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I. Abstract
	Genetic algorithms are one of the most useful forms of artificial intelligence. It simulates the process of evolution over time. The purpose of this project is to compare two forms of genetic algorithms, the Darwinian and the Lamarckian. Compared to Darwinian, Lamarckian is rarely used and is less known. Therefore, it is the major focus of this project to evaluate its performance in robot path planning and a target aiming experiment.
	The robot built in this project was an autonomous robot built using a Tetrix platform. The robot included a notebook PC as the brain, a webcam as eye, and two servo controllers to control robot head and arm.
	The goal of the robot path planning experiment was to find a goal in a maze. Each program was tested for the number of generations it took to find the goal. In result, the Lamarckian genetic algorithm outperformed the Darwinian genetic algorithm by at least three generations in the worst case, and almost six times less the number of generations in the best case.
	In the target firing game, the goal of the experiment was to find a target, and fire at it. In result, the Lamarckian genetic algorithm still did better than the Darwinian in average, leading by more than four generations in the best case.
In conclusion, in both experiments the Lamarckian genetic algorithm performed better than the Darwinian genetic algorithm. This occurred in both the average of the algorithms and the individual results for each of the trial.



1. Introduction
In the field of electrical engineering, the area of robotics is a large topic. This is because many other algorithms from different areas of computer sciences are used to create a truly intelligent robot. Some algorithms in the field of search are optimal, but are a non-intelligent, brute force search method. Others such as neural networks and genetic algorithms which come from biology and other sciences display more natural results, but may not be as accurate as search algorithms. These algorithms can then be used to help with learning in motion, vision, and other senses.
Genetic algorithms are one of the most used algorithms. This is because it is powerful, and yet it simulates real life behaviors. Recently, after the development of the Darwinian genetic algorithms, other versions of genetic algorithms have been made. One of these is the Lamarckian genetic algorithm, which was highly influenced by results stating that Lamarck’s theory could actually be true in nature.
The purpose of this project is to apply genetic algorithm into robotics and compare Darwinian with Lamarckian algorithm in robot learning and adaptation.

2. Review of Literature (Background Information)
2.1 A Brief History of Robotics
Robotics might seem like a very modern topic. However, the idea of robotics actually started in a couple hundred BC. At around 350 B.C, the mathematician Archytas built a mechanical pigeon which operated by stream (“A Brief History of Robotics”, n.d.). However, it was Aristotle who came up with the idea of automatic machines. 1800 years later, Leonardo DaVinci creates the plan of the first robot. This was an armored knight which was to move like a human. Afterwards, no significant improvement was made until in 1822, Joseph Jacquard invented a loom with punched cards as an input. Then Charles Babbage used this same method and gives the base for the binary system. In 1847, George Boole invented Boolean algebra, a way to represent logic gates. In 1936, Alan Turing invents the concept of the Turing machine. After lots of algorithms and robot improvements, it reaches current technology that is in the world now.

2.2 Robot Base Design
[bookmark: _Toc281733777]2.2.1 The Differential Drive
This base is one of the most common bases that are used in robotics. It consists of only two motors which each control separate motors (Bräunl, 2006). The motor-controlled wheels are always in pairs, and can either be in the middle or in the back. If the wheels are in the middle, then castor wheels are behind and in front of the controlled wheels. If the controlled wheels are in the back, then only one castor wheel is necessary in the front. The pros of this type of base are that it is easy to build around, it can be fast, and it can rotate in place. However, it has a harder time turning than an omnidirectional base.


Figure 2.2.1: Different Variations of the differential drive. This notation is from Embedded Robotic (Bräunl, 2006). It will be used for the other drive diagrams. Therefore:
      = castor wheel
      = controlled wheel
[bookmark: _Toc281733778]2.2.2 Ackermann Steering Drive
	The Ackermann steering drive is the drive that is used in modern two wheel drive cars. Only one motor is required to rotate both wheels in the back. However, the wheels in the front are rotated together. They can only be turned either by human force (steering wheel) or by an extra motor. Since the robot has to be automatic, an extra motor is required adding a total of two motors used for this drive. The pros about this drive is that driving straight forward is not a big problem since the back wheels are driven in parallel (Bräunl, 2006).  However, this type of robot base cannot rotate in place.

  
Figure 2.2.2: The representation of an Ackermann Steering Drive. In here two new notations are shown:
       = rotating castor wheels
       = connected controlled wheels

[bookmark: _Toc281733779]2.2.3 Single Wheel Drive
	In this base, only one wheel is controlled by a motor. However, an extra motor is required to spin the motor-controlled wheel (Bräunl, 2006). Behind this wheel which is centered in the front of the robot, are two castor wheels since at least three wheels are necessary. The only exception would be self-balancing robot, but there is not much application for those types of robot. The single wheel drive does not have very significant pros, but has a good amount of cons. This is why the single wheel drive is rarely used. 


Figure 2.2.3: The single wheel drive.
         = A controlled rotating wheel

[bookmark: _Toc281733780]2.2.4 Synchro-Drive
A synchro-drive is an almost holonomous vehicle (Bräunl, 2006). Thus, there is the circular base so that the robot would be symmetrical. In this design, still only two motors are used. One motor is used for controlling the speed (forward and backwards as well) of the wheel. The other motor rotates all of the motors in the same position. The thing that makes the synchro-drive apart from omnidirectional drives is that the robot has to reposition its wheels before moving in a different direction. The other thing is that the synchro-drive cannot move forward and turn at the same time.

 
[bookmark: _Toc281733781]Figure 2.2.4: The Synchro-Drive

[bookmark: _Toc281733782] 2.2.5 Omnidirectional Robots
	The term, omnidirectional, means that the robot can move in all directions from the same position. It has to be able rotate in position in order to be counted as an omnidirectional drive (Bräunl, 2006). Also, unlike the synchro-drive, a truly omnidirectional cannot realign the position of the wheels when changing directions and would also have to be able to move forward and turn at the same time.
	There are two types of omnidirectional drives. One of them uses a special type of omnidirectional wheels called the mecanum wheel. The other drive uses another special type of omnidirectional wheels called the omni-wheel, which in fact is a special type of mecanum wheel.

[bookmark: _Toc281733783]2.2.6 Omnidirectional Drives
	The mecanum drive can use the rectangular base similar to those of the differential drive. The wheel layout is similar to the Ackermann steering. Except for the fact that the back wheels are not connect, the front wheels are not rotated, and the fact that all wheels are driven by a separate motor. Mecanum wheels are used in this base. Mecanum wheels have the same circular shape, allowing the robot to move forwards and backwards, but attached the wheel (inside or outside) consists of rollers (smaller wheels) mounted at about a 45 degree angle to the circular part of the wheel (Bräunl, 2006).
 (
http://robotics.ee.uwa.edu.au/eyebot/doc/robots/omni-side.jpg
) (
http://robotics.ee.uwa.edu.au/eyebot/doc/robots/omni2-diag.jpg
)[image: http://robotics.ee.uwa.edu.au/eyebot/doc/robots/omni-side.jpg]		      [image: http://robotics.ee.uwa.edu.au/eyebot/doc/robots/omni2-diag.jpg]

Figure 2.2.5: (from left to right) Design of one of the omnidirectional drives; Mecanum robot with mecanum wheels with rim; Mecanum wheel without rim.
[bookmark: _Toc281733784]       = mecanum wheel with rollers slanted up right
       = mecanum wheel with rollers slanted down right

	A triangular base can also be used for a mecanum drive. Instead of using mecanum wheels with rollers mounted at 45 degrees, mecanum wheels with rollers mounted at 90 degrees are used (Bräunl, 2006). Each wheel again is powered by its own motor, but the motors are mounted in the middle of each side of the triangle.




[bookmark: _Toc281733785]Figure 2.2.6: Design of an omnidirectional base using a triangle.

