
11/14/2005 1

Autonomous Mobile Robots, Chapter 6

© R. Siegwart, I. Nourbakhsh

Planning and Navigation
Where am I going? How do I get there?

?
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Perception Motion Control

Cognition

Real World
Environment
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PathEnvironment Model
Local Map
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Competencies for Navigation I

• Cognition / Reasoning : 
� is the ability to decide what actions are required to achieve a certain 

goal in a given situation (belief state). 
� decisions ranging from what path to take to what information on the 

environment to use. 

• Today’s industrial robotscan operate without any cognition
(reasoning) because their environment is staticand very structured.

• In mobile robotics, cognition and reasoning is primarily of geometric 
nature, such as picking safe pathor determining where to go next. 
� already been largely explored in literature for cases in which complete 

information about the current situation and the environment exists(e.g. 
sales man problem).

6.2
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Competencies for Navigation II

• However, in mobile robotics the knowledgeof about the environment 
and situation is usually only partially known and is uncertain. 
� makes the task much more difficult

� requires multiple tasks running in parallel, some for planning(global), 
some to guarantee “survival of the robot”.

• Robot control can usually be decomposedin various behaviorsor
functions
� e.g. wall following, localization, path generation or obstacle avoidance.

• In this chapter we are concerned with path planningand navigation, 
except the low lever motion control and localization.

• We can generally distinguish between (global) path planningand 
(local) obstacle avoidance. 

6.2
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Global Path Planing

• Assumption: there exists a good enough map of the environment for 
navigation. 
� Topological or metric or a mixture between both. 

• First step:
� Representation of the environment by a road-map (graph), cells or a

potential field. The resulting discrete locations or cells allow then to use 
standard planning algorithms.

• Examples:
� Visibility Graph

� Voronoi Diagram

� Cell Decomposition -> Connectivity Graph

� Potential Field

6.2.1
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Path Planning: Configuration Space

• State or configuration q can be described with k values qi

• What is the configuration space of a mobile robot?

6.2.1
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Path Planning Overview

1. Road Map, Graph construction
� Identify a set of routes within the free 

space

• Where to put the nodes?

• Topology-based: 
� at distinctive locations

• Metric-based: 
� where features disappear or get visible

2. Cell decomposition

� Discriminate between free and 
occupied cells

• Where to put the cell boundaries?

• Topology- and metric-based:
� where features disappear or get visible

3. Potential Field
� Imposing a mathematical function over 

the space

6.2.1
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Road-Map Path Planning: Visibility Graph

• Shortest path length

• Grow obstacles to avoid collisions

6.2.1
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From Workspace to Configuration Space

• In order to model robots as points, the standard practice is to 
“grow” the obstacles by convolving them with the robot’s 
dimensions

r

O1

O2

Workspace (W) 

O2

O1

(xr, yr)

Configuration Space (C) 
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The Visibility Graph Method (1)

GOAL

START

1)  Model obstacles as polygons
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GOAL

START

2) Construct a graph G(V,E).  All polygon vertices are 
added to V, as are the start and goal positions.

The Visibility Graph Method (2)
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GOAL

START

3) All vertices that are visible to one another are 
connected with an edge.  These edges are added to E. 

The Visibility Graph Method (3)
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GOAL

START

4) Polygon edges are also added to E.  Then we only 
need to find the shortest path from the start vertex to 

the goal vertex in G.  How can we find this??? 

The Visibility Graph Method (4)
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GOAL

START Path

We can find the shortest path
using Dijkstra’s Algorithm!!!

The Visibility Graph Method (5)
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Road-Map Path Planning:Voronoi Diagram

• Easy executable: Maximize the sensor readings
• Works also for map-building: Move on the Voronoi edges

6.2.1
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Road-Map Path Planning: Cell Decomposition

• Divide space into simple, connected regions called cells

• Determine which open sells are adjacent and construct a connectivity
graph

• Find cells in which the initial and goal configuration (state) lie and 
search for a path in the connectivity graph to join them.

• From the sequence of cells found with an appropriate search algorithm, 
compute a path within each cell.
� e.g. passing through the midpoints of cell boundaries or by sequence of 

wall following movements.

