e UNIVERSITYof TENNESSEE

mEJNIVERSITYof [ENNESSEE

mEJNIVERSITYof [ENNESSEE

I have studied two major areas of computer engineering in graduate school.
One was digital signal processing and the other was digital system design. I
thought that it would make an interesting project for ECE 501 to somehow
combine the two.

In my digital system design classes I learned how an FPGA can be used to do
numerous calculations in parallel which gives it a performance advantage over
ordinary CPUs found in today's PCs. In my digital signal processing classes I
noticed that the FFT, in particular the radix-2 algorithm, provided a way to
calculate a DFT using many calculations that are independent of each other, and
so could be done in parallel. I thought that this would be a great candidate for
implementation on an FPGA.

I chose the implement PSD estimation instead since I assumed that there are
already many FPGA implementations of the FFT alone. PSD estimation requires
calculation of a set of coefficients that characterize a random signal. Then the
FFT is applied to those coefficients to produce a PSD.

One way to obtain the PSD for a random signal is to estimate its AR or
autoregressive parameters. These parameter estimates can be used as
coefficients in a digital filter. If the estimates were good then if white noise is
the input to this filter, a random signal with similar statistical properties as the
original random signal would be the output. Of course we do not intend to
construct this filter, the purpose of estimating these coefficients is to obtain a
model for the random signal.

After these coefficients are obtained then the DFT is applied to them. This
produces the PSD.

Some PSD algorithms require the entire data set to be available. The AR
parameters are estimated once, and the DFT is applied once. These are known as
block methods.

The algorithm I chose is known as a sequential method. Here a new set of AR
parameters is estimated each time new data is made available.

e[JNIVERSITYof TENNESSEE

The LMS or least mean square technique for AR parameter estimation is a
sequential method which works by minimizing the mean square error. Where
the error is the difference between the desired signal and the actual signal.
Initially an AR parameter estimation is made based on the first sample. Then
when the next sample is received it is compared with the value that the previous
AR parameter estimation produced. This is the error, and a new AR parameter
estimation is made that reduces the mean square error. This process is repeated
with each new sample. The estimate becomes more accurate with each new
sample.

The speed at which this estimation converges depends on the step size. This
number must be chosen and placed in the algorithm prior to evaluation.

Another requirement for this algorithm is knowledge of the filter length,
needed to model the random signal. This is the number of AR parameters per
estimation. Different methods exist for estimating the filter length. I used
Matlab and adjusted the filter length until a PSD was produced that looked
acceptable.

Each time a new sample is made available the LMS algorithm is applied to
obtain a new estimate of the AR parameters. The DFT is also applied to each
new set of AR parameters. So thirty samples requires thirty LMS calculations
and thirty DFTs.

e[JNIVERSITYof TENNESS

Stage 3

PP RN RN

A =a+tWb .
w : Radix-2
B =a-Wb

FFT

This is a diagram of the Radix-2 FFT algorithm. It calculates an 8-point FFT.
The numbers on the left of the diagram show the indexes of the data that go in.
Notice that they are not in order. They are in bit reversed order. This order is
obtained by taking each index as if they were in order, converting the indices to
binary, reversing the binary numbers, and converting back to decimal. For
instance, assuming indices 0-7 we would want the second line to have input
index 1. In binary this is 001. Reverse the binary and we get 100. This is 4 in
decimal. So the second line requires input 4. The order is different for varying
FFT sizes.

Also notice that this FFT has 3 stages. A 16-point FFT will have four stages.
If you multiply the FFT size by two you add one more stage to the computation.
Each stage is made up of what are called butterfly operations. Each butterfly
operation has its own twiddle factor denoted by the variable W. A basic
butterfly operation is shown at the bottom of the diagram. Notice that since all
of the butterfly operations contained in one stage are independent of each other
they could be calculated simultaneously. This will be attempted in VHDL.

THE [J]

Configuration
Flash

Virtexll Pro

THE [NIV

I decided to use Matlab for the software implementation of my project. This implementation
would be used to make time measurements for software execution of the algorithm as well as for
verifying that the VHDL results were correct. All calculations in Matlab are done in double
precision floating point which make the results it produces ideal for checking VHDL accuracy.

I produced three different VHDL implementations. One uses custom 16-point FFT code that I
wrote myself. This FFT is computed using the Radix-2 algorithm. All complex multiplications
required for each individual stage are done simultaneously. All inputs to the FFT are applied
simultaneously.

