
Abstract
In this paper, we describe the Cye personal robot, concen-

trating on its path planning and navigation. We start out with a
brief description of the general problem, followed by more
detail on the Cye robot. After that, we concentrate on the path
planner, which uses a global potential field approach, com-
bined with a novel optimization criterion. This ensures that the
robot maintains adequate distance from obstacles, while find-
ing an optimal path which incorporates partial terrain knowl-
edge. This system has been in use for over five months, with
approximately 200 installations. As we will empirically show,
it is robust and can handle dynamic obstacles and imperfect
maps.

1. Introduction

Robust mobile robot navigation in real world envi-
ronments is a long standing problem in robotics. In this
paper, we describe research in navigation and path gen-
eration using the Probotics Cye robot. Cye is a 2-
wheeled differential drive robot, whose primary mode of
navigation is ded-reckoning. The only sensors are wheel
encoders - there are no other active or passive sensing
modes. The accuracy of the ded-reckoning is sufficient
for indoor navigation, through the use of carefully
designed wheels and a set of known calibration surfaces,
or “checkpoints”. An (inaccurate, incomplete) map of
the world is interactively constructed using Cye, in
which known freespace, known obstacle areas, and
unexplored areas are all marked. Path generation in such
an environment has the following challenges:
• The robot must maintain adequate distance from

walls and other obstacles.
• There is uncertainty associated with the creation of

the map, and there can be dynamic obstacles.
• The robot should ideally use explored areas, but

should be willing to traverse unexplored areas if
doing so results in a significant savings in path
length.

• Path generation time must be short, as this is a robot
which is designed for both research and consumer
use.

• The use of check points must be incorporated into
the path planner, to minimize ded-reckoning error.
While other planners optimize for path length [8] in

the presence of obstacles, or concentrate on real-time
obstacle avoidance [2], we use an optimization criterion
first introduced in [7] but also used in [6] (for the case of
polygonal regions of varying terrain), which optimizes
the integral of path cost, where the path cost is influ-
enced by both distance to obstacles and terrain travers-
ability.

Therefore, it is possible for the lowest cost path to
cut through an unexplored area of the world, if doing so
would create a significantly shorter path. In this manner,
the traversability of various areas can be set, and the
planner will generate an optimal path using that infor-
mation.

2. The Cye Personal Robot

The Cye robot is designed to be used in a home,
office, or research setting. As sold, it is available with a
Hoover mini-upright vacuum cleaner attachment and is
capable of vacuuming autonomously. A wagon is also
available, which allows Cye to carry things such as cof-
fee, dishes, documents, etc. Since it is capable of pulling
over 30lb, Cye can transport relatively large items.

Cye is a two-wheeled, differential drive robot with
non-holonomic constraints, and is shown in Figure 1.
There is no caster wheel; instead, Cye is balanced on its
two main wheels, by placing the CG below the wheel
axel, to reduce drag and slippage. The reason for this is
Cye’s only means of navigation is ded-reckoning. Each
wheel has an encoder on it, and the on-board micro con-
troller uses this encoder to determine odometry and
thereby maintain the robot’s position in the world --
namely, (x, y, θ).

Ded-reckoning’s main advantage is that it is simple
to compute, and does not rely on expensive sensors or
off-board beacons. The disadvantage is that position
estimation error accumulates over time. In Cye’s case,
for instance, after travelling 50 feet, the positional error
can be as large as six inches. This is because a small

Path Planning for the Cye Personal Robot

Parag H. Batavia Illah Nourbakhsh

Carnegie Mellon University
Robotics Institute

Pittsburgh, PA 15212
[parag/illah]@ri.cmu.edu

error in heading can cause a large error in position. For
example, after travelling fifty feet, a one degree heading
error leads to a positional error of about 10”. The error
growth rate depends on floor type and path geometry.
Path geometry plays a role because rotations cause
heading error to increase more rapidly than straight-line
travel.

To maintain tracking accuracy, Cye makes use of
calibration surfaces, called “checkpoints”. A check-
point is a known surface, usually a wall or a corner,
which the robot bumps into to re-calibrate itself. This
assumes that the tracking error hasn’t grown too large.
That is, Cye has to be able to get relatively close to a
checkpoint, and know that it is close, so that it can bump
up against the surface and reset its error.

