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Abstract 

Inverse kinematics computation using an artificial neu- 
ral network that learns the inverse kinematics of a robot 
arm has been employed by many researchers. However, 
conventional learning methodologies do not p a y  enough 
attention to the discontinuity of the inverse kinemat- 
ics system of typical robot arms with joint limits. The 
inverse kinematics system of the robot arms, includ- 
ing a human arm with a wrist joint, is a multivalued 
and discontinuous function. Since it is  difficult for a 
well-known multi-layer neuml network to approximate 
such a function, a correct inverse kinematics model for 
the end-effector’s overall position and orientation can- 
not be obtained b y  the conventional methods. In order 
to overcome the drawbacks of the inverse kinematics 
solver consisting of a single neural network, we pro- 
pose a novel modular neural network architecture for 
the inverse kinematics model learning. 

1 Introduction 

The task of calculating all of the joint angles that 
would result in a specific position/orientation of an 
end-effector of a robot arm is called the inverse kine- 
matics problem. An inverse kinematics solver using an 
artificial neural network that learns the inverse kine- 
matics system of a robot arm has been used in many re- 
searches; however, many researchers do not pay enough 
attention to the discontinuity of the inverse kinematics 
function of typical robot arms with joint limits. The 
inverse kinematics function of the robot arms, includ- 
ing a human arm with a wrist joint, is a multivalued 
and discontinuous function. It is difficult for a well- 
known multi-layer neural network to approximate such 
a function. A correct inverse kinematics solution for 
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the end-effector’s overall position and orientation can- 
not be obtained by the inverse kinematics model con- 
sisting of a single neural network. Therefore we pro- 
pose a novel modular neural network architecture for 
the inverse kinematics model learning and the online 
incremental learning method for the architecture. 

Jacobs et al. proposed a modular network architecture 
that consists of a number of expert networks and a 
gating network[l] [2]. The gating network synthesizes 
the outputs of the expert networks appropriately. and 
calculates one output of the modular networks. Gomi 
and Kawato applied the modular architecture neural 
networks to the object recognition for manipulating a 
variety of objects and to inverse dynamics learning[3]. 
Kawato et al. developed the modular architecture neu- 
ral networks and recently proposed Multiple Pairs of 
Forward and Inverse Models as a computational model 
of the cerebellum[4]. However, the input-output rela- 
tion of their networks is continuous and the learning 
method of them is not sufficient for the nonlinearity of 
the kinematics system of the robot arm. Their archi- 
tecture is not suitable for the inverse kinematics model 
learning. The novel architecture is necessary. 

In order to evaluate the proposed architecture, numer- 
ical experiments of the inverse kinematics model learn- 
ing were performed. 

2 Background 

Let 8 be the m x 1 joint angle vector and z be the 
n x 1 position/orientation vector of a robot arm. The 
relationship between 8 and z is described by z = f(8). 
f is a C1 class function. Let J(8 )  be the Jacobian of 
the robot arm, defined as J ( 8 )  = af(8)/88.When a 
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desired hand position/orientation vector z d  is given, 
an inverse kinematics problem that calculates the joint 
angle vector 8 d  satisfying the equation Z d  = f ( 8 d )  is 
considered. In this paper, a function g(z) that satisfies 
z = f(g(2)) is called an inverse kinematics system of 
f(8). The acquired model of the inverse kinematics 
system g(z) is called an inverse kinematics model. Let 
Oim(z) be the output of the inverse kinematics model. 
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Many researchers have employed the method that uses 
an acquired inverse kinematics model consisting of a 
single neural network in order to control a robot arm; 
however, the neural network architecture has a number 
of drawbacks. Let’s consider the inverse kinematics 
of the 2-DOF (degrees of freedom) arm moving in a 
plane. The relationship between the joint angle vector 
(01,62)T and the end-effector position vector ( ~ , y ) ~  is 
as follows: 

. . . . .  :+;$(;:. . . . . . . . .  

. . . . . .  
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We assume that L1 is 0.30m, L2 is 0.25m, the range of 
81 is [30°, 150°], and the range of 82 is [-150°, 150°]. 
Two inverse kinematics solutions of Equation (1) must 
be switched according to  ( ~ , y ) ~ .  The inverse kine- 
matics function of the robot arm is a multivalued and 
discontinuous function. 
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Figure 1 Position Error Vector of Inverse Kinematics 
Model Which Consists of a Single Neural Network 

Figure 1 shows the position error vector of an in- 
verse kinematics model learned by Forward and Inverse 
Modeling[5]. An arrow in the figure shows the end- 
effector position error by the inverse kinematics model 
e = z - f (Ojm(z))  at each desired end-effector posi- 
tion 2. In most regions, the inverse kinematics model 
is precise. However, there are some regions where it is 
far from precise, which is caused by the discontinuity 
of the inverse kinematics function. 

