Obstacle avoidance using a Multi-Layer Perception
James Gant & Brett Buehl

CS/ECE 539

Fall 2003
Table of Contents

Introduction

1

Work Preformed
Calculating the Neural Network’s Input

1
Training Data Collection

5

Using the Program

6

Using the Neural Network Package

7

Results

8

Discussion

 11

Relevant Source Files

Main.cpp

- Main program file

Car.cpp

- Class file for cars

NeuralNetwork.cpp
- Class file for Neural Networks
Introduction:

Today’s video games strive to make their AI behave as similarly to a human player as possible. One way of doing this is to record the actions of a human while they play the game and then use that data to teach the AI how to behave. We propose training a back-propagating neural network to control a vehicle, avoiding collisions with other objects, after observing the actions that a human player took in similar situations.

The back-propagating neural network will be implemented in C++. This implementation will be a software package independent of the graphical environment, allowing it to be used for other purposes. As inputs to our neural network, we will use the distances to the objects around the vehicle. Since we are trying to simulate what a human would do in certain situations, we will limit the objects that we pass to the neural network to those objects that a person would see if they were sitting in the driver’s seat. Output from the neural network will consist of the acceleration/braking and the steering commands used to control the vehicle.

These techniques could also be applied to vehicle control problems other than those in computer gaming, such as robot navigation.
Work Performed:

Calculating the Neural Network’s Input
As mentioned in the introduction, we want to limit the distances passed into the neural network to those that a person would see if they were sitting in the driver’s seat. To do this, we set a vision radius to represent how far away from the car the driver could see. We then define two lines that would represent the amount to the right and left the driver could see. Finally, we defined two addition lines parallel to the direction the car was facing. These lines separated the objects into things that were on the left, on the right, or in front of the vehicle. See the figure below:
[image: image1.png]Left of Vehicle

In front of Vehicle

Vehicle

Right of Vehicle

We then calculated the distance from the vehicle to every object that fell within one of the regions listed above. In order to simplify collision and distance calculations, every object in our program was approximated by a sphere. The distance from vehicle to an object was then defined as the distance from the vehicle’s position to the closest point on the sphere approximating the object.
[image: image2.png]Object

closest point on
approsimating

sphere

Vehicle

The smallest distance from each region was then scaled from 0 to 1 (0 meaning the object was colliding with the vehicle, 1 meaning there was no object in sight in that region) and applied to the neural network as input.
Training Data Collection

The training data was collected by recording the actions of a human player controlling one of vehicles. When data recording is turned on, a training example is recorded to the file “Training.txt” every 30 frames. Training examples consist of five floating point numbers. The first three make up the input vector and consist of the scaled distances in the left, center, and right regions respectfully.
The last two numbers make up the target vector used to train the neural network. The first number comes from the acceleration/braking controls of the vehicle. A 1 means accelerate, a 0 means brake, and a 0.5 mean neither brake nor accelerate. The second number represents the steering controls. A 1 means turn left, a 0 means turn right, and a 0.5 means go straight.
The output from the neural network is broken up in a similar fashion. If the first value in the output vector is greater than 0.75, then the vehicle is told to accelerate. If it is less than 0.25, the vehicle is told to brake. Otherwise the vehicle is told to neither brake nor accelerate. For the second value in the output vector, a number > 0.75 means turn left, a number less than 0.25 means turn right, and otherwise the vehicle goes straight.

Using the Program

This program consists of two separate windows:

[image: image3.png]

The large window on the left draws the vehicles as well as their environment. The yellow car is controlled by the user; all other cars are controlled by the neural network. In order to control the yellow car, the user must first make sure the left window is the one that is currently selected. The car can then be controlled using the arrow keys. When the space bar is pressed, the program begins recording data to the file “Training.txt.” To stop recording data, press the space bar again. You must press the space when you are done recording data, or there will be a blank line at the end of the training file that screws up the neural network. The camera view can be changed using the number pad. Pressing 1 makes the camera follow the player controlled car, 2 and 3 make the camera follow AI controlled cars, and pressing 4 returns you to the top down view of the entire environment.
The smaller window on the right contains the controls for the neural network. When the program starts, a new neural network is automatically created and the weights are set to random values. To train the current network with the training examples currently in “Training.txt”, press the button that says “Train Network.” Training the network more than once with the same file may improve the performance of the network. To create a new network with a different structure, change the appropriate values and then press the “New Network” button. You are allowed to change: the number of layer(includes the input layer in the count), the number of nodes in the hidden layers, and the learning rate. To close the program press the “Exit Program” button.
Using the Neural Network Package

