



# Lecture 19: Developing Autonomy for Robots in Teams

Brett Browning
Autonomous Robots 16-200
Carnegie Mellon University in Qatar

### Overview

- Logistics
- The plan
- RoboCup research environment
- My research

### Logistics

- Weekly project meetings
  - You give a 5 minute update on your progress
  - To be held in Thursday Lab slot
  - Additional help also available on Thursday
- Homework #4 is due Thursday at 10.30am
- Change to the syllabus
- Please take care of the batteries!!!

#### The Plan

- Today: RoboCup and Brett's research
- Wednesday & Next week: Manipulation
- Homework #5
- Research projects
  - Weekly meetings during lab session
  - Demonstration, paper, presentation, poster
  - (Remember, start now!)

### RoboCup Robot Soccer





- Challenge to researchers to improve robot intelligence through friendly competition
  - "By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team", www.robocup.org
- First competition in 1997, Nagoya Japan

### Small Size Robot League



CMDragons [Browning, Bruce, Bowling, Veloso et al. 03]

## Legged League



### Mid-Size League



### Segway Soccer





Segway Soccer [Browning et al. 04]

### Humanoid League

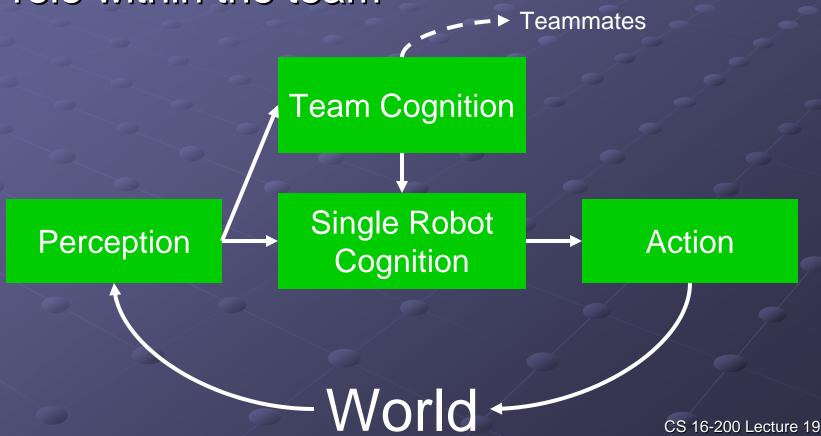


CS 16-200 Lecture 19

### RoboCup Details

- Annual international competitions
  - Next one in RoboCup 2006 in Bremen, Germany
  - Large and growing larger (2,000 competitors in 2006)
- Teams compete in games of soccer
  - Human referee commands translated by computer
  - Fully autonomous during game
- Research communicated via
  - Technical reports, papers, symposium
  - Code releases

### Common Challenges


- Autonomous robots with real-time perception
- Operating in a dynamic environment
- Operating in a team with other robots, humans, novel teammates
- Operating with adversaries
  - Creates highly dynamic environment
  - Encourages high performance solutions
  - Encourages strategy adaptation and learning

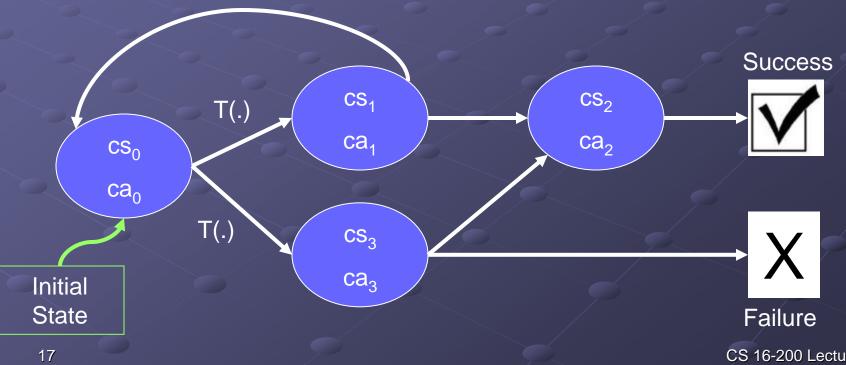
### My Interests

- Real-time vision perception
- Autonomously robot control
  - Individually, and within team
- Effective learning mechanisms
  - Adapt to environment, changes, opponents, task