3 Modular architecture neural net- 
works for inverse kinematics model 
learning 

The inverse kinematics function can be constructed by 
the appropriate mixture of continuous functions[6]. We 
propose a novel modular neural network architecture 
that can learn a discontinuous inverse kinematics func- 
tion by the appropriate switching of multiple neural 
networks. 

3.1 Configuration of proposed inverse 
kinematics solver 

In order to learn a discontinuous inverse kinematics 
function, selecting one expert has better performance 
than mixing all experts. Figure 2 shows the configu- 
ration of the inverse kinematics solver with the modu- 
lar architecture networks for inverse kinematics model 
learning. Each expert network in Figure 2 approxi- 
mates the continuous region of the inverse kinematics 
function. The expert selector selects one appropriate 
expert according to the desired position/orientation of 
the end-effector of the arm, as described in Section 3.2. 
The extended feedback controller calculates the inverse 
kinematics solution based on the output of the selected 
expert. When no precise solution is obtained, the con- 
troller performs a type of global search, as shown in 
Section 3.3. The expert generator generates a new ex- 
pert network based on the inverse kinematics solution. 

T I I 

Figure 2 Inverse Kinematics Solver 
with Modular Architecture Networks 
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3.2 Configuration of expert and selection 
by the forward model 

In order to cover the overall work space, each expert 
has its representative posture. The representative p o s  
ture is the inverse kinematics solution obtained in the 
global searches by the extended feedback controller 
when the expert is generated. Let 0:) be the r e p  
resentative posture of the i-th expert and zf) be the 
end-effector position/orientation that corresponds to  
0:). Let @PA(=) be the output of i-th expert when 
the input of the expert is x. Each expert is trained to 
satisfy the following equation: 

By changing the bias parameters of the output layer 
of the neural network, the above equation can easily 
be satisfied. Each expert approximates the continuous 
region of the inverse kinematics function in which the 
reaching motion can move the end-effector smoothly 
from its representative posture. 

The predicted position/orientation error is used as the 
performance index of the expert. When the desired 
end-effector position z d  is given, the i-th expert calcu- 
lates the output @ c ( x d ) .  The expert selector selects 
an expert with the smallest predicted error among all 
experts. Let @jrn(6)  be the output of the forward 
kinematics model and @ii(?(Zd)  be the output of the 
i-th expert. The predicted error of the i-th expert pi 
is calculated as pi = 1Zd - @ f m ( @ E ( Z d ) ) l .  

Let @>,(e) be the desired output for @fm(0). The 
learning of the forward kinematics model is conducted 
as @;,(e) = = pp). 
3.3 Extended feedback controller and ex- 

pert learning 

The conventional online inverse model learning meth- 
ods, such as Forward and Inverse Modeling[5] and 
Feedback Error Learning proposed by Kawato[fl, are 
based on the local information of the forward system 
near the output of the inverse model. The desired out- 
put signal provided by these methods is not always in 
the direction that finally reaches the correct solution of 
the inverse problem. An extended feedback controller 
avoids that drawback by employing a kind of global 
search technique based on the multiple starts of the it- 
erative procedure[8][9]. When the iterative procedure 
from the output of the selected expert cannot reach a 
correct solution, the extended feedback controller re- 
peats the iterative procedure from a number of initial 

values until a correct solution is obtained. 

The proposed inverse kinematics solver solves an in- 
verse kinematics problem according to the following 
procedural steps: 

(1) When z d  is given, the expert selector selects the 
expert with the minimum predicted error among 
all the experts. The extended feedback controller 
moves the arm to the posture that corresponds 
to the output of the expert and then improves the 
end-effector position/orientation by using the out- 
put error feedback, as described in Section 3.4. 

(2) When no precise inverse kinematics solution is ob- 
tained in step (l), the other expert is selected in 
increasing order of the predicted error and the iter- 
ative improvement procedure by the output error 
feedback is conducted. 

(3) When no solution is obtained in steps (1) and 
(2), an expert is randomly selected and a reaching 
motion from the representative posture of the se- 
lected expert is conducted. The above procedure 
is repeated until the reaching motion is success- 
fully conducted or all the experts are tested. 

(4) If a precise solution is obtained in each iterative 
computation, the solution is used as the desired 
output signal for the expert, as shown in Section 
3.4. 