Everything needed to create and run a back-propagation neural network is included in the files “NeuralNetwork.cpp” and “NeuralNetwork.h”. To create a new neural network, use the constructor

NeuralNetwork(int numLayers, int numInputs, int numOutputs, int numNodesPerHL)

Where: numLayers is the number of layers (including the input layer) that you want in
the neural network

numInputs is the number of inputs for the neural network

numOutputs is the number of outputs for the neural network

numNodesPerHL is the number of nodes per hidden layer

To train the network, use the member function

void NeuralNetwork::train(char *fileName)

where filename is the name of the file that contains the training examples.
To use the neural network, use the member function

NNVector NeuralNetwork::applyInput(float input[])

The input for the neural network is passed into this function in the form of an array of floats. This function returns an NNVector in which NNVector.vector contains the output of the network in the form of an array of floats.

Results

It took us a while to find a neural network structure and a set of training examples that would produce a satisfactory neural network for vehicle control. We settled on a network structure of three layers (including the input layer) with three nodes in the hidden layer and a learning rate of 0.1. If you use a network with 4 or more layers, you begin to get infinite values in the weight matrix during training (probably a result of using floats to represent the weight matrices instead of doubles). Networks with more than 5 nodes in the hidden layer tend to have a large amount of lag between the time you apply the input and the time you get the output back. This would be undesirable in a video game environment.
A good set of training examples was even harder to find then the network structure. We would usually record data for about two minutes and get about 100 different training examples in a file. One of the training files that produces the best results is saved in the file “Training_Good.txt” and is listed below. To train the network with this data, just copy and paste it into the file “Training.txt” and then click the “Train Network” button two to three times.
Training Data:

