

Some Characteristics of Potential Field Approaches

- Potential fields can live in continuous space
 - No cell decomposition issues
- Local method
 - Implicit trajectory generation
 - Prior knowledge of obstacle positions not required
- The bad: Weaker performance guarantees

Summary We examined 2 different approaches to motion planning In our application, *C* is fixed BUT *C*_{free} changes over time Often, only local sensing information is available so it may not be necessary to calculate a complete path to the goal Potential fields are computationally inexpensive, as you only need to compute the potential *local* to the robot

- 1. Workspace discretized into cells
- 2. Insert (x_{init},y_{init}) into list OPEN
- 3. Find all 4-way neighbors to (x_{init},y_{init}) that have *not been previously visited* and insert into OPEN
- 4. Sort neighbors by minimum potential
- 5. Form paths from neighbors to (x_{init}, y_{init})
- 6. Delete (x_{init}, y_{init}) from OPEN
- 7. $(x_{init}, y_{init}) = minPotential(OPEN)$
- 8. GOTO 2 until (x_{init},y_{init})=goal (SUCCESS) or OPEN empty (FAILURE)