	A third omnidirectional base can be made using mecanum wheels with rollers mounted at 90 degrees. This base requires to be square, not rectangle. This is because the mecanum wheels (omni wheels) are mounted at a 45 degree angle to each corner.
		



Figure 2.2.7: Design of an omnidirectional base using a square.

2.3. Sensors
[bookmark: _Toc281733786]2.3.1. Sensors
	Sensors receive data from outside forces. The sensor input data is sent to the brain where it is processed. There are many sensors in the industry, many which perform different tasks and receive different data. Some outputs from a sensor could be in binary, analog, or a timing signal (Bräunl, 2006).

[bookmark: _Toc281733787]2.3.2. Binary Sensors
	Binary sensors are very simple. They either return a 1 or 0 (Bräunl, 2006). 1 is usually returned when something occurs and 0 is usually returned when nothing happens. An example of a binary sensor is a touch sensor. A touch sensor outputs a 1 when the sensor is pushed, and 0 otherwise.

[bookmark: _Toc281733788]2.3.3 Touch Sensor
	The touch sensor is one of the most simplistic binary sensors. It returns a 1 when it is pressed and 0 otherwise. The sensor is basically a switch which connects when it is pushed. This therefore gives a 1.

[bookmark: _Toc281733789]2.3.4 Sonar Sensor
	The sonar sensor is a position sensitive device. It is also an analog sensor, meaning that it returns values other than 0 and 1. It returns the value of the number of centimeters away from an obstacle. However, sonar sensors have numerous amounts of disadvantages (Bräunl, 2006). The most major problem is reflection, which is when the sonar waves reflected off an angled object. Thus an object can seem to be farther than its actual distance. Another problem is that if there are multiple sonar sensors, some of the waves of one sonar sensor would end up in the receiver of the other sensor. Again, this would make the object seem farther away. Currently, the infrared or laser sensors have replaced the sonar sensors (Bräunl, 2006).

[bookmark: _Toc281733790]2.3.5 Digital Camera
	A digital camera is one of the most complex sensors (Bräunl, 2006). It was only until recently when cameras have been small and powerful enough to be used in robotics.  Using camera and computer vision, object color and shape features can be detected and recognized. 
2.4 Actuators
[bookmark: _Toc281733791]2.4.1 Actuators
	Actuators are devices that make motion. Such examples are common motors. This includes DC motors, servo motors, stepper motor, etc.

[bookmark: _Toc281733792]2.4.2 DC Motor
	A DC motor is an actuator. It moves a rod. DC motors are probably one of the most commonly used devices for movement (Bräunl, 2006). They have high torque and are durable and affordable. DC motors have free rotation. This means that the motor can continuously rotate in the same direction.

[bookmark: _Toc281733793]2.4.3 Stepper Motors
	The two other motor designs are the stepper motor and the servo. Stepper motors are controlled by pulses which step the motor. There are about 200 steps in a rotation (Bräunl, 2006). Stepper motors are less used in mobile robotics. They normally do not feedback motor positions. Also their performance ratio is worse than that in DC motors. However, stepper motors are used in industry robotics and machinery because the stepper motors are strong enough to support heavy weight.

[bookmark: _Toc281733794]2.4.4 Servos
	Servos are a high-quality DC motor. However, servo is to not be mixed with servo motor. Servo motors are another name for the common DC motor. A servo is able to handle sudden changes. 
	A servo is controlled by pulse and width (PW) unlike the pulse-width modulation (PWM) for DC motors. However, with a servo, the range is not continuous like one of a DC motor. They normally have a range of around 120 degrees. A servo is great for practical motion control, but they do not have feedback data like stepper motors (Bräunl, 2006).

2.5. Computer Vision
[bookmark: _Toc281733795]2.5.1 Computer Vision
	Computer vision is a computer with a camera to simulate human vision. It is how the computer can “see” the outside world. The image is actually a grid of numbers which represents the color of the pixel (Bradski & Adrian Kaehler, 2008). After the image is captured, then it can be processed by computer. However, if the programmer was to do this from scratch, it would take lots of work to write code for processing each pixel. That is one of the reasons why OpenCV was made, to have an easier time programming.

[bookmark: _Toc281733796]2.5.2 OpenCV
	OpenCV is a free, open source, computer vision library (Bradski & Adrian Kaehler, 2008). OpenCV is an external library for c and c++. Computer vision is used a lot in our common life. Such examples are Google’s Street View, unmanned vehicles, etc.

2.5.3 Hue, Saturation, and Value
Hue, Saturation, and Value, otherwise known as HSV, is used to detect the image’s color. The hue value is the “pure” color. Saturation is the color’s strength (pure color to gray). Value is the brightness of the color. Thus, we can separate the image to get the grayscale of “pure” color, strength, and brightness. 

 (
http://ilab.usc.edu/wiki/index.php/HSV_And_H2SV_Color_Space
)[image: This is a standard representation of HSV color space as a cone. As you move outward, S is larger and colors are more pure. As you move down, colors get more dark. Moving around the cone changes the Hue color along the rainbow. Image sourced from The Wikipedia.]

 Figure 2.5.1: The HSV color cone.

2.5.4 Object Detection
	Object detection is important for making an autonomous machine. Without object detection, a robot can only rely on GPS or other navigational sensors. However, with image processing to know what to avoid, what to grab, etc. A method of object detection is using contours. 

[bookmark: _Toc281733797]2.5.5 Contours
	Using contours is a way of image detection. Contours checks if all of the pixels surrounding an area are of the same color and keeps data of the shape (Bräunl, 2006). The easiest way for object detection is by using a binary image. A binary is a black and white image. Because there are only two colors, it is easier to tell which area is white and which area is black. 
	If OpenCV did not exist, then there would be a loop checking over and over a pixel and its surroundings. It would use chain codes to store the information of each contour. However, OpenCV has a function called cvFindContours that does this process. All that is needed is a binary image and a storage area for the contours.

2.5.6 Chain Codes
 (
4
1
2
3
5
6
7
0
)	Chain codes are what stores the information of each and every contour. One of the most commonly used chain codes is Freeman’s chain code. Freeman’s chain code is not standardized, so the numbers may vary from source to source. This chain code contains an encoding for each of the eight cardinal directions (Parker, 1994). An example of the “compass” would be:




[bookmark: _Toc281733798]Figure 2.5.2: Example of a “compass” for Freeman’s chain code.

[bookmark: _Toc281733799]2.5.7 Contour Area
	The contour area is a shape feature. It can also be used to filter out small, noise contours. The contour area is the area inside contour. This could also be the number of pixels in an object. In OpenCV, the function cvContourArea finds the area of a given contour. 




Figure 2.5.3: The contour area of a contour. The contour area of the contour (light blue) would be two pixels


[bookmark: _Toc281733800]2.5.8 Bounding Box
	A bounding box is a box which bounds or surrounds an object. The box would have the same length of the object’s longest length, and the same width of the object’s longest width.




Figure 2.5.4: A bounding box of a triangle (green). The bounding box’s area would be four pixels


[bookmark: _Toc281733801]2.5.9 Aspect Ratio
	The aspect ratio is an object’s longest length divided by the object’s longest width. This is also another shape feature. Since the bounding box has the length of the object’s longest length, and the same width of the object’s longest width. The aspect ratio is simply found by dividing the length and the width of the box.




[bookmark: _Toc281733802]Figure 2.5.5: The aspect ratio in the image is shown in purple

[bookmark: _Toc281733803]2.5.10 Extent
	The extent is a shape feature. The extent of a object can be found by dividing the bounding box area by the contour area. This is also known as the percentage of coverage.




Figure 2.5.6: The extent is found by dividing the bounding box (green) area by the contour area (red). The result is the black triangle.

[bookmark: _Toc281733804]2.5.11 Circularity
	The circularity of an object is the difference in area of an object’s area to a circle’s area with the same perimeter. The equation is P2 / 4πA where P is the perimeter and A is the area. The less circular a shape is, the higher the circularity.