(5) When no solution is obtained in the above proce- 
dures, the controller starts a type of global search. 
The controller repeats the initial joint angle vec- 
tor generation by using a uniform random number 
generator and the reaching motion from the gener- 
ated posture, until a precise solution is obtained. 
When a precise solution is obtained, a new expert 
is generated and the solution is used as the repre- 
sentative posture 8, of the expert. 

3.4 Iterative procedure 

An illustration of the iterative procedure follows. Let 
e(') be the initial posture of the iterative procedure, 
which is the output of the selected expert @(i)(Zd), 

the representative posture of the selected expert e;), 
or the randomly generated posture. 

Let J+(0)  be the pseudo-inverse matrix of J ( q ,  which 
is calculated as J+(e )  = JT(e) (J(e)JT(e) ) - ' .  When 
le(')l = 1 2 d  - f(do))l is smaller than an appropriate 
threshold rSt, the extended feedback controller con- 
ducts the iterative improvement by using the output 
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error feedback as follows: 

&+I) = e(j) + J + ( & ) ) ( Z d  - f ( e G ) ) )  (3) 

where j is the iteration number. The Jacobian of the 
arm J(0 )  can be calculated by the observation of the 
movement of the robot arm and the numerical differen- 
tiation technique. The output error feedback through 
the forward kinematics model[5] or the learning feed- 
backcontroller[lO][ll] can also be utilized for the above 
iterative calculation. Let @ i ; ( z d )  be the desired out- 
put signal for the selected expert. Let re be the desired 
maximum position/orientation error norm of the arm. 
When a precise inverse kinematics solution dJ)  which 
satisfies IZd - f ( O c J ) ) I  < re is obtained, the solution 
is used as the desired output for the selected expert as 
@ i f ( z d )  = dJ) .  

When le@)] is larger than r,t, the extended feed- 
back controller conducts a reaching motion from the 
posture do) = @ ! : ( Z d )  to z d .  The reaching con- 
trol is conducted as the tracking control to the de- 
sired trajectory of the end-effector Z d ( k ) ( k  = 0, l,. . .). 
The desired trajectory Z d ( k )  is a straight line from 
2. = f(do)) to zd, which is generated in order to 
satisfy l A z d ( k ) I  < rSt .  Let d J ) ( k )  be a precise in- 
verse kinematics solution at step k. d J ) ( 0 )  = do) is 
satisfied. When a precise inverse kinematics solution 
d J ) ( k  - 1) that corresponds to z d ( k  - 1) is obtained, 
the initial value for step k + 1 @(‘)(IC) is calculated as 
follows: 

d0)(lc) = d J ) ( k -  1) 
+ J + ( d J ) ( k  - i ) ) (Zd(k)  - f ( d J ) ( k  - 1))) 

(4) 

When l Z d ( k )  - f ( d 0 ) ( k ) ) l  is not small, the iterative 
improvement procedure is continued as follows: 

80’+1)(k) - - @ ( I C )  

+ J + ( d ’ ’ ( k ) ) ( Z d ( k )  - f ( e c i ) ( k ) ) )  
(5) 

The iterative improvement is repeated until the out- 
put error norm leG)(k)I = l Z d ( k )  --f(&)(k))I is lower 
than the desired maximum error norm re. If a pre- 
cise solution is obtained, the solution can be used for 
the desired output for the inverse kinematics model as 
@ i m ( 2 d ( k ) )  = d J ) ( k ) .  

3.5 Discontinuity check 

When the controller cannot find a precise solution be- 
cause of the singularity of Jacobian J ( d j ) ( k ) )  or the 
joint limits, the reaching motion is regarded as a fail- 
ure. 

The initial status of the experts sometimes causes 
a situation where one expert approximates multiple 
regions of the inverse kinematics function. In the 
case that one region contacts the other region in the 
workspace coordinates, the result is that the expert 
tries to approximate a discontinuous function. This 
situation should be avoided. When the matrix norm of 
a@,(?(z)/dz is larger than an appropriate thresh- 
old rjiz, a new expert with a new representative pos- 
ture Or corresponding to x d  is generated to approxi- 
mate the region near to Z d .  a s ~ ~ ( z ) / t 1 z 1 ~ = ~ ~  is ap- 
proximately calculated by using numerical differenti- 
ation and checked when the a-th expert is selected 
according to step (1) in Section 3.3. 

4 Simulations 

4.1 Inverse kinematics learning of a 2- 
DOF arm 

We performed simulations of the inverse kinematics 
model learning for a 2-DOF arm moving in the 2-DOF 
plane as described in Section 2. 