I created another implementation that uses a Xilinx 16-point FFT block for the purpose of
comparing its performance with my FFT code. I also wanted to see how much space the Xilinx
block would occupy on the chip, to see if higher order FFTs could be used.

After seeing that the Xilinx 16-point FFT used very little space, I then created a version using
a Xilinx 64-point FFT block. This design fits on the chip and offers better results.

Matlab, VHDL simulation, and the actual Amirix board require the inputs do be in different
forms. I wrote C code, that mixes a 100 Hz, 200 Hz, and 300 Hz, sine wave together. It uses a
sample frequency of 1000. Each sine wave has a different amplitude. The 100 Hz signal was
assigned .1. The 200 Hz signal was assigned .3, and the 300 Hz signal was assigned .5. The C
program also takes other parameters, such as step size for the LMS algorithm, fixed point
multiplier, filter length, and number of samples. All of this information is used to produce inputs
for the floating point Matlab code, and the fixed point Matlab code. Fixed point data is also
produced for the VHDL simulator and the Amirix board. New data sets for all can be made
instantly by changing the parameters in the C code and executing again.

e[JNIVERSITYof TENNESS

I knew that my VHDL implementation would need to use fixed point
arithmetic to do its calculations. So I wanted to first create a Matlab program
that calculates the PSD using floating point arithmetic and then a fixed point
version. This would allow me to measure the error introduced from using fixed
point calculations. It would also allow me to choose the best fixed point
multiplier.

I had previously made a Matlab program for the LMS technique in another
class. I made some small changes to my original code to make it easier to port to
VHDL. This included splitting all arithmetic operations so that one output is
produced from two inputs. I also altered the loop indexing to make the algorithm
easier to understand. After the changes I checked to make sure that the new
LMS procedure gave the same outputs as the original. [used Matlab's built-in
FFT function for the floating point version. I then added code to plot the result.
This was my floating point implementation.

Next I developed a fixed point version by first looking at the LMS portion.
The input is assumed to already be in fixed point form. The C program produces
the fixed point inputs which are the floating point inputs multiplied by 10,000
and are all whole numbers. When there is a multiplication in the algorithm I
must divide the product by 10,000. When complete this algorithm produces AR
parameters that are the floating point AR parameters multiplied by 10,000 and
any remaining decimal truncated.

I wrote custom FFT code in Matlab for the fixed point portion. I wrote it so
that it would compute in a similar way that the VHDL would compute it, except
nothing would be done in parallel. The built in Matlab FFT function takes a data
set of any length and computes the FFT for that number of points. It does this by

mrmtmnamrrtion e A1 AL A 4l AANL Fanbnsan maa i a Fles nn A Arbnvinninicn v vl Al vl aes

for{sampler=1: 1: 1}

ef=xn_fixed(saupler);

for(k=1:1:£1)
if{samplez-k < 1

1pha=0;
for(sampler=1:1:M) ELSEE phe
ef=xn(sampler); alphas=xn_fixed|saupler-k);
forik=1:1:£1) end
ifisampler-k < 1) PROD=4 (k) .*alpha;
alpha=0; 1£(PROD| > 0}
PROD_fixed=floor (PROD./(10.*fixedpointuult)]:
else elae -
alpha=xnisampler-k); PROD_fixed=ceil (PROD./(10.*fixedpointuule)]
end end

ef=ef+PROD_fixed:
end
for{k=1:1:£1)
if(sampler-k < 1)

PROD=A (k) . *alpha;
ef=ef+FROD;

end

for(k=1:1:£1)

beta=0:

if(sampler-k < 1) else

beta=0; beta=xn_fixed(sampler-k):
elze end

FROD1_fixed=Z.*U_fixed:

beta=xn(sampler-k); PRODZoef. *hetas
end 1£(PRODZ > O]
PROD1=2.%0U; PRODZ_fixed=floor(PRODZ./(10.*fixedpointmult));