Cye has no active sensors. It detects obstacles by
monitoring wheel velocity. When Cye bumps into an
obstacle, its wheel velocity drops, and this is sensed by
the on-board micro controller. While this means that
Cye has to physically bump into something to detect it,
it resulted in a cost-savings and a simpler design. As
Cye was designed to be sold at scales of thousands of
units per year, this was an important consideration.

As mentioned above, Cye only has a micro control-
ler on-board. All higher level functions are carried out
by a remote PC. Cye and the remote PC communicate
via a 19.2Kb radio link. Cye uses this link to send pack-
ets to the PC, containing position updates and the state
of the obstacle detection system, and to receive via-point
commands from the PC.

When setting Cye up in a new environment, the user
has to create a map, which is shown in Figure 2. This
map is created by dragging an icon of the robot around
on the screen using a mouse. The physical robot tracks
this movement, and the operator can teach it which areas
are free and which are occupied. An obstacle can be
mapped by driving Cye into it, which results in the cre-

ation of an obstacle area on the map. Basic drawing
tools are included, allowing the user to specify areas as
free, occupied, or uncertain.

This screen shot helps to introduce Cye’s internal
representation of the world. Cye uses an evidence-grid
approach [4], in which the world is discredited into
small grid cells, and the contents of each grid cell are a
measure of the occupancy. At the extremes, a cell can
have a ‘0’, which means that it is free space with 100%
certainty, or ‘255’, which means that the space is occu-
pied, with 100% certainty. Values in-between reflect the
certainty of the presence of an obstacle. In Figure 2,
white areas represent free space, grey areas represent
unexplored (or uncertain) space, and black areas repre-
sent obstacles.

3. Path Planner

The underlying structure of the planner incorpo-
rates a grid based potential field. We assume that the
robot is a holonomic platform. Although Cye is non-
holonomic, there is low-level motion control on-board
which transforms an arbitrary path to a set of wheel
velocities approximating that path. This field is con-
structed in two stages. In the first stage, each cell con-
tains a value denoting the traversability of that point. To
do this, a field describing the distance of any given
world point to the nearest obstacle is created using a
grassfire approach. In this field, unexplored areas are
marked with a predetermined “pseudo-distance”. This
distance value biases paths around unexplored areas.

In the second stage, a potential field is created in
which each world point is the distance to the goal, non-
linearly weighted by the corresponding value in the tra-
versability grid. This field is generated using a wave-

Figure 1: The Cye Personal Robot
Figure 2: Map-N-Zap Screenshot. White areas
are freespace, grey areas are uncertain, and black
areas are obstacles.

front expansion from the robot’s goal point. This field is
used to create a path from start to goal which minimizes
the path length plus the cost of traversability.

 3.1. Traversability Field

The traversability field is a grid in which each cell
corresponds to a point in the map, based on its coordi-
nates. Each cell has a related value which is a measure
of traversability. It is important to note that here, two
factors influence traversability:
• The distance to the nearest obstacle
• Terrain type

Therefore, an area can have low traversability
because it is unexplored, or also because it is close to an
obstacle.

A Grassfire transform is used to create the travers-
ability field. This is one method to create a voronoi dia-
gram, for cell-based path planning methods [1]. These
planners maximize distance from obstacles, but do not
necessarily optimize for path length, sacrificing path
length for safety.

The transform operates as follows. First, the grid is
initialized with ‘1’s in all grid locations which corre-
spond to map locations which are occupied. In this for-
mulation, lower values indicate lower values of
traversability. A ‘1’ means that the cell is completely
occupied, and therefore is not traversable. Higher values
mean that it is possible to traverse the area.

Since the map contains a priori information about
the traversability of non-obstacle areas, the field is ini-
tialized with this information as well. In this case, it
means pre-assigning values in the traversability grid to
each cell which corresponds to a map location which is
unexplored. Although the map contains certainty infor-
mation, this information is not used when seeding the
traversability grid. Instead, thresholds are used to mark
areas as “unexplored”. These areas are seeded with a
value, adding a bias to unexplored areas, which, as we
will show, influences the paths which are generated.