6.2.1
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Road-Map Path Planning:Exact Cell Decomposition

6.2.1
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Exact Cell Decomposition Method (1)
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1)  Decompose Region Into Cells

Autonomous Mobile Robots, Chapter 6

© JR Spletzer

GOAL

START

1

3

2

4

5 8

7

9

10

11

12

13

6

2)  Construct Adjacency Graph

Exact Cell Decomposition Method (2)
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GOAL

START

3) Construct Channel from shortest cell path
(via Depth-First-Search)
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2
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Exact Cell Decomposition Method (3)
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GOAL

START

4)  Construct Motion Path P from channel cell borders

Nodes placed at
the center of cell
boundary.

Exact Cell Decomposition Method (4)
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Exact Cell Decomposition with Euclidean Metric (1)

GOAL

START
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GOAL

START

Exact Cell Decomposition with Euclidean Metric (2)
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Road-Map Path Planning:Approximate Cell Decomposition

6.2.1
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1. Perform cell tessellation of configuration space C

� Uniform or quadtree

2. Generate the cell graph G(V,E)

� Each cell corresponds to a vertex in V

� Two vertices vi,vj V are connected by an edge eij if they are 
adjacent (8-connected for exact)

� Edges are weighted by Euclidean distance

3. Find the shortest path from vinit to vgoal

Approximate Cell Decomposition (1)

∈
CCv free ⊆∈
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Cell Decomposition (1)

Uniform Quadtree
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Road-Map Path Planning:Adaptive Cell Decomposition

6.2.1
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Cell Decomposition (2)

1. Continuity of trajectory a function of resolution

2. Computational complexity increases dramatically with 
resolution

3. Inexactness.  Is this cell an obstacle or in Cfree?

rNeighbors
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Cell Decomposition Simulations (1)

No Obstacles Single Obstacle  
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Multiple Obstacles No Path   

Cell Decomposition Simulations (2)
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Approximate Cell Summary

• PROS

� Applicable to general obstacle geometries

� Provides shorter paths than exact decomposition

• CONS

� Performance a function of discretization resolution (
δ
)

o Inefficiencies

o Lost paths

o Undetected collisions

� Number of graph vertices |V| grows with 
δ 2 and Dijkstra’s runs 

in O(|E| lg |V|)  (an A* implementation in O(V2))
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Road-Map Path Planning:Path / Graph Search Strategies

• Wavefront Expansion NF1 
(see also later)

• Breadth-First Search

• Depth-First Search

• Greedy search and A*

6.2.1
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Best First Search

1. Workspace discretized into cells

2. Insert (xinit,yinit) into list OPEN

3. Find all 4-way neighbors to (xinit,yinit) that have not been 
previously visited and insert into OPEN

4. Sort neighbors by minimum potential

5. Form paths from neighbors to (xinit,yinit)

6. Delete (xinit,yinit) from OPEN

7. (xinit,yinit) = minPotential(OPEN)

8. GOTO 2 until (xinit,yinit)=goal (SUCCESS) or OPEN empty 
(FAILURE)
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Best First Search Example (1)

Goal 

Robot Visited 

Neighbor 

Local Minimum
Detected
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Best First Search Example (2)
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Best First Search Example (3)
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Best First Search Example (4)
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Best First Search Example (5)
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Best First Search Example (6)
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Wavefront Propagation (1)

• Example of a discrete navigation function E(x,y)

• “Dynamic Programming” type approach

• Typically uses L1 distance (aka Manhattan Distance) from the goal 
as a metric for function values
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Wavefront Propagation Example
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Potential Field Approaches

• Potential fields can live in continuous space

� No cell decomposition issues

• The field is modeled by a potential functionE(x,y) over our 
configuration space C

• Local method

� Implicit trajectory generation

� Prior knowledge of obstacle positions not required 

• The bad:  Weaker performance guarantees
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Potential Field Path Planning

• Robot is treated as a point under the 
influenceof an artificial potential field.
� Generated robot movement is similar to 

a ball rolling down the hill

� Goal generates attractive force

� Obstacle are repulsive forces

6.2.1
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• In 2D, the gradient of a function f is defined as

• The gradient points in the direction where  the derivative has the 
largest value (the greatest rate of increase in the value of f)

• The gradient descentoptimization algorithm searches in the 
oppositedirection of the gradient to find the minimumof a 
function 

• Potential field methods employ a similar approach

Flashback: What is the Gradient?

y
y

f
x

x

f
f ˆˆ

∂
∂+

∂
∂=∇
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end     

 direction in   Move    //  ;          

 while     
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Also note that the step size δ must be small
enough to ensure that we do not collide with an 

obstacle or overshoot our goal position.

