by the
robot, Table 1 shows the run times of the different algo-
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Fig, 7. Time for recovering from manual robot displacement.

rithms. The numbers in the second and third column are
the times needed per prediction and per observation, re-
spectively. The last column contains the total time when
processing all data in the log. Note that these values only
include the time for updating the state of each system, not
included, e.g., is time for performing i/o.

{ Method Prediction | Observation | Sample
2 ps 6usi 04ls

36 us 6Qus | 413s

48 us 63us | 4.78s

48 ps 122 ps 732s

51 ps 64us | 493s

" Table 1: Run times of the different algorithms on a
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PII1@ IGHz broken down for prediction and observation.
Last column shows sample total time when processing an
1h log file. See text for comments.

As can be seen the algorithms are extremely fast need-
ing only a small fraction of the overall time the robot was
moving in the environment. Mixture MCL needs slightly
more time than the other algorithms as the weighting of
the sensor sampled particles with the previous state p(l)
requires an explicit representation of p(I) (here realized
by a grid). Nevertheless the total numbers for processing
the data become less relevant if we consider that the algo-
rithms produce more or less the same output if many ob-
servations are simply omitted {as seen in Fig. 5) plus the
fact that in the complete robot navigation system, most of
the time is spent in the recognition of landmarks anyway.

5 Discussion and Conclusion

We presented an experimental comparison of localiza-
tion methods involving Kalman filter and particle fil-
ter based methods in an environment containing artifi-
cial landmarks. Our experiments show that a combina-
tion of grid-based Markov localization and Kalman fil-
tering (ML-EKF) as well as particle filters outperform
the vanilla extended Kalman filter, We expect that ad-
ditional noise filtering can significantly increase the ro-
bustness of the EKF. However, to speed up the recovery
from localization failures, the EKF seems to require more



complex approaches such as fault detection or multi hy-
pothesis tracking {1]. The ML-EKF method and adap-
tive MCL are very well suited for the environment used
in our experiments and outperform mixture MCL {in ro-
bustness in noise) and SRL (either in robustness in noise
or in the time for recovering from manual robot displace-
ment). While SRL can be tuned to be robust to noise
(SRL1) or to allow quick recovery from localization fail-
ures {SR1L.2), it is not able to solve both problems simul-
taneously. This is mostly due to the fact that the num-
ber of observation samples is based solely on the likeli-
hood of the current observation. Adaptive MCL, on the
other hand, uses smoothing to get good estimates of the
environment noise and of the current localization perfor-
mance (see (7). Thereby, A-MCL significantly outpet-
forms SRL wrt. robustness and failure recovery. Further-
more, A-MCL is as good as ML-EKF in dealing with
sparse sensor data and in localization recovery, but pro-
vides better robustness to high noise levels.

We consider MIL-EKF and the sample-based methods dis-
cussed in this paper to be good candidates for landmark
based localization systems. Another highly interesting
resuli is the fact that all approaches perform extremely
well when applied to sparse sensor data. These findings
suggest that it is not necessary to process all sensor data,
which allows to save major fractions of processor time.

How do these results transfer to complex environments
with non-unique landmarks or other sensor types such
as sonar or laser range-finders? Extended Kalman fil-
ters and sample-based methods have already been applied
successfully to large indoor environments in combination
with a variety of sensors [9, 13]. Recently, Fox showed
that the efficiency of particle filters can be increased dras-
tically by adapting the size of sample sets on-the-fly [8].
The heuristic of sensor resetting [16] is not directly ap-
plicable to these environments and sensors, but Thrun
and colleagues showed how to use kd-trees to generate
samples from arbitrary sensors {20]. However, it is not
clear whether the benefits ontweigh the additional com-
putational and implementational costs.

An experimental comparison conducted in an office en-
vironment [13] showed that EKF is not capable to ef-
ficiently solve the global localization problem. Further
experiments have to show whether the progress achieved
through ML-EKF transfers directly to such environments.
It is unclear whether the 2D grid is expressive enough to
support the Kalman filter in arbitrary environments. The
experiments in [13] also suggest that approaches based
on 3D grids are extremely robust in the general case [4].
Their major drawback is computational complexity, even
when considering efficient implementations as in [10].
Another highly promising approach for increasing the
robustness of Kalman filters is multi hypothesis track-
ing [1]. This approach maintains multiple hypotheses for
a robot’s location, and each hypothesis is tracked with a

Kalman filter. We would like to see a comparison of such
a system with the ones reported in this work in the future.
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