[bookmark: _Toc281733805]Figure 2.5.7: The circularity of the triangle is the black circle.

[bookmark: _Toc281733806]2.5.12 Centroid
	Finding the centroid of a shape is very useful in robotics. Using the center coordinates, the robot can then relocate itself to the object and pick it up.
	In order to find the centroid of an object, moments is used. Moments are the following equation (Parker, 1994):
[image: M_{ij} = \sum_x \sum_y x^i y^j I(x,y)\,\!]
Figure 2.5.8: Moments equation; http://en.wikipedia.org/wiki/Image_moments.
The centroid can be found by substituting values for i and j. By substituting i=0, j=1, into the equation and then dividing it by i=0, j=0, (the contour area), the center of the x-axis is found. By using i=1, j=0, and the same procedure is done, the center of the y-axis is found.

2.6 Fuzzy Logic Controller
[bookmark: _Toc281733807]2.6.1 Fuzzy Logic
	Fuzzy logic is a logic where the values used are any numbers between 0 and 1. Such gates in fuzzy logic are not like those of classical binary logic (AND, NOT, OR, XOR, etc). Instead, fuzzy logic uses gates such as MIN and MAX which either finds the minimum or the maximum of an object (Jones, 2003).

[bookmark: _Toc281733808]2.6.2 Fuzzy Logic in Programming
	In programming, fuzzy logic is used to smoothen and motions a bit like PID control. The MIN and MAX operators are still used, one taking out part of the membership above a point, one taking out the part below the point. 

2.6.3 Membership Function
	The membership function tells how much a point belongs to a member (Jones, 2003). Another way of understanding it is that the membership tells how much of a member a person is to a club. Thus, if there were only two clubs, the club for short people and one for tall people, a middle-height person would have a membership of 0.5 in the short club and a membership of 0.5 in the tall club. Fuzzy logic comes in at the fact that the membership can be anywhere in between 0 and 1. However, all the memberships of a point have to add up to one. This means that a point with memberships of 0.358731 and 0.641269 would be valid, but a point with memberships of 0.33 and 0.66 would be invalid.

[bookmark: _Toc281733809]2.6.4 The Membership Graph
	A membership graph is either filled with triangles or trapezoids. In a normal membership graph, the extreme point (a membership of 1) of a membership is where another one starts. There is always an input and output membership graph in which operators are preformed in such as MIN, MAX, AND, OR, etc. Afterwards, the output is the centroid of the remaining area.

Figure 2.6.1: An example input membership graph.

Figure 2.6.2: An example output membership graph.

2.7 Genetic Algorithm
[bookmark: _Toc281733810]2.7.1 Genetic Algorithm
	Genetic algorithm is an evolutionary algorithm. It simulates evolution through nature. This idea originated from Darwin’s Theory of Evolution, otherwise known as Natural Selection. 
Genetic algorithm in programming was developed by John Holland in 1962 (Jones, 2003). It models evolution to solve problems. There is always an initialization, a fitness function, and a reproduction function. There is also a variant of genetic algorithm called Genetic Programming was developed by John Koza in 1992. The difference with genetic programming is that instead of using stacks, trees are used.

[bookmark: _Toc281733811]2.7.2 Lamarck’s Theory of Evolution
	Lamarck’s theory of evolution was one of the first theories on evolution. It was found by Jean-Baptiste Lamarck. His theory was proven to be false by other scientists at his time. Lamarck’s theory generally states that stated that an organism can pass on characteristics that it acquired during its lifetime to its offspring. The reason that this was not correct was because there were many counterexamples. One, for instance, could be that if someone cut his arm off, his baby would not be born with only one arm.

2.7.3 Darwinian’s Theory of Evolution: Natural Selection
	Natural selection is the theory of evolution that Charles Darwin suggested. This theory is based on the thought of the survival of the fittest, where the organisms best suited to the environment survive to reproduce. However, there is a small percent chance that very weak organisms survive by luck. Thus, most of the newly born offspring are made up of genes from the more successful parents.

[bookmark: _Toc281733812]2.7.4 Genetic Algorithm Using Natural Selection
	A genetic algorithm using natural selection is the standard genetic algorithm. This is more common since the idea was taken straight from biology, and Darwin’s theory was the correct one. 

 (
With new offspring chromosomes
) (
Initiali
zation of the Population
Evaluation of Fitness Values
Selection of Best Chromosomes
Mating of the Chromosomes
Is Problem Satisfied?
End
No
Yes
)
Figure 2.7.1: A flowchart of the process of genetic algorithms using Darwin’s Theory of Evolution.

	In this genetic algorithm, the chromosomes are first randomly initialized. Then, these chromosomes are evaluated in order to find their fitness values. The chromosomes with the best fitness values are selected. These chromosomes are then randomly mated together and forms chromosomes using genetic operators. This process will then loop back to the fitness calculation stage. However, the new offspring chromosomes are used for calculation instead.

[bookmark: _Toc281733813]2.7.5 Initializing the Population
	The first process of the genetic algorithm is to initialize the population. It assigns various values to each separate chromosome (Jones, 2003). The values that are assigned are random, since in reality, the robot is gathering data from its sensors. Thus, if the chromosomes were calculated in real time, the values would what the robot receives from the sensors.

[bookmark: _Toc281733814]2.7.6 Fitness Value
The fitness value represents how much an organism is suited to the environment. For example, if the fitness value was representing the distance from the goal of a maze, the best chromosomes would have a fitness value of 0, and the worst would have a fitness value of the longest length.

2.7.7 Evaluation of Fitness Values
	The next process is to calculate the fitness for each chromosome to some specified parameters (Jones, 2003). For example, for a genetic algorithm which is evolving a robot in a maze, the fitness function could be the Manhattan distance from the exit of the maze.  

[bookmark: _Toc281733815]2.7.8 Selection of Best Chromosomes
	The next step is to take the fitness values of each chromosome and randomly pick out a couple of chromosome for reproduction. Chromosomes with a higher fitness value have a higher chance of getting selected to be reproduced (Jones, 2003). However, there can be times where the algorithm picks the lowest chromosomes. This is because there is always a chance that an unfit person would survive and reproduce.

[bookmark: _Toc281733816]2.7.9 Mating of Chromosomes
	The last stage of the genetic algorithm is reproduction. The chromosomes that were chosen are then combined to create new, offspring chromosomes (Jones, 2003). There, genetic operators that can be done. Those operators could be crossover and mutation operators.
	Crossover is when a randomly selected point in the string of the chromosomes is chosen and then the chromosomes swap strings. For example:
 (
Crossover point
)
[bookmark: _Toc281733817]Parent A: 010001011010100
[bookmark: _Toc281733818]Parent B: 110101011101100
The output would be:
[bookmark: _Toc281733819]Child A: 110101011010100
[bookmark: _Toc281733820]Child B: 010001011101100
	Mutation is when the algorithm randomly takes a point and inverts the value. For example:
[bookmark: _Toc281733821] (
Mutation Point
)Before Mutation: 00101110
[bookmark: _Toc281733822]After Mutation:   00101010

2.7.10 Genetic Algorithm using Lamarck’s Theory of Evolution
	Lamarck’s Theory of Evolution can also be used for genetic algorithm. Most of the functions used are the same as the algorithm with Natural Selection. However, in this variant, two functions were added. One was to repair the chromosomes and one was to recalculate the fitness. The chromosomes are repaired because in Lamarck’s theory, the organism can adapt to the environment.
 (
Initiali
zation of the Population
Evaluation of Fitness Values
Selection of Best Chromosomes
Mating of the Chromosomes
Is Problem Satisfied?
End
No
Yes
Repair Chromosomes
Re-evaluation Fitness Values
)
Figure 2.7.2: Flowchart of the process of genetic algorithm using Lamarckian evolution
[bookmark: _Toc281733823]2.7.11 Lamarckian Evolution Making a Comeback
Lamarck’s theory might have been stated wrong, but it is making a comeback. Organisms have Lamarckian evolution traits have been studied recently. Studies in 2009 showed that Lamarckian evolution can occur in life. In a test, rats were genetically modified to have bad memory, but were then exposed to an unnatural environment. When the rats produced offspring, they had better memory, but only for a few months.
Back in 1988, a group of scientists took E-coli and placed it in a different environment. This E-coli cell was not able to consume sugar lactose, and when the E-coli cells were placed in a room with only sugar lactose as food, the E-coli altered its genes. Although it was similar to Lamarckism, it was called adaptive mutation.
Another group of researchers used yeast. Yeast is able to gain new genetic materials, and when the yeast cells with a specific prion protein Sup 35 were mated with cells that did not have Sup 35, some of the offspring were born with the prion Sup35.