#### Lets Focus on Control

 Robot must choose actions to perform its role within the team



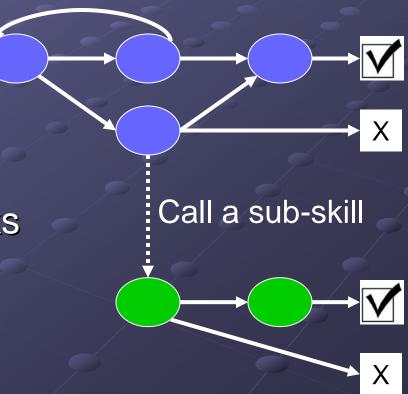

15

#### State Machines for Control

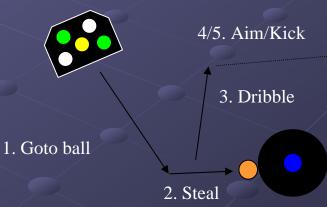
- State machines have a long history in robotics, control and AI
  - For behavioral control [Brooks 86, Balch et al. 95]
  - Hybrid control [Lynch & Krogh,00]
  - State estimation [Thrun et al. 05], many more
- State abstraction provides a powerful mechanism for describing (and implementing) sequences with different modes of control

#### Definition of a State Machine

- PS Perceptual state
- CS Control states
- CA Control actions
- T(PS+) Transition function
- R Termination result

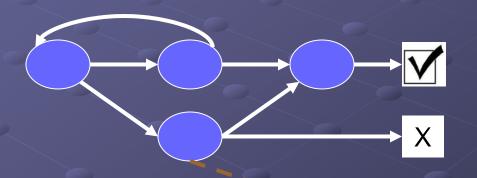


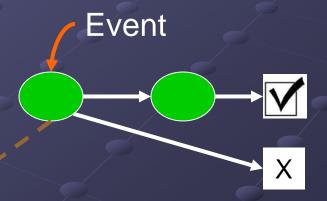

## Hierarchies of State Machines for Individual Control


Really equivalent to a larger state machine

 Allows for state machine reuse (i.e. Macros)

 Allows for natural task decomposition into sub-tasks






#### Parallel Execution of Hierarchies

- Operate state machines in parallel
  - Independent or non-conflicting tasks
  - Requires scheduling for conflicting tasks
- Event driven execution, sleeping states





Action

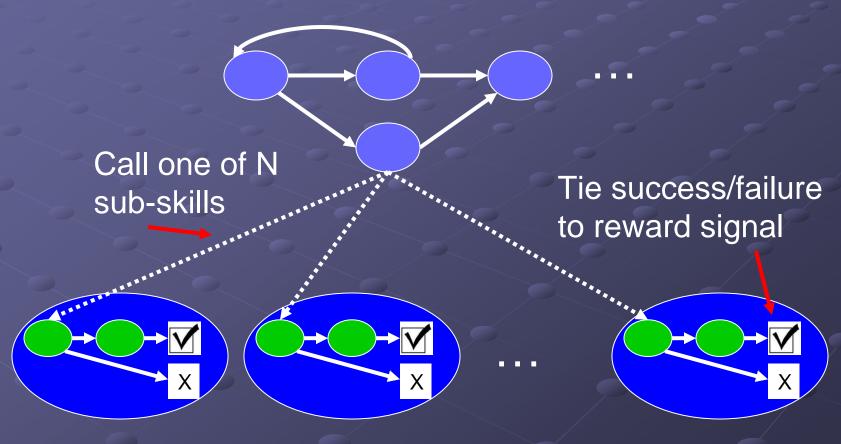
#### Skill Kernel

- Call a state machine a skill
- Idea: We can equate management of skills with a multi-threaded operating system

| OS Terms            | Skill Terms       |
|---------------------|-------------------|
| Thread              | Skill             |
| Resource management | Action management |
| Sleeping            | Sleeping          |
| Signals             | Events            |
| Scheduling          | ?                 |
| Synchronization     | ?                 |