PRODZ=ef.*heta; =lse

PROD=PRODL. *PRODZ ; . PRODZ_fixed-ceil (FRODZ. /(10.*fixedpointuult));
ens

Alk)= A(k) —PRDD,| FROD=FRODL_fixed. *PRODZ_fixed:

end iE(FROD > 0O}
end PROD_fixed=floor (PROD./(10.*fixedpointuult)]:
elase
PROD_fixed=ceil (PROD./ (10, fixedpointuult)];

end

Afk)= A(k)-PROD_fixed;
end

These are my floating and fixed point algorithms for the LMS technique. The
outer loop iterates N times where N is the number of samples I intend to operate
on. Throughout this project N=30. The variable fl stands for filter length. I chose
this to be 16 for my particular data set. This filter order is higher than it should
be for the data set I produced. I used this number because the maximum filter
length possible in my VHDL implementation is 16, and I wanted to base my
time measurements on using the highest possible filter order.

The step size for my algorithm is represented by the variable U, seen in the
second inner loop. The arithmetical operations have been split up with regard to
VHDL because most arithmetic done in VHDL requires that no more than two
inputs be used for one operation.

10

if {stage==3)

intermediate_inpur2{l) =-intermediate_input{l} + (l)*intermediate_inpur(5);
intermediate_inputZ(5) =intermediate_input(l) - (l)%intermediate_input(5);
intermediate_inputziz2) =intermediate inpuc(2) + (.7071-0.7071%i))*incermediate_inpucis);
intermediate_input2(6) =intermediate_inputi2) - (.7071-{.7071%i)}*internediate_input(s);
intermediate inputz(3) =intermediate input(3) + (-l1*i)*intermediate_inpuc(7):
intermediate_inputZ(?) =intermediate_input{3) - (-1%i)%intermediate_input(7);
intermediate_inputz (|4] =intermediate_input(d) + (-.7071-(.7071%i))*internediate_inpucis):
intermediate_input2(8) -intermediate_inputi4) - (-.7071-{.7071%i})%internediate_input(8);
intermediate_input2(9) =intermediate_input{2) + (l)*intermediate_input{l3);

intermediate_inputz(l3)=intermediate inpuci(?) ily*intermediate_input(l3);
intermediate_input2il0)=intermediate_inputil0) + (.7071-{.7071%i)} internediate_input{1l4j;

intermediate_inputzild)=intermediate inpuci(l0) - (.7071-(.7071*%i))*intermediate_inpucild):
intermediate_inputZill)=intermediate_input{ll} + {-1%i)%intermediate_input(15];
intermediate imput2ilS)=intermediate inputi(ll) - (-l*i)*intermediate_input(l5):
intermediate_input2(12)-intermediate_input{12) + {-.7071-(.7071%i))%internediate_inputils);
intermediate_input2(lé)=intermediate_input(l2) - {-.7071-{.7071%i})}*internediate_input(l6);
intermediare_input=intermediate_inpurz;

end

if(stage==4)

intermediate_input2il) =intermediate_inputil) + {1)*intermediate_inputig);

intermediate inputz(8) =intermediate input(l) - (l)*intermediate_input(3):
intermediate_inputZ(2) =intermediate_input{Z) + {.9239-({.3827%i)) internediate_inputilo};
intermediate_inputZ (l0)=intermediate_inpuc(2) - 9230-(.3827*1i)) *internediate_inpuc(lo):
intermediate_input2(3) -intermediate_input{3) + {.7071-{.7071%i))%internediate_inputill};
intermediate_input2ill)=intermediate_input(3} - (.7071-{.7071%i})}*internediate_input(ll):
intermediate_inpur2i4) -intermediate_inpucid) + {.3827-({.9239%i))*internediace_inpucilz);
intermediate_inputZ(l2)=intermediate_inputi4) - (.3827-(.9239%i)) internediate_inputil2);
intermediate _input2(5) =intermediate input(5) + (-1*i)*intermediate_inpucil3);

