Burton Williams

ECE 478

Homework #2

Project Description:

Create a 2 dimensional (8X8) labyrinth for a virtual robot to navigate. Generate code to navigate through the labyrinth using a genetic algorithm. Include the following:

· Walls to navigate around

· Crossover

· Mutation

· Provide detailed description of final results

Approach:

I decided to use C++ for this assignment, because it is the only programming language that I am comfortable with to write a working program. I could probably write a pseudo-code program in another language, but I wanted to be able to compile and run the program. I began thinking of how to start this assignment and confronted the following issues:

· Maze and wall creation: I decided to use a 2 dimensional array to represent the labyrinth. I set various array positions to ‘-1’ to represent walls.

· Crossover: I was a little confused on how to successfully implement crossover for this project. In the book (Braunl Page 350), all crossover examples are in binary code. I don’t know how to implement binary in C++, so I decided to use a hybrid form of crossover. I wrote code to add ‘1’ to the current robot position row to create one parent, and add ‘1’ to the current robot column to create another parent. I then used these two positions to create 2 children. I’m sure that this is not the most ideal form of crossover, but I was at least able to create some form of crossover for this assignment.

· Fitness Function: To implement the fitness function, I subtracted the children row and column values from the final goal row and column values. I then chose the child that was closest to the final robot position goal and gave that child the highest fitness. I then created code to move the virtual robot to this position.

· Walls: If a wall was encountered during the robot movements. I simply did not change the robot row or column position from the previous value, which allowed the robot to move in one direction along the wall.

Results:

Attempt 1: The robot was unable to reach the goal and got stuck at position (3,2)

[image: image1..pict]Program Output:

· Robot position is: 0, 3

· Robot position is: 1, 2

· WALL! Cannot change robot column position.

· Robot position is: 2, 2

· WALL! Cannot change robot column position.

· Robot position is: 3, 2

· WALL! Cannot change robot row position.

· WALL! Cannot change robot column position.
Attempt 2: The robot was able to reach the goal at position (3,3)

[image: image2..pict]
Program Output:

· Robot position is: 7, 7

· Robot position is: 6, 6

· Robot position is: 5, 5

· WALL! Cannot change robot row position.

· Robot position is: 5, 4

· Robot position is: 4, 3

· Found goal column. No change made to column position.

· Robot position is: 3, 3

· Found goal row. No change made to row position.
· Found goal column. No change made to row position.
Attempt 3: The robot was able to reach the goal at position (7,4)

[image: image3..pict]
Program Output:

· Robot position is: 0, 0

· WALL! Cannot change robot column position.

· Robot position is: 1, 0

· WALL! Cannot change robot column position.

· Robot position is: 2, 0

· WALL! Cannot change robot column position.

· Robot position is: 3, 0

· WALL! Cannot change robot column position.

· Robot position is: 4, 0

· Robot position is: 5, 1

· Robot position is: 6, 2

· WALL! Cannot change robot row position.

· Robot position is: 6, 3

· Robot position is: 7, 4

· Found goal row. No change made to row position.
· Found goal column. No change made to column position.
Attempt 4: The robot was unable to reach the goal and got stuck at position (2,4)

[image: image4..pict]
Program Output:

· Robot position is: 6, 1

· Robot position is: 5, 2

· WALL! Cannot change robot row position.

· Robot position is: 5, 3

· Robot position is: 4, 4

· WALL! Cannot change robot column position.

· Robot position is: 3, 4

· WALL! Cannot change robot column position.

· Robot position is: 2, 4

· WALL! Cannot change robot row position.
· WALL! Cannot change robot column position.
Conclusion Discussion:

As shown in the above results, my algorithm is not ideal and had a 50% success rate in the 4 trial runs. I believe my program could be improved in the following manner:

· Crossover: I believe I could design a virtual sensor or circuit of some sort that would have a virtual binary output. I could then use this output to generate a more appropriate crossover method. I don’t believe my crossover method that I developed for this homework assignment is ideal. But, I was able to gain experience with genetic algorithms that will hopefully help me when I design my code for my robotic arm.

· Mutation: I was unable to implement mutation for this assignment. I believe I could use the same method of generating a virtual circuit to be able to correctly implement mutation.

· Navigation: The virtual robot became stuck in corners of the maze. I believe I could write more code to be able to recognize a corner, and then reverse the direction of the robot, in order to be able to become unstuck.