After the initial seeding is done, the field is grown
using the algorithm shown in Figure 3.

The first two plots in Figure 4 show this process.
The top plot shows a sample world, consisting of a start
point, an end point, one obstacle, and one unexplored
area. The middle plot shows the results of a grassfire
transform applied to the sample world. The italicized
values show the initial seeding. Note that in a standard
grassfire transform, the value of each cell denotes the
distance to the nearest obstacle. In this formulation,
however, the contents of each cell is a measure of tra-
versability, due to the inclusion of the unexplored ter-

rain. The bottom plot shows the potential field which is
generated using the traversability field. The method for
generating the potential field is described next.

 3.2. Potential Field

The final potential field is created using a combina-
tion of a wavefront transform [REF] and the traversabil-
ity grid. The transform starts at the goal, and progresses
until the start point is encountered. In the standard wave-
front algorithm, the cell representing the goal point is
seeded with a ‘1’, and all the unoccupied neighbors (we
use the 4-neighbors in this case) are seeded with ‘2’, and
all the unoccupied neighbors of ‘2’ are seeded with ‘3’,
etc., until the start point is reached. At this point, a
potential field is created. The planner then starts at the
start point, and takes steps in the direction of decreasing
cell value, until the goal is reached

This method generates a path that is optimal in
length, but tends to hug the sides of obstacles. This
problem can be alleviated by “growing” the obstacles by
a certain amount, guaranteeing a minimum distance.
However, this is unsatisfying, as occasionally, to guaran-
tee completion, it may be necessary to take a risk and
get very close to an obstacle.

Similarly, the basic wavefront approach cannot han-
dle varying terrain types or any uncertainty in the state
of the world. One method for getting around this is to
tag all uncertain or unexplored areas as obstacles, and
avoid them entirely. Again, this is unsatisfying, as it is
worthwhile to explore new areas, if doing so could result
in a significant savings in path cost.

Using the traversability grid allows the planner to
use information on how navigable a region is while gen-
erating the path. Unlike a standard wavefront algorithm,
where the optimality criteria is path length, the optimal-
ity criteria of our planner is a combination of path length
and traversability. The algorithm for calculating the
potential field is shown in Figure 5.

Set growth_cntr = 1
Iterate over all cells, c(i, j)
 progress = 0
 if c(i, j) == growth_cntr
 progress = 1
 Iterate over the 8-neighbors of c(i, j)
 n(k, l) = neighbor
 n(k, l) = MIN(growth_cntr+1, n(k, l))
 if progress == 0 then exit
 Increment growth_cntr
end

Figure 3: Traversability Grid Algorithm

Note the use of the “MinTraversability” parameter.
This states that if the traversability of a cell is below a
certain value, then we bias the corresponding potential
field value by a non-linear factor of the traversability.
Practically, this has the effect of setting a minimum tra-
versability (or distance from obstacle) requirement.
When going down hallways, this causes the robot to run
down the center of the hall. It takes a significant savings
in path cost to overcome the bias of this factor.

The non-linearity is important. It can be shown that
if a linear scaling is used, then the path only asymptoti-
cally converges to the appropriate distance from obsta-
cles. I.e., when entering a hallway, the robot will cut the
corner slightly to save path length, but then will only
asymptotically approach the center of the hallway.
Using a non-linear scaling guarantees that the robot will
quickly converge to the center of the hall. The planner is
fairly insensitive to the non-linear factor. Extreme values
only slightly affect how far the robot travels before cen-
tering itself.

The result of this algorithm is shown in the bottom
figure of Figure 4. To create a path from this grid, we
begin at the start point, and walk “down” the field, mov-
ing in the direction which results in the largest decrease
in cell number. This path is marked on the bottom fig-
ure. At the point where the field value is ‘8’, there are
two possible decisions -- either right or down -- result-
ing in two different, but equivalent paths. Both paths
have length 12, and both paths pass through one unex-
plored cell. An alternative would be to detour around the
unexplored region entirely, which is what a standard
wavefront algorithm would do. This would result in a
longer path length of 16. The optimality criterion we use
trades off traversability for path length, and therefore
was willing to enter an unexplored area because it led to
a shorter path.