.
i
(.
i

intermediate_inputZ(l3)=intermediate_input{5) - (-17i})*intermediate_input{13j;
intermediate_inputz(g) =intermediate inputi(6) + (-.3627-(.9239*%i))*intermediate_inpucild):
intermediate_inputZild)=internediate_inputis) - {-.3827-{.92397i))%internediate_input{l4j;
intermediate_input2(7) =intermediate_inpuc(?) + (-.7071-(.7071%i))*intermediate_inpucilSs):
intermediate_input2(l5)-internediate_input{?) - {-.7071-{.7071%i)]*internediate_input(15);
intermediate_input2(8) =intermediate_input(8) + (-.0230-(.3527+%i))*internediate_input|l6);
intermediate_inputzile)=intermediate inputi(d) - (-.9239-(.35627*%i))*intermediate_inpucils);
intermediate_input=intermediate_inputZ;

end

E

This is a portion of my custom fixed point FFT code. Nothing in this portion
indicates that it is fixed point because it would be redundant in Matlab. Notice
each line is the sum of a number and a product. Some of these products contain
decimals. For these calculations to work in fixed point the decimal twiddle
factors would need to be multiplied by 10,000. Then multiplied by its
corresponding intermediate input. Then divided by 10,000. So rather than
including a multiply and divide by 10,000, I left it out of the Matlab code, and
only put it in the VHDL. The VHDL and Matlab results will still be the same.

11

250
Float PSD after 30 samples
I\ 1

Fixed PSD after 30

Peaks At: / \ Peaks at
62.5 Hz

187.5 Hz
312.5Hz

/
[| 625Hz N
|\ /| 1875Hz N/ \
[V s12sHz ||

. Fr;que;icy (I:iz) -

Difference Between Float and Fixed

Maximum Difference = .00280

Difference

b Fr';quern]cy (I:z) -

These three figures show results from Matlab code.

The upper left figure shows the floating point PSD. Its peaks are located at
62.5 Hz, 187.5 Hz, and 312.5 Hz. These do not match 100 Hz, 200, Hz, and 300
Hz exactly. That is because this is only an estimation. The peak at 62.5 Hz is a
particularly bad estimation for the 100 Hz signal, but the 100 Hz signal had a
very low amplitude compared to the others.

The fixed point version yielded peaks at the same frequency locations shown
in upper right figure. The only differences are in height or y-values.

Next I wanted to better visualize the error introduced by the fixed point
arithmetic. I restructured my code to save the PSD from the last sample in
floating point and in fixed point. Then I subtracted these from each other. A plot
of the result is show at the bottom. The maximum difference is 0.0028.

12

mEJNIVERSITYof [ENNESSEE

I wanted to measure the execution time of this algorithm in software. I
removed the code that actually plots the data, and I disabled all output to the
command line. This makes the software run faster. Then I placed Matlab
commands in the code to measure elapsed time. I ran the code so that it would
perform the LMS routine and 16-point FFT for each of 30 samples. I began the
timer at the beginning of data loading, until the last FFT. The Floating point
version takes 0.125 Seconds. The fixed point version takes 0.25 seconds. The
fixed point version takes longer because all calculations in Matlab are done in
double precision floating point and extra calculations must be done to convert
the numbers to simulate fixed point.

This software was ran on my PC. It has a 2GHz AMD processor and 1GB of
RAM.

13

e[JNIVERSITYof TENNESS

For this implementation I chose to use Xilinx divider and complex multiplier
blocks. I began by writing custom code for a 64-point FFT. It was similar to the
Matlab algorithm. I hard coded all twiddle factors and butterfly operations.
There were enough complex multiplier blocks to do all butterfly operations in
each stage simultaneously. This design simulated successfully, but the design
was too big to fit on the actual FPGA. I tried many different thing to try to fit
this design on the FPGA. I reduced the number of complex multiplier blocks,
reduced the number of dividers, and reduced the maximum filter length size.
None of these worked, so I reduced it to a 32-point FFT. It simulated
successfully, but again it would not fit. I went through the same routine to make
it fit, I even tried breaking the VHDL into smaller pieces. The design would
pass the mapper, and placement, but there were too many signals for it to route.

I finally decided to go with a 16-point FFT. This design fit and I was able to
use as many complex multipliers as I needed. I also included dividers for
meeting the fixed point requirement. I multiplied all twiddle factors by 10,000
and then hard coded these values in the VHDL. The dividers are used after the
twiddle factors are multiplied by their corresponding intermediate inputs. The
dividers occupy a lot of space.

14

Lo
L L8 00+ E@m QX Thnisd] sl 5 @

(Cr\Dacuments and Settings Keopt) =

Eo4,51 475 (vhdl,none, Cp1252) - - - -

Here is a sample from my LMS code. I would like to note a few things. In
state nine the two arrays that hold the AR parameters can be seen. They are
named a_matl and a_mat2. Each can hold eight 32-bit numbers. That is why the
maximum filter length my design can hold is 16. I had to define this array earlier
in the code. I made the array small so I could easily add and remove arrays to
change the maximum filter length. Arrays had to be removed in order to fit the
design on the chip.