In the simulations, joint angle vectors were generated 
by using a uniform random number generator, and 
the end-effector positions that correspond to the gen- 
erated vectors were used as the desired end-effector 
positions. In order to evaluate the performance of the 
solver, 1,000 desired end-effector positions were gener- 
ated for the estimation of the root mean square (RMS) 
error of the end-effector position e = Z d - f ( @ i m ( Z d ) ) .  

A Clayered neural network was used for the simula- 
tions. The 1st layer, i.e., the input layer, and the 4th 
layer, i.e., the output layer, consisted of linear neurons. 
The 2nd and the 3rd layers had 15 neurons each. The 
back-propagation method was utilized for the learn- 
ing. Before the learning, the inverse kinematics solver 
had one expert the representative posture of which was 
(0.0, O.O)T.  re was 0.001rn, r,t was 0.05m, and rjiz was 
102. 

Figure 3 shows the progress of the inverse kinemat- 
ics model learning. Figure 3(a) shows the RMS er- 
ror of the end-effector position d m  by using 
the inverse kinematics model. It can be seen that 
the RMS error decreases and the precision of the in- 
verse model becomes higher as the number of trials 
increases. Figure 3(b) shows the RMS error of the 
forward kinematics model E[eT,ejm]. ejm is the 7 
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error vector of the forward kinematics model defined 
as etm = f(8) - Ojm(8). The number of the experts 
which constructs the inverse kinematics model became 
3 after 6 times learning trials. 

v) 

10 '1 0 '1 0 '10 '10 410 '10 6107 
Number of Learning Trials 

(a)RhlS position error 
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(b) RMS position error of forward model 
Figure 3 Performance Change of Inverse Model 

Figure 4 shows the position error vector of one example 
of an inverse kinematics model acquired by the pro- 
posed method. We were able to obtain a precise in- 
verse kinematics model of the overall points that the 
robot arm can reach. Figure 5 illustrates how the ex- 
pert is selected. Because the representative posture 
of the first expert was (O.O,O.O)T and the Jacobian of 
the pasture is singular, the expert is rarely used. The 
second expert and the third expert covers almost all 
region. Figure 5(b) shows the region where the pre- 
dicted output error of the second expert is lower than 
0.01m. The graphics of the robot arm in Figure 5(b) 
shows the representative pature  of the second expert. 
Figure 5(c) shows the region where the predicted out- 
put error of the third expert is lower than 0.01m. 

The RMS error became 1 . 5 0 ~  10-3m after 5x lo7 learn- 
ing trials. The simulations of the inverse kinematics 
model learning, consisting of a single neural networks, 
by using the Forward and Inverse Modeling, were also 
performed. The learning was performed from 10 differ- 
ent initial states of the neural network. The minimum 

RMS error after lo9 learning trials was 1.20 x 10-2m. 
Forward and Inverse Modeling with a single neural net- 
work cannot obtain a precise inverse kinematics model 
of the arm (as shown in Figure l), whereas the pro- 
posed method can obtain a precise model. 

Y t  . . . . .  . . . . . . . .  . . . . . . . . . . .  . . . . . . . . . . . .  
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Figure 4 Error Vectors of Learned Inverse Kinematics 
Model Consisting Modular Architecture Networks 

(a)Selected experts 

(b) Second expert (c) Third expert 
Figure 5 Configuration of Learned Inverse Model 

4.2 Inverse kinematics learning of a 7- 
DOF arm 

We considered the inverse kinematics model learning 
of a 7-DOF arm (Mitsubishi Heavy Industries, Ltd.'s 
"PA-10'' ). The configuration of the arm is illustrated 
in Figure 6. The 2nd and the 3rd layers of the forward 
kinematics model and the experts had 40 neurons each. 
16,384 desired end-effector positions were generated by 
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using a uniform random number generator for the es- 
timation of the RhlS of e(lc). 
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Models in the Cerebellum,” Proc. of The 
Fifth International Conference on Neuml Infor- 

Figure 6 Configuration of 7-DOF Robot Arm 

Figure 7 shows the change of the RMS error of the 
end-effector position by the learning. After io7 learn- 
ing trials, 6 experts were generated. After lo7 learn- 
ing trials, the RhG end-effector position error became 
9 . 8 0 ~  10-3m. We concluded that the proposed method 
succeeded in the inverse kinematics model learning of 
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Figure 7 Change of RMS Error 

5 Conclusions 

We proposed a novel modular neural network archi- 
tecture for the inverse kinematics model learning and 
tested it by numerical experiments. The proposed neu- 
ral networks can approximate the inverse kinematics 
function that conventional methods cannot learn pre- 
cisely. The proposed architecture can easily be applied 
to the tracking control. The slight modification of the 
learning algorithm for the tracking control will be re- 
ported in near future. 
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