 3.3. Sub-goal Planning

Since Cye navigates using ded-reckoning, having a
working path planner is not enough to guarantee that it
can always reach its goal. As mentioned in Section 2,
Cye uses checkpoints, or known calibration surfaces, to
register itself with its map. A full path planning system

GS

G

3

3

3

3

3

4

3

3

4

4

4

4

4

4

4

42

2

2

2

2

2 3 4 5

4

4

2

1

1

1

1

1

2

2

S

2

2

2

4

5 5

3

3

3

3

4

5

4

4

4

5

4

1

9

9

9

10

10

5

5

6

5

7

6

7

7

8

7

819

18

19

18

18

19 10 8 7

6

6

28

X

X

X

X

X

37

46

55

64

73

82

6

7 6

5

4

3

4

4

5

3

2

2

4

3

Figure 4: The Cye Path Planning Algo-
rithm. The top image is a sample world
with an obstacle on the left and an unex-
plored area on the right. The middle grid
shows the traversability grid, and the bot-
tom grid shows the final potential field.

Set growth_cntr = 1
Iterate over all cells, c(i, j)
 progress = 0
 if c(i, j) == growth_cntr
 progress = 1
 Iterate over the 4-neighbors of c(i, j)
 n(k, l) = neighbor
 T = traversability(k, l)
 if T < MinTraversability
 n(k, l) = growth_cntr +
 (MinTraversability - T)^3 + 1
 else
 n(k, l) = growth_cntr + 1
 if progress == 0 then exit
 end

Figure 5: Potential Field Algorithm.

should make use of these check points, so that it can
traverse longer distances, while keeping positioning
error low.

The algorithm the planner uses to incorporate check
points is fairly straightforward, and basically involves
searching over the available checkpoints, and generating
intermediate paths to them. The first step is to generate a
path from the start to the goal. After this, a wavefront
expansion is done from the entire path, keeping track of
all checkpoints that are encountered. This gives a mea-
sure of the distance from the path to each checkpoint.
We filter on this distance, to prevent using checkpoints
which are distant from the original path, as distant
checkpoints provide a diminishing return on overall
positional accuracy.

Next, the checkpoint closest to the start of the path
is found, and a new path is generated from Cye’s current
location to the checkpoint. Following this, a new path is
generated from the checkpoint to the end goal. Then, the
next checkpoint is located, and planned to. If the nearest
checkpoint is actually the end goal, then we are done,
and Cye moves to the final goal. If it is not, we repeat
the process until the final goal is found. Although this
algorithm involves additional plan generation, the over-
all computation time of the planner is low, so this does
not add much overhead, but it greatly enhances the per-
formance.

4. Results

This path planner has been available for about five
months, and is an integral part of Cye’s operation. There
are about 200 installations of the planner, based on the
number of people who have the latest version of Map-N-
Zap. Assuming a mean usage time of 2.5 months, and a
weekly usage of 300’ per user (probably an underesti-
mate), Cye (and by extension, the path planner) has
autonomously travelled over 110 miles.

Since the planner calculates a global field, it is not
susceptible to local minima. Figure 6 shows an example
of this. The figure shows an obstacle configuration
which traditionally causes problems for potential field
based planners which operate locally. The planner prop-
erly avoids the “U”-shaped obstacle, and routes around
it instead.

Figure 7 shows the advantage of having a planner
which accounts for terrain type. The top figure shows an
example of this. White areas are explored, and grey
areas are unexplored. In the top case, the cost of going
around the unexplored area is less than the cost of going
through it. However, as the bottom figure shows, if the
detour is too large, then cutting through the unexplored
area becomes the better option.

While the planner operates well in “simulated”
mode as the above results show, the real test is when it is
coupled with the physical robot. To put the planner
through a significant real world test, we performed the
following experiment.

Figure 8 shows a map representing an area includ-
ing an office, along with the adjoining corridors. The
traversable area of this map is about 450 sq. ft. There is
a fair amount of traffic through this area.