15

mus UNIVERSITYof TENNESSEE

]
c.vhd - O] <
File dit Search Markers Folding Wiew Utilities

Qs 48 QQF-a8 QX T hE] iF @

[logic_func, vhd (C:\Decuments and Settingsindennis\DesktopiMy Yersionl)

Macros Plugins Help

fpse,1 e6% {vhdl,none, Cp1252) - - - - U IEIEE

I wanted to maintain 32-bit arithmetic capability throughout my design so I defined my
complex numbers as a 32-bit real part plus a 32-bit imaginary part. So each complex number is
defined with 64-bits. In my original 64-point FFT I tried designating a 64-bit register for each of
the FFT inputs. The resulting design could not be the routed. I then tried using Xilinx single port
block RAMs. These use fewer logic slices. I used the maximum width, 256, which can store 4
complex numbers each. As I reduced the FFT size to 16-points I continued using the single port
block RAMs. I believed though, at this size, I could switch back to using registers, and save
some clock cycles. This idea worked and the design routed successfully. The easiest way for me
to switch from the block RAMs to the registers was to maintain the 256-bit width. This slide
shows a portion of my FFT code. You can see how b0 through b3, the registers used for storing
intermediate values, are indexed from 255 to 0. Using four 256-bit registers is sufficient for
keeping track of 16 complex numbers, which are 64-bits each.

This portion of code also shows how all seven complex multipliers are being used. The inputs
to these multipliers are ar’s, ai’s, br’s, and bi’s numbered 0 through 6. The “r’s” mean real part
and the “i’s” mean imaginary part. You can also see all of the twiddle factors, which have been
multiplied by 10,000 prior to code entry. All of these factors have been assigned to the b inputs

of the complex multipliers.

The variable at the bottom dubbed “mtimer” designates how many clock cycles must elapse
before the multiplier output is ready. I adjusted this by running the design through the simulator.
Similar adjustments had to be made in adjusting for the latency of the dividers.

16

Design Swmamary:
Number of errors: [u}
Nurber of warnings: 9
Logic Utilization:
Nurber of 3lice Flip Flops: 18,676 out of 27,392 71
Nurber of 4 input LUTs: 16,803 out of 27,392 61%
Logice Distribution:
Nurkber of occupied Slices: 13,694 out of 13,696 99%
Nurber of 3lices containing only related logic: 11,555 out of 13,694 S6%
Nunkber of Slices containing unrelated logic: 1,841 out of 13,694 13%
*See NOTES helow for an explanation of the effects of unrelated logic
Total Number 4 input LUTs: 17,479 out of 27,392 63%
Nurber used as logic: 16,803
Hurber used as a route-thru: 132
Mumber used for Dual Port RAMs: 344
(Two LUTs used per Dual Port RAM)
HNurmber used as 16x1 RANs: 64
Nurkber used as Shift registers: 136
Nurber of bonded IOEs: 164 out of 556 29%
IOE Flip Flops: 205
IOB Dual-Data Rate Flops: 4z
Murdber of PPC405s: 1 out of 2 50%
Hurber of Block RAMs: 36 out of 136 26%
MNunber of MULT18X13s: 63 out of 138 46%
Murder of GCLEs: 8 out of i6 50%
Hurber of DCHMs: 4 out of g 50%
Hurber of GTs: 0 out of g 0%
MNunber of GT10s: 0 out of a 0%

This is an excerpt from the log file produced by the Xilinx mapper. It shows
how much of the FPGA’s resources my design uses. Throughout the
development process, the number that was most important was the number of
occupied slices. I encountered many overmapping errors when I was attempting
higher order FFTs. When the design would overmap the number of occupied
slices was usually the overmapped resource. I desired to add another divider to
my current design which would save about 3 clock cycles per FFT computation,
but this causes overmapping.