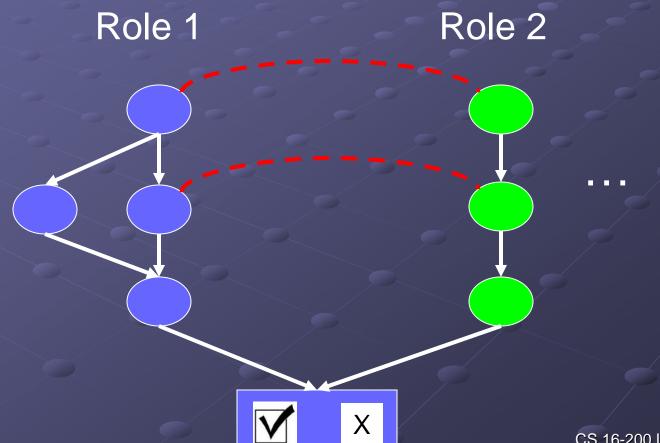
CS 16-200 Lecture 19

### Skill Learning


- Key idea:
  - Skill structure and kernel creates natural basis for applying learning
- Learning applicable in three ways
  - Learning control policy in a state
  - Learning state transitions
  - Learning hierarchy/which skills to call

### Skill Selection Learning

- Key idea:
  - In a state a skill may call multiple sub-skills to do the same task
  - Learn which sub-skill works best
- Approach
  - Use success/failure history as reward signal
  - Apply an expert systems technique to learn which 'expert', or skill, is best


### Skill Selection Approach

Treat a skill as an 'expert'



### Coordinating Robots: Plays

Synchronized state machines

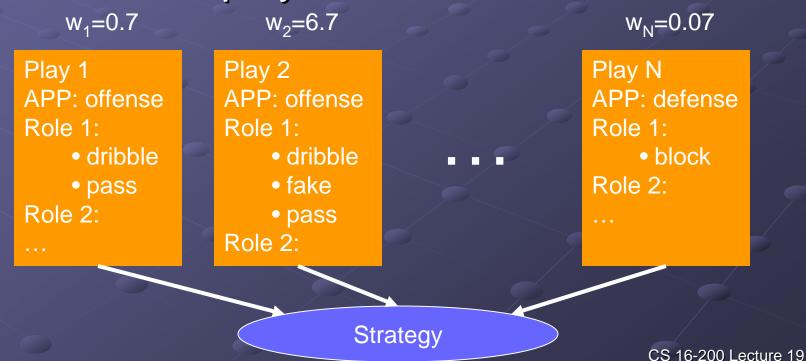


### Play Manager

- Manages selection, execution and synchronization for each play
- Beyond synchronization
  - Play selection
  - Dynamic role assignment
  - Monitoring
  - Learning

### An Example Play

**APPLICABLE** offense **DONE** aborted !offense


ROLE 1
pass 3
mark best\_opponent
ROLE 2
block
ROLE 3
pos\_for\_pass R B 1000 0
receive\_pass
shoot A
ROLE 4
defend\_lane



### Playbook Strategy

- Play Manager handles multiple plays, and select as appropriate for world state
- Learn which plays work better

28



### Summary

- State abstraction is a powerful technique that can be used at many levels from single robot to team coordination
  - Management of state machines equivalent to multi-threaded OS management
  - Provides a natural basis to apply learning
  - Provides a natural mechanism for task decomposition

### End of Lecture

See you on Wednesday