3. Goal, Question, and Hypothesis
3.1 Goal
	The goal of this project is to create an intelligent robot which will have vision, speech, and be able to grab and transport items. The robot must also be able to adapt to the environment and also be able to solve various mazes using genetic algorithms.

3.2 Question
	The question of this project is to compare two different genetic algorithms, the Darwinian and the Lamarckian genetic algorithms in several tasks. These tasks are to solve a maze, to accurate find a target and fire at it, and to correctly identify objects under different lighting circumstances.

3.3 Hypothesis
The Lamarckian genetic algorithm should be able to outperform the Darwinian genetic algorithm. This is due to the fact that the Lamarckian genetic algorithm can evolve during its life time while the Darwinian genetic algorithm only evolves in next generation. The Lamarckian genetic algorithm has to first calculate the fitness, repair all the chromosomes, and then recalculate the fitness. Therefore it adapted the environment during life time so evolves faster than the Darwinian genetic algorithm.



4. Robot Design
4.1 Robot Constraints and Criteria
Constraints
· Cost – Parts cannot be very expensive (<$1000)
· Metal Shop – Limit of having no metal shop, leaving only to be able to buy store parts.
· Computer – HP Pavilion dm4 with core i5 processor (2.40 GHz)
· Lego NXT – Limited commands in RobotC than from C++
· Bluetooth – Only one connection to NXT allowed

Criteria
	The criteria of the robot are that the robot must have some sort of vision, speech and emotion (head), and be able to pick up various objects. Through genetic algorithms, the robot must be able to automatically solve a maze, find a target and fire at it, and be able to pick up various items.

4.2 Selection of Tools and Parts
	Tetrix was used for building the frame of the robot. Tetrix was used because it is compatible with the Lego NXT and it is very sturdy. It is superior than vex in terms of strength. The Lego NXT was only used because it could control the Tetrix DC motors via the HiTechnic DC motor controller. Otherwise, the computer was the main processor.
	For the head, Robodyssey’s ESRA III was used because it was simple, easy to assemble, and it can correctly display emotions. The MiniSSCII servo controller was used for controlling the ESRA’s servos because it came with the ESRA.
	A robotic hand from Lynxmotion was used for the hand because it was humanlike, and could connect well with the Tetrix parts. The Mini Maestro (12 servo) servo controller from Pololu was used for controlling all servos in the body of the robot because it could simultaneously control servos and receive positional feedback.
	A Logitech camera was used for the camera because it was small and did not have unclear vision. It was also portable, unlike the camera in the computer.
	For the software, RobotC was used for programming the NXT. Although NQC is free, RobotC has more capabilities and functions. C++ was used for programming the algorithms because it is a well known programming language, and also is very powerful. OpenCV was the library used for vision because it is well known and is free. Visual Basic was used for communications with the head and the NXT because it was easy to use serial communication.

4.3 Selection of Different Bases
	For the robot base, many different types of bases were considered. In the end, an omnidirectional base using omnidirectional wheels was chosen. This is because the robot would be fast and be quick at turns. Also it would be omnidirectional, making it freer in movement using fuzzy logic. Another factor that highly influenced the idea of creating this base is that mecanum wheels are harder to find in stock and that there are special Tetrix omni-wheels.
Differential Drive:
	Pros
	
	Cons

	Fast
	
	Turning is not good

	Easy to build
	
	Braking is not very sudden

	Easy to build around
	
	Cannot turn in place

	Easy to program
	
	

	Many different wheels can be used
	
	


Table 4.1: The pros and cons for the differential drive.
Omnidirectional Drive:
	Pros
	
	Cons

	Faster
	
	Hard to build around

	Omnidirectional
	
	Harder to program

	Rotating in place is a breeze
	
	Has to be built accurately


Table 4.2: The pros and cons for the omnidirectional drive.

4.4 Top Level Diagram for Robot


Figure 4.1: A diagram for the top level of the robot.
	In the top level block diagram, the camera receives information about what is sees. This data is then sent through USB communication to the brain where it processes the information using several algorithms. Then, the brain sends the output information to the servo and motor controllers to tell how to move the robot.

4.5 Software Design of the Robot


Figure 4.2: A diagram for the software design of the robot.
	In the software side of the robot, the robot first gets input from the camera. The information is then sent to the computer, the brain, for processing. The program receiving the data is a C++ program using OpenCV for image processing. The genetic algorithm then runs, evolving the behavior of the robot. The output of the genetic algorithm is either send to client 1 or client 2 through windows socket communication.
	Client 1 uses visual basic. This client controls the movement of the head. The data it receives is sent to the Mini SSCII servo controller via USB. The Mini SSCII servo controller controls the head’s motion. The head is made from Robodyssey’s ESRA III.
	Client 2 also uses visual basic. This client controls the movement of the arms and base. When controlling the base, the client sends the data it receives into the Lego NXT through Bluetooth communications. The Lego NXT receives the data using RobotC, and sends the data to the HiTechnic DC Motor Controller, which controls the DC motors.
	When the arms want to be controlled, client 2 sends the data through USB to the Mini Maestro servo controller from Pololu. The controller controls both the left arm, which contains two servos, and the right arm, which contains five servos.

4.6 Materials for Building the Robot
· 1 Tetrix base set
· 1 RobotC 2.01
· 1 Lego Nxt 2.0 base set 
· 4 omni wheels 
· 4 Tetrix DC drive motors
· 4 DC motor mounts 
· 4 motor shaft hubs 
· 4 motor power lead
· 2 Hitechnic DC motor controller  
· 8 servo extenders
· (Insert Hitec Servos)
· 1 ESRA III with eyebrows and ears
· 1 MiniSSCII servo controller
· 1 Pololu Mini Maestro 12 servo (insert actual name)
· 1 Lynxmotion (part number: hand)
· 1 (plastic sheet dimensions)
· 1 Computer with RobotC and Microsoft Visual Studio 2010

4.7 Procedure for Building the Robot
1. The head of the robot was built (see Appendix #).
2. The base of the robot was built (see Appendix #).
3. The connector connecting the base and head was built (see Appendix #).
4. The head and base were connected (see Appendix #).
5. The left arm was built (see Appendix #).
6. The left arm was mounted on the head and base connector (see Appendix #).
7. The right arm base was built (see Appendix #).
8. The right arm was connected to the head and base connector (see Appendix #).
9. The hand was built (see Appendix #).
10. The hand was connected to the right arm (see Appendix #).


5. Robot Path Planning
5.1 Maze Exploration
	Maze exploration is the problem of solving a maze. This means that the robot is able to get from a starting point to a goal of a maze. This was a major topic in robot since it is important that the robot knows where it is going to get to a goal. This could be applied into daily life where, for example, a robot needs to know how to get to a refrigerator with hitting walls.	There are many methods for solving such problems, both simple and complex ones.

5.2 Wall-Following
	Wall following is the simplest method of maze exploration. In this method, the robot continuously follows the left (or right) wall. This can solve most mazes, except for ones when the goal is not along any wall or when the goal as along a wall which is not connected in any way to the start point’s surrounding walls.