A5524BE44S s

]] I |

[Opsto 4541881610 ps Now:5,005421,875p_Dslta: 1 Vi

This slide displays the results of my VHDL simulation. Not much detail can be
seen here but [wanted to show a general idea of what is happening. To the left
you will see the names of some of the signals I decided to display on this
simulation. They are divided in a “ports” section and a “signals” section. The
“ports” section shows the signals that are used to connect with other blocks in
my design. Here I have shown the ports used to connect with the block RAM,
which contain all of the samples and will contain the PSD results. The clock
signal is also shown, and is designated by “clk”. The “signals” section displays
events happening within my logic block. The signals with the orange diamond
shape are the 256-bit registers showing the intermediate results of the FFT
computations. They have been broken down into 32-bit real and 32-bit
imaginary parts for clarity. Below the registers you can see the signal that keeps
track of the current state. Other signals such as “number of samples”, “fl”, “u”,
and fixedpointmult” are parameters that are read in at the beginning of the
execution and do not change throughout the code. The changing values of the
AR parameters can be seen in “a_matl”, and “a_mat2”.

The clock speed is designated in my test bench. During development I chose a
clock period of 100 nano seconds. After I found that my design worked on the
board I used the clock period determined by the routing software in my test
bench which was always less than 100 nano seconds. This was the best way I
found to measure the execution time of the VHDL.

18

fle Edit Mew Insert Format Tools Wincow

|zEa|| s h 31 |[X B/ QS & Bk || 5FELEEE

zwsaam I
TN I [|

This figure shows the FFT calculation for sample 30. You can see how the
registers look like they have three different times for calculations. Those are for
stages 2, 3 ,and 4 in the FFT. The first stage requires no complex multiplication
and therefore can be seen within the same column as stage 2. Closer to the
bottom you can see the state changes. States ten and twelve can clearly be seen
repeating. State ten is used to meet the latency requirement of the multipliers.
State 12 is used to meet the latency requirement of the dividers. The divider
latency can be reduced if I use a Xilinx divider with smaller inputs, but I do not
want to sacrifice that precision. To the left of the three columns in the FFT
registers the results of the previous FFT from sample 29 can be seen. This
portion is where the LMS routine is still calculating the AR parameters for
sample 30. In fact you can see how the last few numbers in a_mat2 are updated
just before the FFT begins. The k signal is used as a loop index in the LMS
routine. Remember that my routine contains two loops whose number of
iterations match the filter length. So each of the two loops use k from 1 to 16.

Notice at the left of the diagram there is a portion after the FFT where the
state changes very rapidly. The signals labeled, “addr1”, “Dinl”, and “Doutl”
also change rapidly. This is where the VHDL writes the results of the FFT to the
dual port block RAM, so they can eventually be transferred to the SDRAM on
the Amirix board.

19

fle Edit Mew Insert Format Tools Wincow

o || B € R @B e || BF | =i

| AEEL TR

JRJ
4372773270 ps to 4413633372 ps Now: 5,005,421,875 ps_Delta: {

This diagram illustrates the operation of the multipliers and dividers. It is
located at nearly the same time as the last slide, where the FFT of sample 30 is
shown as well as some of the LMS calculation for sample 30. The upper part of
this diagram shows the inputs to the dividers and multipliers. The “ar#” and
“br#” signals are the multiplier inputs and the “dividend#” signals are the
divider inputs. The divisors to the dividers are not shown because they are
always the value of “fixedpointmult” or 10,000. The bottom shows the outputs
of the multipliers.

Notice that the LMS calculations on the left side only seem to be using one
multiplier and one divider. That is because so many of the LMS calculations are
dependant on previous calculations, and thus cannot be done in parallel. The
FFT portion is quickly noticed. But, it appears that only two stages are
represented because only two columns are readily visible. This is because stage
one requires no complex multiplication and is done in one clock cycle. Stage
two uses complex multiplication, but the twiddle factors can be represented with
whole numbers, so they are not initially multiplied by 10,000 and the result does
not need to be divided by 10,000. Stages three, and four, on the other hand,
require all of these extra fixed point calculation. The division in each stage,
done in state 12, makes these stages readily visible in the simulation.

20

= vlsi8.engr.utk.edu - default - SSH Secure Shell
|| B it vew window Help

. R sRisz mee alan w e

ication terminated, rc = Oxals

Connectad ta visis.engr, utk,edu SSH2 - aes126-che - hmac-mdS -none [80x2s | [

This slide shows the actual use of the design on the board. The C code
location on the SDRAM is at hex address 0x00100000. The Amirix board time
measurement begins when data is moved from SDRAM into block RAM and
ends when the results are transferred from block RAM to SDRAM. The number
of elapsed PPC clock cycles here was 1415712. With the PPC clock frequency
set at 300 MHz, the calculation is completing in 4.719 milliseconds on the
board. This is slightly higher than the number obtained in simulation, 2.927
milliseconds, but is still much faster than the 125 millisecond run time for
floating point Matlab.

