;;; This is one of the example programs from the textbook:
;;;
;;; Artificial Intelligence:
;;; Structures and strategies for complex problem solving
;;;
;;; by George F. Luger and William A. Stubblefield
;;;
;;; These programs are copyrighted by Benjamin/Cummings Publishers.
;;;
;;; We offer them for use, free of charge, for educational purposes only.
;;;
;;; Disclaimer: These programs are provided with no warranty whatsoever as to
;;; their correctness, reliability, or any other property. We have written
;;; them for specific educational purposes, and have made no effort
;;; to produce commercial quality computer programs. Please do not expect
;;; more of them then we have intended.
;;;

;;; this file contains the move rules for the
;;; farmer wolf goat and cabbage problem discussed in chapter 7.
;;; these can be used with the general search algorithms found
;;; in the files depth_first_search.lisp, breadth_first_search_1.lisp,
;;; breadth_first_search_2.lisp and best_first_search.lisp.

;;; These functions define legal moves in the state space. The take
;;; a state as argument, and return the state produced by that operation.

(defun farmer-takes-self (state)
 (safe (make-state (opposite (farmer-side state))
		(wolf-side state)
	 	(goat-side state)
	 	(cabbage-side state))))

(defun farmer-takes-wolf (state)
 (cond ((equal (farmer-side state) (wolf-side state))
 (safe (make-state (opposite (farmer-side state))
	 (opposite (wolf-side state))
	 (goat-side state)
	 (cabbage-side state))))
 	 (t nil)))

(defun farmer-takes-goat (state)
 (cond ((equal (farmer-side state) (goat-side state))
 (safe (make-state (opposite (farmer-side state))
	 (wolf-side state)
	 (opposite (goat-side state))
	 (cabbage-side state))))
 	 (t nil)))

(defun farmer-takes-cabbage (state)
 (cond ((equal (farmer-side state) (cabbage-side state))
 (safe (make-state (opposite (farmer-side state))
	 (wolf-side state)
	 (goat-side state)
	 (opposite (cabbage-side state)))))
	 (t nil)))

;;; These functions define states of the world
;;; as an abstract data type.

(defun make-state (f w g c) (list f w g c))

(defun farmer-side (state)
 (nth 0 state))

(defun wolf-side (state)
 (nth 1 state))

(defun goat-side (state)
 (nth 2 state))

(defun cabbage-side (state)
 (nth 3 state))

;;; The function "opposite" takes a side and returns the opposite
;;; side of the river.

(defun opposite (side)
 (cond ((equal side 'e) 'w)
 ((equal side 'w) 'e)))

;;; Safe returns nil if a state is not safe; it returns the state unchanged
;;; if it is safe.

[bookmark: _GoBack](defun safe (state)
 (cond ((and (equal (goat-side state) (wolf-side state))
	 (not (equal (farmer-side state) (wolf-side state)))) nil)
 ((and (equal (goat-side state) (cabbage-side state))
	 (not (equal (farmer-side state) (goat-side state)))) nil)
	 (t state)))