Figure 5.1: (From left to right) A solvable maze using wall-following; a maze that is not solvable using wall-following.
As seen in the mazes above, a once solvable maze with wall following can be turned into a non-solvable maze with the removal of one wall.

5.3 Recursive Exploration
Using recursive exploration can solve the problem which the wall following has. It can solve mazes when the goal is on an “island”. This is done by having the robot explore are connections at an intersection. The connections are explored in a sequence, for example, always having the left most path explored first, the middle path explore second, and the right most path explored last.
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Figure 5.2: (From left to right): A sample order of taking an intersection using recursive exploration; a maze with an “island” being solved by recursive exploration.
In this maze, the robot first circles the maze because the robot will always go left first. Then, the next time it loops, it finds the first intersection where it took a left, and goes forward this time. Thus, a maze that a wall following method couldn’t succeed in finding the goal is solved.

5.4 Sparse Direction Maps
	In a sparse direction map, each cell of a maze is assigned a direction. The robot would only need to follow the direction of the cell it is on. The reason these maps are used is because they are easy to be used in genetic algorithm. With genetic algorithms, a chromosome is made up of a map with these directions. Thus, the chromosome is evolved until it has a sequence which results in making the robot reach the goal.








Figure 5.3: (From left to right): A maze with an “island” solved using sparse direction maps; a somewhat complex maze solved using sparse direction maps.
In the mazes above, a red square represents the starting point, and a green square represents the goal. The left maze is a maze that a wall follower cannot solve, so it signifies that a sparse direction map can solve any arbitrary maze with a valid solution.

5.5 Darwinian Genetic Algorithm in Mazes
	Genetic algorithm can use sparse direction maps in order to solve the problem of path planning. In this case, it is assumed that the robot already has information about the layout of the maze. Also, it is necessary that there is a coding for the direction of the cell. In the program used, a 1 represents a forward arrow, a 2 represents a left arrow, a 3 represents a right arrow, and a 4 represents a backward arrow. No turning was required as an element because the robot being used is omnidirectional, meaning that turning is not necessary to move left and right. A coding for the wall, starting point, and goal is used to make transform the maze into numerical values. In the program a 9 is a wall, a 7 is the starting point, and an 8 is the goal.
[image: ][image: ]
Figure 5.4: (From left to right) An 8x8 grid representation of a maze; a numerical representation of the same maze where the blue numbers are the goal sequence. In both figures, black represents a wall, white represents an empty cell, red represents the starting point, and green represents the goal.
	Following the process of the Darwinian genetic algorithm, the first step is to initialize the population. In this step, the maze layout is initialized, as well as the randomly generated chromosomes.
	The next step is to calculate the fitness. In the program, the fitness value is the total number of spaces subtracted by the number of spaces traveled. However, if the robot reaches the goal, the fitness is an automatic 0. Likewise, if the robot loops, the fitness is an automatic + 1000. In order to calculate this, the program simulates the process of the robot running the maze. When initializing the maze to be simulated, the contents of the chromosome are loaded into the empty cells of the maze in a predefined order. The robot will follow the direction of the cell until it either crashes a wall (when the current value of the cell is 9) or it reaches the goal (when the current value of the cell is 8). The fitness is then calculated.
	Once all of the chromosomes are tested for their fitness value, the chromosomes are sorted by their fitness values such that the top of the vector containing the chromosomes are the ones which traveled farthest. A random amount of the top portion of the vector is selected and the chromosomes are randomly mated to create children. Thus, the process goes back to the calculation of fitness, but with the children chromosomes. This process repeats until the goal is found.

5.6 Lamarckian Genetic Algorithm in Mazes
	With Lamarckian genetic algorithm, there is an extra repair chromosome and recalculate fitness function. The recalculate fitness function is identical to the calculate fitness function. However, with the repair chromosome function, the chromosomes altered. In the repair chromosome function, the cell where the robot crashed is recorded. Then, the cell value that was faulty is then changed to a different value. 
	For example, if the robot crashed by the following 4:
333112111242244444434
	And that a 2 instead of 4 would make the sequence succeed in finding the goal. There is a 1/3 chance of improving the chromosome, a 1/3 chance of doing nothing, and a 1/3 chance of ruining the chromosome (making the robot loop). This mostly helps algorithm over the Darwinian genetic algorithm because with the Darwinian genetic algorithm, there is a 0% chance of improving.

5.7 Problem for Robot Path Planning
	The problem and question for robot path planning is that which genetic algorithm, the Darwinian genetic algorithm or the Lamarckian genetic algorithm, will find the goal of a maze the least number of generations.

5.8 Constants and Variables for Robot Path Planning
The constants of the experiment are:
· Mutation Rate
· Population
· Initialize Population, Calculate Fitness, and Mating functions
· Maze
· Robot Type (omnidirectional)
· Computer
· Programming language
The variables are:
· Type of genetic algorithm

5.9 Materials of the Robot Path Planning
· Computer with C++ and a compiler for C++

5.10 Procedure of the Robot Path Planning
1. The code for Path Planning using Darwinian genetic algorithm was written (see Appendix #).
2. The code for Path Planning using Lamarckian genetic algorithm was written (see Appendix #).
3. The maze to be tested on was chosen.
4. The code for Darwinian genetic algorithm was compiled.
5. The program for Darwinian genetic algorithm was run using the maze that was chosen.
6. The fitness function for each generation in order was recorded.
7. The number of generations for the trial was recorded.
8. Steps 5-7 was repeated 9 more times.
9. Steps 4-8 were repeated using Lamarckian genetic algorithm.
10. Steps 3-9 were repeated using 4 other different mazes.
11. The data was analyzed.

5.11 Experimental Data: Maze 1
 (
Legend:
This applies for all other mazes.
Red square 
– Starting Point
Green square
 – Goal
Small numbers – Manhattan distance from goal.
)[image: ]
Figure 5.5: The 8x8 representation of maze 1.
 (
Darwinian Genetic Algorithm
)

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	45
	50
	43
	32
	39
	52
	20
	40
	28
	37
	38.6


 (
Lamarckian
 Genetic Algorithm
)Table 5.1: The number of generations to solve maze 1 using Darwinian genetic algorithm.

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	14
	10
	11
	14
	11
	12
	13
	11
	11
	11
	11.8


Table 5.2: The number of generations to solve maze 1 using Lamarckian genetic algorithm.


Graph 5.1: Bar graph comparing Darwinian and Lamarckian genetic algorithms for maze 1.

Graph 5.2: Bar graph comparing the averages of the Darwinian and Lamarckian genetic algorithms for maze 1.

5.12 Data Analysis: Maze 1
	This maze is an almost straight forward path. As seen in the data, the Lamarckian genetic algorithm clearly does better than the Darwinian genetic algorithm, with no trials having more generations than the Darwinian genetic algorithm. In the best case, the Darwinian genetic algorithm took 20 generations, and the Lamarckian genetic algorithm took 10 generations. In the worst case scenario, the Darwinian genetic algorithm took 52 generations rather than Lamarckian genetic algorithm’s low 14 generations. However, looking at the average number of generations, the Darwinian genetic algorithm took about 38 generations, rather than Lamarckian genetic algorithm’s 12 generations. This makes Lamarckian algorithm three times better on average.

5.13 Experimental Data: Maze 2
[image: ]
Figure 5.3: The 8x8 grid representation of maze 2.
 (
Darwinian Genetic Algorithm
)

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	10
	14
	15
	11
	15
	22
	13
	15
	17
	15
	14.7


Table 5.3: The number of generations to solve maze 2 using Darwinian genetic algorithm.
 (
Lamarckian 
Genetic Algorithm
)

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	11
	12
	12
	11
	11
	12
	10
	11
	14
	12
	11.6


Table 5.4: The number of generations to solve maze 2 using Lamarckian genetic algorithm.