	Left Dist
	Center Dist
	Right Dist
	Acceleration
	Steering

	0.353487
	1
	0.521857
	1
	0.5

	0.357942
	1
	0.508745
	1
	0.5

	0.367456
	1
	0.489253
	1
	0.5

	0.600177
	1
	0.46533
	1
	0.5

	0.594254
	1
	0.58421
	1
	0.5

	0.594906
	1
	0.536036
	1
	0.5

	0.606554
	1
	0.486849
	1
	0.5

	0.63358
	1
	0.585743
	1
	0.5

	0.842563
	1
	0.515192
	1
	0.5

	0.862151
	1
	0.602506
	1
	0.5

	0.902441
	1
	0.515464
	1
	0.5

	0.963866
	1
	0.586087
	1
	1

	0.940712
	1
	1
	1
	0

	0.967841
	1
	1
	1
	0.5

	0.889737
	1
	0.650545
	0.5
	0.5

	0.895567
	1
	0.793925
	1
	1

	0.868357
	1
	0.939639
	1
	0.5

	0.835953
	1
	1
	1
	0.5

	0.829287
	1
	0.732198
	1
	0.5

	0.830547
	1
	0.808758
	1
	0.5

	0.839188
	1
	0.759577
	1
	0.5

	0.855116
	1
	1
	1
	0.5

	1
	1
	0.815745
	1
	0

	0.931408
	1
	0.980142
	1
	0.5

	0.966137
	1
	0.843239
	1
	1

	0.97139
	1
	0.73348
	1
	0.5

	0.956565
	1
	0.672133
	1
	0.5

	0.942701
	1
	0.642439
	1
	0.5

	0.969521
	1
	0.614675
	1
	0.5

	1
	1
	0.480357
	1
	0.5

	1
	0.970358
	0.794921
	1
	1

	0.867641
	1
	0.781095
	1
	0.5

	0.755503
	1
	0.804188
	1
	0.5

	0.762639
	1
	0.789544
	1
	1

	0.720888
	1
	0.922818
	1
	1

	0.714836
	1
	1
	1
	0.5

	0.735617
	1
	0.791405
	1
	0.5

	0.723098
	1
	0.844746
	1
	0

	0.739516
	1
	0.798073
	1
	0.5

	0.769374
	1
	0.752175
	1
	0.5

	0.790129
	1
	1
	1
	0.5

	0.866643
	1
	0.656949
	1
	0.5

	0.89182
	1
	1
	1
	0

	1
	1
	1
	1
	0.5

	1
	1
	0.546257
	1
	0.5

	0.866576
	1
	0.439186
	1
	0.5

	0.792565
	1
	0.951796
	1
	0.5

	0.733382
	0.969479
	0.840092
	1
	0.5

	0.783343
	0.973009
	0.728211
	1
	0.5

	0.7786
	1
	0.598258
	1
	0.5

	0.752001
	1
	0.541548
	1
	1

	0.692531
	1
	1
	1
	0.5

	0.680757
	1
	0.918634
	1
	1

	0.657851
	1
	0.725833
	1
	0.5

	0.587689
	1
	0.614236
	1
	0.5

	0.558267
	1
	0.557796
	1
	0.5

	0.506883
	0.999053
	0.512096
	1
	0.5

	0.482109
	0.862318
	0.434677
	1
	0.5

	0.472925
	0.446568
	0.652065
	0.5
	0.5

	0.700304
	1
	0.437874
	1
	0.5

	0.551463
	1
	0.451355
	1
	1

	0.449866
	1
	0.663053
	1
	1

	0.460068
	1
	0.643744
	1
	0.5

	0.55186
	1
	0.609671
	1
	0.5

	0.571058
	1
	0.568329
	1
	0.5

	0.705491
	1
	0.525717
	1
	0.5

	0.72226
	1
	0.709387
	1
	0.5

	0.754314
	1
	0.6375
	1
	0.5

	0.888843
	1
	0.568594
	1
	0.5

	0.927304
	1
	1
	1
	0.5

	0.957537
	1
	1
	1
	0.5

	0.875779
	1
	1
	1
	0.5

	0.846168
	1
	1
	1
	0

	0.985572
	1
	1
	1
	0.5

	0.908132
	1
	1
	1
	0

	0.761669
	1
	1
	1
	0.5

	1
	1
	0.737531
	1
	0

	1
	1
	0.862416
	1
	1

	1
	1
	0.809452
	1
	1

	1
	1
	0.748836
	1
	0.5

	0.883678
	1
	0.880471
	1
	0.5

	0.722359
	1
	0.961237
	1
	0

	0.755402
	1
	0.937973
	1
	0.5

	0.812868
	1
	0.993567
	1
	1

	0.755049
	1
	0.719044
	1
	1

	0.97455
	1
	0.597138
	1
	0.5

	1
	1
	0.490659
	1
	0.5

	0.993761
	1
	0.897991
	1
	0.5

	0.745464
	1
	0.606391
	1
	1

	0.594249
	0.431631
	0.380104
	0.5
	1

This data produced the weight matrices:

Input to Hidden Layer

	0.308555
	25.4392
	66.9839
	32.9293

	-44.3163
	6.42498
	76.4162
	17.0068

	-115.544
	-36.064
	16.3021
	-27.8972

Hidden to Output Layer

	1.79278
	2.04886
	2.66109
	1.97586

	0.263406
	0.700113
	-1.30132
	-0.533672

The only problem with this network is that the cars almost always steer right when they encounter an obstacle even if that is not the best choice.

Discussion

While the quality of our results wouldn’t live up to the standards of a professional video game, we happy with the outcome of our program.
If we had more time, we would change all of the float in the Neural Network class to doubles to hopefully fix the problem with the infinite numbers in some weight matrices.
Also, we would add more inputs to the neural network that controlled the cars. Instead of just Left, Center, and Right we would use Far Left, Close Left, Center, Close Right, and Far Right. This would most likely improve the vehicles ability to steer because, with the current inputs, the vehicle can not differentiate between an object that is almost in front of it and one that is far off to its side.
PAGE
11

