HW#1

Calculate the degree of maneuverability, the degree of mobility and degree of steerability for the following robot wheel configurations. Please check Table 2-1 in the following pages.

2-1, 3-1, 3-3, 3-6, 4-1, 4-3, 4-6. (The first number represents number of wheels, the second number represents the order in the table for each wheel-number type)

Chapter 2

Table 2.1 Wheel configurations for rolling vehicles

34

# of wheels	Arrangement	Description	Typical examples
2		One steering wheel in the front, one traction wheel in the rear	Bicycle, motorcycle
		Two-wheel differential drive with the center of mass (COM) below the axle	Cye personal robot
3		Two-wheel centered differen- tial drive with a third point of contact	Nomad Scout, smartRob EPFL
		Two independently driven wheels in the rear/front, 1 unpowered omnidirectional wheel in the front/rear	Many indoor robots, including the EPFL robots Pygmalion and Alice
		Two connected traction wheels (differential) in rear, 1 steered free wheel in front	Piaggio minitrucks
		Two free wheels in rear, 1 steered traction wheel in front	Neptune (Carnegie Mellor University), Hero-1
	The second second	Three motorized Swedish or spherical wheels arranged in a triangle; omnidirectional move- ment is possible	Stanford wheel Tribolo EPFL, Palm Pilot Robot Kit (CMU)
		Three synchronously motorized and steered wheels; the orienta- tion is not controllable	"Synchro drive" Denning MRV-2, Geor- gia Institute of Technol- ogy, I-Robot B24, Nomad 200

Locomotion

Table 2.1 Wheel configurations for rolling vehicles

# of wheels	Arrangement	Description	Typical examples
4		Two motorized wheels in the rear, 2 steered wheels in the front; steering has to be differ- ent for the 2 wheels to avoid slipping/skidding.	Car with rear-wheel drive
		Two motorized and steered wheels in the front, 2 free wheels in the rear; steering has to be different for the 2 wheels to avoid slipping/skidding.	Car with front-wheel drive
		Four steered and motorized wheels	Four-wheel drive, four- wheel steering Hyperion (CMU)
		Two traction wheels (differen- tial) in rear/front, 2 omnidirec- tional wheels in the front/rear	Charlie (DMT-EPFL)
	17271 17271 17271 17271	Four omnidirectional wheels	Carnegie Mellon Uranus
		Two-wheel differential drive with 2 additional points of con- tact	EPFL Khepera, Hyperbot Chip
		Four motorized and steered castor wheels	Nomad XR4000

35

Chapter 2

# of wheels	Arrangement	Description	Typical examples		
6		Two motorized and steered wheels aligned in center, 1 omnidirectional wheel at each corner	First		
		Two traction wheels (differen- tial) in center, 1 omnidirec- tional wheel at each corner	Terregator (Carnegie Mellon University)		
Icons for	the each wheel type are	as follows:			
0	unpowered omnidirectional wheel (spherical, castor, Swedish);				
17771	motorized Swedish wheel (Stanford wheel);				
	unpowered standard wheel;				
	motorized standard wheel;				
	motorized and steered castor wheel;				
Ļ	steered standard wheel;				
_	connected wheels.				

2.3.1.4 Maneuverability

Some robots are omnidirectional, meaning that they can move at any time in any direction along the ground plane (x, y) regardless of the orientation of the robot around its vertical axis. This level of maneuverability requires wheels that can move in more than just one direction, and so omnidirectional robots usually employ Swedish or spherical wheels that are powered. A good example is Uranus, shown in figure 2.24. This robot uses four Swedish wheels to rotate and translate independently and without constraints.

36