Graph 5.3: Bar graph comparing Darwinian and Lamarckian genetic algorithms for maze 2.

Graph 5.4: Bar graph comparing the averages of the Darwinian and Lamarckian genetic algorithms for maze 2.

5.14 Data Analysis: Maze 2
	Maze 2 is an easy two path split, almost with equal distance. This time, there were actually four trials (1,2,4, and 7) from Darwinian genetic algorithm which were comparable to that of the  Lamarckian genetic algorithm. However, the average number of generations for Darwinian genetic algorithm was 14.7 (about 15) generations, and was 11.6 (about 12) generations for Lamarckian genetic algorithm. This still makes Lamarckian genetic algorithm better than Darwinian genetic algorithm.

5.15 Experimental Data: Maze 3
[image: ]
Figure 5.6: The 8x8 grid representation of maze 3.
 (
Darwinian Genetic Algorithm
)

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	29
	27
	29
	32
	21
	31
	22
	31
	24
	38
	28.4


Table 5.5: The number of generations to solve maze 3 using Darwinian genetic algorithm.
 (
Lamarckian 
Genetic Algorithm
)

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	10
	10
	11
	11
	10
	10
	14
	11
	12
	12
	11.1


Table 5.6: The number of generations to solve maze 3 using Lamarckian genetic algorithm.




Graph 5.5: Bar graph comparing Darwinian and Lamarckian genetic algorithms for maze 3.


Graph 5.6: Bar graph comparing the averages of the Darwinian and Lamarckian genetic algorithms for maze 3.

5.16 Data Analysis: Maze 3
	Maze 3 was made of two loops, to test to see if the algorithms took more generations to compute due to constant looping. Lamarckian genetic algorithm still had an average of 11.1 (about 11), but the Darwinian genetic algorithm had an average of 28.4 (about 28). The Lamarckian algorithm was still almost three times better. Yet even in the best case of 21 in the Darwinian genetic algorithm, it was still almost two times worse than the worst case of the Lamarckian genetic algorithm which was14 generations.

5.17 Experimental Data: Maze 4
[image: ]
Figure 5.9: The 8x8 grid representation of maze 4.
 (
Darwinian Genetic Algorithm
)

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	31
	24
	46
	17
	38
	34
	22
	32
	47
	25
	31.6


Table 5.7: The number of generations to solve maze 4 using Darwinian genetic algorithm.
 (
Lamarckian 
Genetic Algorithm
) 

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	4
	5
	6
	7
	7
	4
	4
	4
	6
	7
	5.4


Table 5.8: The number of generations to solve maze 4 using Lamarckian genetic algorithm.


Graph 5.7: Bar graph comparing Darwinian and Lamarckian genetic algorithms for maze 4.


Graph 5.8: Bar graph comparing the averages of the Darwinian and Lamarckian genetic algorithms for maze 4.

5.18 Data Analysis: Maze 4
	Maze four again is made up of big loops.  In this case, the Darwinian genetic algorithm took a long time to compute, with an average of 31.6 (about 32) generations. This was due to the chance that the robot would take the outer boundary, and then take a long time to generate to sequence back to the goal. The Lamarckian genetic algorithm actually improved up to two times better than the previous mazes. This made the average 5.4 (about 5) generations. The Lamarckian algorithm was almost six times more efficient then the Darwinian genetic algorithm.

5.19 Experimental Data: Maze 5
[image: ]
Figure 5.12: The 8x8 grid representation of maze 5.
 (
Lamarckian 
Genetic Algorithm
) (
Darwinian Genetic Algorithm
)

	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	7
	21
	18
	15
	20
	12
	17
	13
	20
	15
	15.8


Table 5.9: The number of generations to solve maze 5 using Darwinian genetic algorithm.


	
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trial 6
	Trial 7
	Trial 8
	Trial 9
	Trial 10
	Average:

	Number of Generations
	4
	5
	4
	3
	3
	4
	5
	5
	3
	4
	4


Table 5.10: The number of generations to solve maze 5 using Lamarckian genetic algorithm.


Graph 5.9: Bar graph comparing Darwinian and Lamarckian genetic algorithms for maze 5.


Graph 5.10: Bar graph comparing the averages of the Darwinian and Lamarckian genetic algorithms for maze 5.

5.20 Data Analysis: Maze 5
	Maze 5 was made with lots of open cells, testing to see if the robot would loop and get lost in the blank area of cells. However, it did not seem to affect both algorithms, with Darwinian genetic algorithm having an average of 15.8, which was close to the result of maze 2. Lamarckian genetic algorithm had a very low average of 4, with only took 5 generations in the worst case, making the Lamarckian genetic algorithm almost four times better. The Darwinian genetic algorithm never did better than the Lamarckian genetic algorithm in any trials.

5.21 Conclusion for Robot Path Planning
	In conclusion, the Lamarckian genetic algorithm did better than the Darwinian genetic algorithm in every maze, and almost every trial. There was only four trials in maze 2 in which the Darwinian genetic algorithm was comparable to the Lamarckian genetic algorithm. Otherwise, there were only a few trials which the Darwinian genetic algorithm was less than two times worse than the average of the Lamarckian genetic algorithm.
	The Darwinian genetic algorithm was unpredictable; there was no small range for the Darwinian genetic algorithm in any of the mazes. There was always a low number of generations at around 10, a high number of generations at 30+, and the rest of the trials were anywhere in between them. The Lamarckian genetic algorithm was different, with all the trials in a 5 number of generations range. Thus, it was easy to predicate the outcome of each coming trial for the Lamarckian genetic algorithm.
	There were no sources of error, but there were outliers that were made since the algorithms are non-deterministic, stated that for a certain population, when the algorithm was run again using the same population, the results would be different.
	For further improvements and testing for the program, it would be great to first change the not reliable fitness function. It is not reliable because the robot would think that it would be better taking a very long unnecessary path than a short one. Therefore, a fitness function relying of Manhattan distances would be better. Also, for testing, it would be useful to measure the calculation time. This would require a much large maze. It would be useful to test because although the Lamarckian genetic algorithm finds the goal in a less amount of generations, the Darwinian genetic algorithm takes less time to calculate each generation since it has two less functions. Thus, it would actually see if the Lamarckian genetic algorithm or the Darwinian genetic algorithm better for large purpose like in the industry.
The next step in robot path planning would to actually implement it in the omnidirectional robot base. Thus it would need sensors for the robot to stay on the path. The final step would be to make the robot map the maze autonomously using sensors, and then using the generated map to use the genetic algorithm on. This would make the robot truly autonomous, with no human input.


6. Robot Vision
6.1 Image Acquisition
	In this project, the “eye” of the robot is a Logitech QuickCam Deluxe webcam. The webcam is connected to a computer using USB communication. The camera can then be used in a program using OpenCV, which can also process the image.
 (
USB 2.0
) (
http://s7d5.scene7.com/is/image/Staples/s0391850_sc7?$sku$
) (
http://ecx.images-amazon.com/images/I/41iJrcXrPGL._SL500_AA300_.jpg
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Figure 6.1: Connection of the camera to the computer
6.2 Object Detection
Figure 6.2: Flowchart of the process for the blue cup detection program.
The goal of the object detection program in this experiment is to correctly detect a blue cup. This means that no other objects are detected. The program starts out by first reading in from a text file. The values read in is for the filter that filters out unnecessary contours. The numbers from left to right represent the smallest area, largest area, lowest extent, highest extent, lowest compactness, highest compactness, lowest hue, highest hue, and lowest saturation.
[image: ]
Figure 6.3: The text file for the shape features.
The next step in the process is that the camera is initialized, and then the camera starts capturing each frame. The frames are still images, therefore they can be processed.
[image: ]
Figure 6.4: Frame captured from the camera.
The frame that is captured is then converted into HSV (Hue, Saturation, and Value) format using cvCvtColor. The frame is not separated, so the HSV format picture is a mixture of colors.
[image: ]
Figure 6.5: The same frame converted into HSV format.
As seen in the picture above, the HSV format picture is a mixture of colors. Therefore, it is necessary to split it into an image for hue, an image for saturation, and an image for value. This is done by cvSplit.
[image: ]
Figure 6.6: Hue image of the frame.

