

Competencies for Navigation II

- However, in mobile robotics the knowledge of about the environment and situation is usually only partially known and is uncertain.
 - makes the task much more difficult
 - requires multiple tasks running in parallel, some for planning (global), some to guarantee "survival of the robot".
- Robot control can usually be decomposed in various behaviors or functions

> e.g. wall following, localization, path generation or obstacle avoidance.

- In this chapter we are concerned with path planning and navigation, except the low lever motion control and localization.
- We can generally distinguish between (*global*) path planning and (*local*) obstacle avoidance.

© R. Siegwart, I. Nourbakhsh

Autonomous Mobile Robots, Chapter 6

Flashback: What is the Gradient?

• In 2D, the gradient of a function *f* is defined as

$$\nabla f = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{y}$$

- The gradient points in the direction where the derivative has the largest value (the greatest rate of increase in the value of *f*)
- The *gradient descent* optimization algorithm searches in the *opposite* direction of the gradient to find the *minimum* of a function
- Potential field methods employ a similar approach

© JR Spletze

ке		
	active Approaches Presented	
•	Obstacles are not points	
	> Model as points	
	<i>Bound with ellipses, polygons (one or more obstacles)</i>	
•	Local minima proliferate with multiple obstacles, and failure to achieve goal often results	
•	Our choice of potential functions for the goal, obstacles, etc., was somewhat arbitrary. There are many others (linear, trapezoidal, cones, etc.)	
•	Is there a smarter choice of potential functions that eliminates the local minima?	
•	No 🙁 (Koditschek 1987)	

Autono	Autonomous Mobile Robots, Chapter 6								6.2	2.2	
	Bug			Bubble band		Vector Field Histogram (VFH)			э		
_	Tangent Bug [82]	Bug2 [101, 102]	Bug1 [101, 102]	Bubble band [85]	Elastic band [86]	VFH* [149]	VFH+ [92, 150]	VFH [43]	ethod		
	point	point	point	C-space	C-space	circle	circle	simplistic	shape	mo	
				exact		basic	basic		kinematics	odel fide	
						simplistic	simplistic		dynamics	elity	
	local	local	local	local	global	essentially local	local	local	view	view	
	local tangent graph					histogram grid	histogram grid	histogram grid	local map	othe	
				polygonal	polygonal				global map	er requis	
				required	required				path planner	ites	
:	range	tactile	tactile			sonars	sonars	range	sensors		
				various	various	nonholonomic (GuideCane)	nonholonomic (GuideCane)	synchro-drive (hexagonal)	tested robots		
						6 242 ms	6 ms	27 ms	cycle time	perfor	
						66 MHz, 486 PC	66 MHz, 486 PC	20 MHz, 386 AT	architecture	mance	
	efficient in many cases, robust	inefficient, robust	very inefficient, robust			fewer local minima	local minima	local minima, oscillating trajectories	remarks		
								©R	. Siegwart, I.	Nourb	akhsh

Autonomous Mobile Robots, Ch	apter 6					6.2.2
	Dyna	mic window	Curvature velocity		э	
	Global dynamic window [44]	Dynamic window approach [69]	Lane curvature method [87]	Curvature velocity method [135]	ethod	
	circle	circle	circle	circle	shape	m
	(holonomic)	exact	exact	exact	kinematics	odel fide
	basic	basic	basic	basic	dynamics	slity
	global	local	local	local	view	
		obstacle line field	histogram grid	histogram grid	local map	othe
	C-space grid				global map	er requis
	NF1				path planner	sites
	180° FOV SCK laser scanner	24 sonars ring, 56 infrared ring, stereo camera	24 sonars ring, 30° FOV laser	24 sonars ring, 30° FOV laser	sensors	
	holonomic (circular)	synchro-drive (circular)	synchro-drive (circular)	synchro-drive (circular)	tested robots	
	6.7 ms	250 ms	125 ms	125 ms	cycle time	perfor
	450 MHz, PC	486 PC	200 MHz, Pentium	66 MHz, 486 PC	architecture	mance
	turning into corridors	local minima	local minima	local minima, turning into corridors	remarks	
©R.S						

Autonomous Mobil	e Robots, Chapi	ter 6					6.2 .	2
		Other						
	Gradient method [89]	Global nearness diagram [110]	Nearness diagram [107, 108]	ASL approach [122]	Schlegel [128]	ethod		
	circle	circle (but general formulation)	circle (but general formulation)	polygon	polygon	shape	mo	
	exact	(holonomic)	(holonomic)	exact	exact	kinematics	del fide	
	basic			basic	basic	dynamics	lity	
	global	global	local	local	global	view		
		grid		grid		local map	othe	
	local perceptual space	NF1			grid	global map	er requis	
	fused			graph (topological), NF1	wavefront	path planner	sites	
	180° FOV distance sensor	180° FOV SCK laser scanner	180° FOV SCK laser scanner	2x 180° FOV SCK laser scanner	360° FOV laser scanner	sensors		
	nonholonomic (approx. circle)	holonomic (circular)	holonomic (circular)	differential drive (octagonal, rectangular)	synchrodrive (circular), tricycle (forklift)), tested robots		
	100 ms (core algorithm: 10 ms)			100 ms (core algorithm: 22 ms)		cycle time	perfor	
	266 MHz, Pentium			380 MHz, G3		architecture	mance	
			local minima	turning into corridors	allows shape change	remarks		
	@ <i>R</i> .							hsh