We randomly generated 25 goal points spaced on
the free areas of the map. The only constraints were that
no two goal points lie within 2 feet of each other, and no
goal point can be closer than 6” to an obstacle. After
that, a random ordering of the goal points was gener-

Figure 6: Avoiding Local Minima

Figure 7: Cye opportunistically using unex-
plored areas to shorten path length.

ated, and Cye navigated through this series of goals. We
did four runs. Each run started at the home base, went
through all 25 goal points, and then returned to the home
base, resulting in 26 paths per run. The total number of
paths generated was 104, over the four runs. Note that
this number indicates paths from start to goal - it does
not include paths generated during checkins. Therefore,
the actual number of paths generated is much higher.
The first two runs did not have any goal points placed in
the office area. The last two runs included goal points in
the office area, which meant that Cye had to accurately
navigate a narrow doorway a number of times. Table 1
shows the results.

Over the four runs, Cye ran approximately 0.68
miles (1.1km) autonomously. There were six collisions
which did not require human intervention. In these
cases, Cye was able to plan around the unexpected
obstacle, and continue. There were three failures which
required human intervention. In these cases, the inter-
vention was limited to repositioning Cye on the map

manually. We never had to physically move Cye. The
locations of the failures are marked on the map in Figure
8. The three failures were:
• An individual repeatedly blocked Cye’s path in a

hallway, until it was unable to find a free path
through the hallway. (Point A)

• An unknown failure happened here. (Point B)
• Cye’s ded-reckoning error accumulated to the point

where it couldn’t find the checkpoint it was expect-
ing, and so because lost (Point C)

Overall, these results are encouraging. They show
that it is possible to reliably navigate in a real world
environment. This is a necessary requirement for per-
sonal robots.

5. Conclusion

We have developed a path planner which uses a
novel optimization criterion. This criterion allows a
robot to find short paths, while maintaining adequate
distance from obstacles, along with handling unexplored
areas or areas of varying terrain in a principled manner.

This planner has been used for months with over
200 real world installations. Our experiments show that
the planner is robust, handles dynamic obstacles, and
can deal with an uncertain map.

6. References

[1] J.F. Canny and M.C. Lin, “An Opportunistic Global Path
Planner,” Algorithmica, 10:102-120, 1993

[2] O. Khatib, “Real-time Obstacle Avoidance for Manipu-
lators and Mobile Robots,” International Journal of
Robotics Research, 5(1):90-99, 1986

[3] D. Koditscheck, “Exact Robot Navigation by Means of
Potential Functions: Some Topological Consider-
ations,” Proceedings of the IEEE International Confer-
ence on Robotics and Automation, May, 1987

[4] M.C. Martin and H. Moravec, “Robot Evidence Grids,”
CMU RI Tech Report CMU-RI-TR-96-06, March,
1996

[5] J.S.B. Mitchel, D.W. Payton and D.M. Keirsey, “Plan-
ning and Reasoning for Autonomous Vehicle Control,”
International Journal of Intelligent Systems, 11:129-
198

[6] N.C. Rowe and R.S. Alexander, “Finding Optimal-Path
Maps for Path Planning Across Weighted Regions,”
International Journal of Robotics Research, 19(2), 83-
95, 2000

[7] C. Thorpe, “Path Relaxation: Path Planning for a Mobile
Robot,” Proceedings of the National Conference on
Artificial Intelligence, aaai-84, August, 1984

[8] J.S. Zelek, “Dynamic Issues for Mobile Robot Real-
Time Discovery and Path Planning,” Proceedings of
the IEEE CIRA,” November, 1999.

Run
Total

Length
(ft.)

Mean
Length

(ft.)

Min.
Length

(ft.)

Max
Length

(ft.)

Num.
Failure
/ (%)

1 840 32 3 79 1 / 4%

2 833 32 3 80 0 / 0%

3 976 38 4 105 1 / 4%

4 1098 42 4 92 1 / 4%

Total 3748 36 3 105 3 / 3%

Table 1: Real-World Results

Figure 8: Real-World Test Area

Point A

Point B

Point C