Potential Fields for Motion Planning Using Gradient Descent

Note that in practice, we will stop within 
some tolerance (like δ ) of the final position
to account for positional uncertainties, etc. 
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Generating the Potential Field
A Parabolic Well for Attracting to Goal
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NOTE: x is a vector corresponding
to a position in the workspace
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Gaussian Obstacle Potential Function













 −
+−−

=
2

2

2

2

2

)(

2

)(

222

1
)( y

y

x

x
yx

yx

exf
σ
µ

σ
µ

σσπ

2
2

2

2

2

1

22

1
)(

xx

eexf
v

v γ
σ β

πσ
−−

==

For a symmetric
2D Gaussians

Gaussian centered 
at the obstacle

coordinates

Autonomous Mobile Robots, Chapter 6

© JR Spletzer

Parabolic Well for Goal
Exponential Source for Obstacle
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Parabolic Well /Exponential Source
Unstable Equilibrium Example
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Parabolic Well Goal & 
Two Exponential Source Obstacles (1)
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Local
Minimum
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Parabolic Well Goal & 
Multiple Exponential Source Obstacles
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Modeling Walls in a Closed Workspace
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A Summary Example for Potential Fields
Goal, Obstacles, Walls
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Issues with
Reactive Approaches Presented

• Obstacles are not points

� Model as points

� Bound with ellipses, polygons (one or more obstacles)

• Local minima proliferate with multiple obstacles, and failure to achieve 
goal often results

• Our choice of potential functions for the goal, obstacles, etc., was 
somewhat arbitrary.  There are many others (linear, trapezoidal, cones, 
etc.)

• Is there a smarter choice of potential functions that eliminates the local 
minima?

• No ���� (Koditschek 1987)
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What to do when 
a Local Minimum is Detected?

• Combine with global/discrete approaches

� Best first search

� Wavefront propagation

� Voronoi

Autonomous Mobile Robots, Chapter 6
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Potential Field Path Planning:Extended Potential Field Method

• Additionally a rotation potential fieldand a task potential fieldin 
introduced

• Rotation potential field
� force is also a function 

of robots orientation to 
the obstacle

• Task potential field
� Filters out the obstacles 

that should not influence 
the robots movements,
i.e. only the obstacles
in the sector Z in front 
of the robot are 
considered

6.2.1

Khatib and Chatila
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Potential Field Path Planning:Potential Field using a Dyn. Model

• Forces in the polar plane 
� no time consuming transformations

• Robot modeled thoroughly 
� potential field forces directly acting on the model

� filters the movement -> smooth

• Local minima
� set a new goal point

6.2.1

Monatana et at.
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Potential Field Path Planning:Using Harmonic Potentials

• Hydrodynamics analogy
� robot is moving similar to a fluid particle following its stream

• Ensures that there are no local minima

• Note:
� Complicated, only simulation shown

6.2.1
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• The goal of the obstacle avoidance algorithms is to avoid collisions 
with obstacles

• It is usually based on local map
• Often implemented as a more or less independent task
• However, efficient obstacle avoidance

should be optimal with respect to 
� the overall goal
� the actual speed and kinematics of the robot
� the on boards sensors
� the actual and future risk of collision

• Example: Alice

Obstacle Avoidance (Local Path Planning)

know
n obstacles (m

ap)

P
laned

 path

observed 

obstacle

v(t), ω
(t)

6.2.2
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Obstacle Avoidance: Bug1

• Following along the obstacle to avoid it

• Each encountered obstacle is once fully circled before it is left at the 
point closest to the goal

6.2.2
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Obstacle Avoidance:Bug2

� Following the obstacle always on the left or right side 

� Leaving the obstacle if the direct connection between 
start and goal is crossed

6.2.2
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Obstacle Avoidance:Vector Field Histogram (VFH)

• Environment represented in a grid (2 DOF)
� cell values equivalent to the probability that there is an obstacle

• Reduction in different steps to a 1 DOF histogram
� calculation of steering direction

� all openings for the robot to pass are found

� the one with lowest cost function G is selected

6.2.2

Borenstein et al.
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Obstacle Avoidance:Vector Field Histogram + (VFH+)

• Accounts also in a very simplified way 
for the moving trajectories (dynamics)

� robot moving on arcs

� obstacles blocking a given direction 
also blocks all the trajectories 
(arcs) going through this direction 

6.2.2

Borenstein et al.
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Obstacle Avoidance:Video VFH

• Notes:
� Limitation if narrow areas 

(e.g. doors) have to be 
passed

� Local minimum might not 
be avoided

� Reaching of the goal can 
not be guaranteed

� Dynamics of the robot not 
really considered

Borenstein et al.