[image: ]
Figure 6.7: Saturation image of the frame.
[image: ]
Figure 6.8: Lightness image of the frame.
The images are then threshold into the desired binary image using cvThreshold. Then operators such as AND and NOT are applied. This creates the desired binary image that is used for detecting contours.
[image: ]
Figure 6.9: Thresholded image of the cup.
 cvFindContour is used to detect all contours in the binary images. The shape feature (aspect ratio, extent, circularity, etc) are calculated. Using the shape features and the values input from the text file, the contours are filtered, in which the remaining contours are drawn along with their centroid. 
[image: ]
Figure 6.10: The contours of the image (with its bounding box and centroid) are drawn into the frame.
This process will repeat from the frame capture step, and will repeat until the space bar is pressed, which is done using cvWaitKey.

6.3 Goal for the Blue Cup Detection Test
	The goal of the blue cup detection test is to test the accuracy of the blue cup detection program. Thus, the flaws of the program can be seen, and they can be fixed using further changes.

6.4 Constants and Variables for the Blue Cup Detection Test
The constants of the blue cup detection test are:
· Type of cup
· Lighting
· Program
The variables are:
· Distance of the cup
· Rotation of the cup

6.5 Blue Cup Detection Test Materials
· Computer with Microsoft Visual Studio 2010
· Webcam connected to the Computer

6.6 Blue Cup Detection Test Procedure
1. The code for the blue cup detection was developed and written to suit the purposes of the experiment (see Appendix # (contour detection project)).
2. The program was compiled.
3. The positions of the blue cup were planned.
4. The program was run.
5. The first planned position was made.
6. After about fifteen seconds, the results (which were if the cup was detected) were recorded (Yes/No).
7.  Steps 5-6 were repeated with the next positions.
8. The data was analyzed.

6.7 Blue Cup Detection Test Experimental Data
	Distance of Blue Cup away from Camera 
	Is Cup Detected (Yes/No)
	

	
	No Change
	Rotated 180° left
	Rotated 90° left
	Rotated 45° left

	3 inches
	No
	No
	Yes
	Yes

	5 inches
	Yes
	Yes 
	Yes
	Yes

	7 inches
	Yes
	Yes
	Yes
	Yes

	9 inches
	Yes
	Yes
	Yes
	Yes

	12 inches
	Yes
	Yes
	Yes
	Yes

	15 inches
	Yes
	Yes
	Yes
	Yes



6.8 Analysis of Blue Cup Detection Test
	The blue cup detection program almost detected the blue cup every time. When the blue cup was not detected, it was because the blue cup was larger than the camera’s vision, so only part of the cup was showing. A major source of error was that the lighting sometimes caused glare from the cup, making it undetectable. Therefore, the light was turned off in order for the blue cup to be detected.

6.9 Lighting Changes
	A major problem with the cup detection program is that the lighting can cause a huge difference in the thresholding. The program was programming according to day-time lighting. Therefore, with different lighting, such as at night was a light on, or on a cloudy day, the blue cup may not be detected. Thus, it is important and maybe necessary to have a genetic algorithm that evolves the thresholding values. Once the blue cup is detected, the program could save the object feature values into the text file that the object detection program reads from. With a genetic algorithm with this, the blue cup can be detected in under any circumstances, as long if the genetic algorithm is run, and that the lighting does not immediately change.


7. Target Firing Game with Genetic Algorithm
7.1 Robot Vision in Robotic Applications
	Robot vision is very useful and practical in robotic applications. The vision allows the robot to have a better understanding of the world in front of it. The robot would be able to tell the difference between objects, the color of different objects, and other differences without to use of a complex system of sensors. This enables the robot to do more complex tasks such as having a military robot that would only fire at the enemy. It can also help with other applications in industry and medical field.

7.2 Target Firing Game
	The application used in this experiment is a target firing game. In this game, the robot must be able to find a target and raise the arm to fire it. The set up of this game is heavily simplified. The robot would be stationary, because the target would be right in front of it. The robot would also only need to worry about one degree of freedom, the rotation (up and down) of the left arm. The target is a black dot on white paper, for reasons that it is easier to detect.

7.3 Genetic Algorithm in the Target Firing Game
	Genetic algorithm is used in this target firing game. Genetic algorithm is used in evolving the position of the servo for the suitable angle to raise the arm to fire at the target. In the program the initialization of the chromosomes only initializes the random values of the servo positions. The fitness function is a lot different from the other programs. The fitness value is calculated by the Euclidian distance between the centroids of the target and the aiming scope of the gun, a red ring in front of the camera. If the target is not detected, the fitness is an automatic 1000. If the aiming ring overlaps with the target (black dot), the distance between the target and ring is 0 so the fitness is 0. In this case, firing the gun will hit the target. The sorting and the mating functions are the same as the maze genetic algorithm. With Lamarckian genetic algorithm, the repair chromosomes function is also different. When repairing chromosone, if the ring is above the black dot, the arm would be randomly lowered, and vice-versa for if the ring is below the target.

7.4 Problem of the Target Firing Game
	The problem of the target firing game is to compare the two genetic algorithms, the Darwinian genetic algorithm and the Lamarckian genetic algorithm, in a real world application. The test is to see how many generations does it take for each algorithm to correctly aim and fire at the target.

7.5 Constants and Variables for the Target Firing Game
The constants of the target firing game are:
· The goal target
· The distance between the robot and the target
· The camera
· The robot
· The computer
· The programming language
The variables are:
· The type of genetic algorithm

7.6 Materials for the Target Firing Game
· Robot (see procedures for building the robot)
· Computer with Microsoft Visual Studio 2010
· OpenCV additional library for C++
· Target (a black circle on a white background was used)

7.7 Procedure for the Target Firing Game
1. The robot was built (see procedures for building the robot).
2. The program using Darwinian genetic algorithm was wrote (see Appendix #).
3. The program using Lamarckian genetic algorithm was wrote (see Appendix #).
4. The program controlling the arm was written (see Appendix #).
5. The program using Darwinian genetic algorithm was compiled.
6. The program using Lamarckian genetic algorithm was compiled.
7. The program controlling the arm was compiled (see Appendix #).
8. The target and the robot were set up with a distance of 50 cm between them.
9. The program using Darwinian genetic algorithm was run.
10. The program controlling the arm was run.
11. The number of generations was recorded. If either of each genetic algorithms finds the target in the first ten chromosomes (excluding repaired chromosomes), then the trial was re-run due to the fact that it was only luck which mad the target found.
12. Steps 9-11 were repeated two more times.
13. Steps 9-12 were repeated with the Lamarckian genetic algorithm.
14. Steps 8-13 were repeated, but the distance between the target and the robot were moved to 70 and 90 cm respectively.
15. The data was analyzed.

[image: ]
Figure 7.1: Setup of running the target firing game at 50 cm.

[image: ]
Figure 7.2: Camera view of the same position of the robot arm as figure 7.1.
NOTE: Finding a light bulb is not the goal, nor that it is the target.

 (
Darwinian Genetic Algorithm
)7.8 Experimental Data for the Target Firing Game

	Distance of target away from robot 
	Number of Generations to hit the target

	
	Trial 1
	Trial 2
	Trial 3

	50 cm
	3
	3
	3

	70 cm
	13
	3
	3

	90 cm
	2
	3
	2


Table 7.1: The number of generations it took for the Darwinian genetic algorithm to hit the target.
 (
Lamarckian 
Genetic Algorithm
)
	Distance of target away from robot 
	Number of Generations to hit the target

	
	Trial 1
	Trial 2
	Trial 3

	50 cm
	1
	1
	2

	70 cm
	1
	1
	3

	90 cm
	2
	2
	1


Table 7.2: The number of generations it took for the Darwinian genetic algorithm to hit the target.