6.2.2
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Obstacle Avoidance:The Bubble Band Concept

• Bubble = Maximum free space which can be reached without any risk 
of collision
� generated using the distance to the object and a simplified model of the 

robot

� bubbles are used to form a band of bubbles which connects the start 
point with the goal point

6.2.2

Khatib and Chatila
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Obstacle Avoidance:Basic Curvature Velocity Methods (CVM)

• Adding physical constraintsfrom the robot and the environment on the 
velocity space(v, ω) of the robot
� Assumption that robot is traveling on arcs (c= ω / v)

� Acceleration constraints: 

� Obstacle constraints: Obstacles are transformed in velocity space

� Objective function to select the optimal speed

Simmons et al.

6.2.2
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Obstacle Avoidance:Lane Curvature Velocity Methods (CVM)

• Improvement of basic CVM
� Not only arcs are considered

� lanes are calculated trading off lane length and width to the closest 
obstacles 

� Lane with best properties is chosen using an objective function

• Note:
� Better performance to pass narrow areas (e.g. doors)

� Problem with local minima persists

Simmons et al.

6.2.2
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Obstacle Avoidance:Dynamic Window Approach

• The kinematics of the robot is considered by searching a well chosen velocity space

� velocity space -> some sort of configuration space

� robot is assumed to move on arcs

� ensures that the robot comes to stop before hitting an obstacle

� objective function is chosen to select the optimal velocity

6.2.2

Fox and Burgard, Brock and Khatib
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Obstacle Avoidance:Global Dynamic Window Approach

• Global approach:
� This is done by adding a minima-free function named NF1 (wave-

propagation) to the objective function O presented above.

� Occupancy grid is updated from range measurements

6.2.2

Autonomous Mobile Robots, Chapter 6

© R. Siegwart, I. Nourbakhsh

Obstacle Avoidance:The Schlegel Approach

• Some sort of a variation of the dynamic window approch
� takes into account the shape of the robot

� Cartesian grid and motion of circular arcs

� NF1 planner

� real time performance achieved
by use of precalculated table

6.2.2
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Obstacle Avoidance:The EPFL-ASL approach

• Dynamic window approach with global path planing
� Global path generated in advance

� Path adapted if obstacles are encountered

� dynamic window considering also the shape of the robot

� real-time because only max speed is calculated

• Selection (Objective) Function:

� speed = v / vmax

� dist = L / Lmax

� goal_heading = 1- (α - ωT) / π

• Matlab-Demo

� start Matlab

� cd demoJan (or cd E:\demo\demoJan)

� demoX

)heading_goalcdistbspeeda(Max ⋅+⋅+⋅

α

Intermediate goal

6.2.2
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Obstacle Avoidance:The EPFL-ASL approach

6.2.2
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Obstacle Avoidance:Other approaches

• Behavior based
� difficult to introduce a precise task

� reachability of goal not provable

• Fuzzy, Neuro-Fuzzy
� learning required

� difficult to generalize

6.2.2
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6.2.2
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6.2.2
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Generic temporal decomposition

6.3.3
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4-level temporal decomposition

6.3.3
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Control decomposition

• Pure serial decomposition

• Pure parallel decomposition

6.3.3
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Sample Environment

6.3.4
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Our basic architectural example

6.3.4
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General Tiered Architecture

• Executive Layer
� activation of behaviors

� failure recognition

� re-initiating the planner

6.3.4
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A Tow-Tiered Architecture for Off-Line Planning

6.3.4

Autonomous Mobile Robots, Chapter 6

© R. Siegwart, I. Nourbakhsh

A Three-Tiered Episodic Planning Architecture.

• Planner is triggered when needed: e.g. blockage, failure

6.3.4
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An integrated planning and execution architecture

• All integrated, no temporal between planner and executive layer

6.3.4
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Example: The RoboX Architecture

6.3.4
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Example: RoboX @ EXPO.02

6.3.4