Graph 7.1: Bar graph comparing both genetic algorithms when the target was 50 cm away from the robot.

Graph 7.2: Bar graph comparing both genetic algorithms when the target was 70 cm away from the robot.

Graph 7.3: Bar graph comparing both genetic algorithms when the target was 90 cm away from the robot.


Graph 7.4: Bar graph comparing the averages of both genetic algorithms.

7.9 Analysis of the Target Firing Game
	In analysis of the data, the Lamarckian genetic algorithm did better than the Darwinian genetic algorithm in every way in terms of the averages. This result is similar to the maze experiment, but the generations of each genetic algorithm were closer together with the max difference of generations about five for the average.
	In the first test where the target was 50 cm away from the robot, both genetic algorithms preformed well. The Darwinian genetic algorithm took three generations for each trial. The Lamarckian genetic algorithm took only one generation for two of the trials, with it taking two generations for the last trial. In average, the Lamarckian genetic algorithm preformed about two generations faster than the Darwinian genetic algorithm.
	In the second test, the target was placed 70 cm in front of the robot. This time, however, the Darwinian genetic algorithm severely took a lot more generations to find the target on the first trial. It took 13 generations to find the target. However, the next two trials were more constant and reasonable, with the Darwinian genetic algorithm taking three generations each. The Lamarckian genetic algorithm had results which were similar to when it was tested for finding the target 50 cm away. It took only one generation for the first two trials, and slightly did worse by taking three generations for the last trial. In average, the Darwinian genetic algorithm took about five generations worse than the Lamarckian genetic algorithm.
	In the last test, the target was placed 90 cm in front of the robot. The Darwinian genetic algorithm did not perform as poorly. It actually performed better with two trials taking only two generations, and only one trial taking only three generations. The Lamarckian genetic algorithm had an average similar to the second test, about 1.6 generations. The Lamarckian genetic algorithm had two trials which took two generations, and one trial which took one generation.

 Conclusion of the Target Firing Game
In conclusion, the Lamarckian genetic algorithm still out performed the Darwinian genetic algorithm average, and in almost all trials. The Darwinian genetic algorithm could compare to the Lamarckian genetic algorithm, but could not do better than it.
The Darwinian algorithm again was unpredictable. Most times it would have a reasonable number of generations to find the target, but sometimes it took a lot longer, such as the case where it took 13 generations to find a target located 70 cm away. The Lamarckian genetic algorithm again was consistent, have a range of generations somewhere between one and three generations.
In the target firing game, one of the major sources of error was the lighting. Since the program was run through various lighting circumstances as time progress, the image procession was not as accurate and sometimes would take longer to find both rings, or would have a very low frame rate.
For further improvements and testing, the first thing to do would be to have a larger variety of distances, and more sampling data. Also, it would be more accurate to use another genetic algorithm that would evolve the thresholding values to the conditions of the lighting.
The next step to the target firing game is to have more degrees of freedom involved such that the robot would have to move left and right. An idea combining the maze to the target firing game is the have the robot first complete a maze, then fire at a target.


8. Conclusion
In the overall conclusion, the hypothesis was correct. In image procession and robotic purposes, the Lamarckian genetic algorithm performed better than the Darwinian genetic algorithm. This occurred in both the average of the algorithms and the individual results for each of the trial. Also, the Lamarckian had a great advantage over the Darwinian genetic algorithm, not a slight advantage. There were only a few cases in both tests where the Darwinian genetic algorithm actually took a number of generations that were comparable to the Lamarckian genetic algorithm.
In the maze path planning scenario, the Lamarckian genetic algorithm was the optimal genetic algorithm. It had a range of number of generations which was about 1-15 generations. The actual number of generation based on the type of maze. The Darwinian genetic algorithm had no range, for its results were not steady. Sometimes the algorithm would take only 10 generations to find the goal, but sometimes it would take 50 generations.
In the target firing game, the Lamarckian genetic algorithm was still the optimal genetic algorithm, but it was only better by around one to two generations. This may not seem to be a lot, but considering that there was only degree involved which was slightly limited, one generation is a pretty large amount. Also, if the robot was in real time, every second matters.
The most major sources of error were the lighting differences in image procession. The thresholding values were programmed and tested in sunny lighting conditions. However, as soon as time goes by, the lighting got dimmer. Light bulbs do not help to completely solve this problem because the light emitted are a bit whiter. Therefore, a lamp had to be placed near the target in order for the robot to detect it.
The next step with the robot is to make it actually implement the robot path planning into it. This is done by actually making the robot follow the giving directions while avoiding obstacles at the same time. To make the robot truly autonomous, it would be required to make the robot map its own map of the maze from onboard sensors, and then convert this map into an array. Thus, the robot would then use genetic algorithm with robot path planning.
Another step that would also be beneficial is to make the target firing game more complex and reliable. First of all, in order to solve the lighting problem, a genetic algorithm could be used to evolve the thresholding values. Thus, it would recalculate the thresholding values every time that the robot is started up again. Second of all, to make the target firing game more complex, it would require more degrees of freedom involved. This could be done be involving a second servo in the arm, as long with the movement of the base.
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Appendices


Appendix: A

Darwinian vs Lamarckian GA:
Maze 1
Darwinian GA	45	50	43	32	39	52	20	40	28	37	Lamarckian GA	14	10	11	14	11	12	13	11	11	11	Trial Number
Number of Generations
Comparision of Generations:
Maze 1
Darwinian GA	38.6	Lamarckian GA	11.8	Number of Generations
Darwinian vs Lamarckian GA:
Maze 2
Darwinian GA	10	14	15	11	15	22	13	15	17	15	Lamarckian GA	11	12	12	11	11	12	10	11	14	12	Trial Number
Number of Generations
Comparision of Generations:
Maze 2
Darwinian GA	14.7	Lamarckian GA	11.6	Number of Generations
Darwinian vs Lamarckian GA:
Maze 3
Darwinian GA	29	27	29	32	21	31	22	31	24	38	Lamarckian GA	11	12	12	11	11	12	10	11	14	12	Trial Number
Number of Generations
Comparision of Generations:
Maze 3
Darwinian GA	28.4	Lamarckian GA	11.1	Number of Generations
Darwinian vs Lamarckian GA:
Maze 4
Darwinian GA	31	24	46	17	38	34	22	32	47	25	Lamarckian GA	4	5	6	7	7	4	4	4	6	7	Trial Number
Number of Generations
Comparision of Generations:
Maze 4
Darwinian GA	15.8	Lamarckian GA	4	Number of Generations
Darwinian vs Lamarckian GA:
Maze 5
Darwinian GA	7	21	18	15	20	12	17	13	20	15	Lamarckian GA	4	5	4	3	3	4	5	5	3	4	Trial Number
Number of Generations
Comparision of Generations:
Maze 5
Darwinian GA	15.8	Lamarckian GA	4	Number of Generations
Target Firing Game:
50 cm far Target
Darwinian GA	3	3	3	Lamarckian GA	1	1	2	Trial Number
Number of Generations
Target Firing Game:
70 cm far Target
Darwinian GA	13	3	3	Lamarckian GA	1	1	3	Trial Number
Number of Generations
Target Firing Game:
90 cm far Target
Darwinian GA	2	3	2	Lamarckian GA	2	2	1	Trial Number
Number of Generations
Target Firing Game:
Averages
Darwinian GA	50 cm	70 cm	90 cm	3	6.3333333333333401	2.3333333333333335	Lamarckian GA	50 cm	70 cm	90 cm	1.3333333333333333	1.6666666666666667	1.6666666666666667	Trial Number
Number of Generations
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