21

PSD using custom16-point FFT

Peaks at:

62.5Hz
187.5 Hz
312.5 Hz

This figure shows the PSD estimation for sample 30 produced by the Amirix
board. The data here is identical to the fixed point Matlab data. That is because
all calculations were done in a similar way.

22

e[JNIVERSITYof TENNESSEE

After creating a version with my custom FFT code, I decided to compare its
performance with a version that uses a Xilinx 16-point FFT block. This version
uses the same LMS code, but all of the FFT code is replaced with an
instantiation of a Xilinx FFT block. I also removed all of the FFT registers I had
used. One thing I noticed before I inserted the block was that the maximum
precision for the input and output for one of these blocks is 24-bits. This gives
the Xilinx code a slight disadvantage over my FFT code.

Obviously, for my LMS routine to use this FFT, I had to remove bits from the
AR parameters so that they would fit into the FFT. I read the data sheet to learn
what I could about this FFT. It uses Radix-2, and a method called block floating
point. Block floating point calculates how much to scale the results of each stage
to get the most precision. Whereas my algorithm scaled each output by 10,000.

After running the completed design through place and route, a faster clock
speed was automatically assigned. So this version completes faster than my
design. The 24-bit restriction could pose a problem though. If the LMS results
contain numbers requiring more than 24-bits to represent then they cannot be
sent to the Xilinx FFT.

23

1| 2se7sesasg ps
AR T =

| 2921550986 po to 2020350010 p>__| Now: 3312705927 pa_Defs 1

Since the LMS routine is the same I have not shown it in this slide. The FFT
is shown for sample 30. The signals “xn_re” and “xn_im” are the inputs to the
FFT. Notice they are entered in a serial fashion. The signal xn_index shows
when data should be sent to the FFT. There is a latency of three involved in this
process. The outputs are also produced in a serial fashion in the signals “xk_re”
and “xk_im”. As these outputs are produced they are immediately sent to the
dual port block RAM, indicated by all of the activity seen on “Dout”.
Interestingly my FFT design requires fewer clock cycles to complete, but the
Xilinx place and route software assigns a faster clock speed to the version
containing the Xilinx FFT, possibly because the design is less complex.

24

e UNIVE

Difference between Floating Point Matlab and Xilinx Verison PSD from 16-point Xilinx FFT
I i
Maximum Difference = 002772 | I Peaks At: // |

N ”] |, 625Hz [

. RN IAT
N PN y |V Los2sHz ||

e

Difference
PSD (dB)
PR

E § & £ .

" Ff;quer;cy (ﬁz) "

: ngquerflcy (I:Z) :

Here are plots of the data that the board produces with this new
implementation, I knew nothing of the internal calculations of the Xilinx FFT,
and therefore could not produce Matlab code which would create the exact same
results. On the left I have made a plot which is the result of subtracting the
Matlab floating point PSD estimation for sample 30 from the VHDL PSD
estimation for sample 30. Here, the maximum difference is 0.002772. The
maximum difference associated with the VHDL using my custom FFT code was
0.00280. So, it has slightly more accuracy than my version. Which is surprising
given the limited bit-width. This leads me to believe that it uses very small
scaling on certain intermediate results and very large scaling on other results. I
truncated all of my decimals, Xilinx may be rounding with their decimals.

The left shows a plot of the PSD from this implementation. The peaks are
located at the exact same frequencies as my VHDL and the Matlab version.
Again, the only differences would be in the height of the peaks.

25

e[JNIVERSITYof TENNESSEE

I wanted to attempt using a larger FFT size from Xilinx. This also meant that
the output vectors would be larger. In my other designs the output occupied the
entire dual port block RAM. But, with this design, since more output will be
produced, extra block RAMs would be necessary. This design uses four block
RAMs and does PSD estimations for 29 samples. I would have needed one more
block ram to fit the results from the last sample and chose to omit it.

As with the other Xilinx FFT blocks this one has the same restriction on bit
width. After running the design through place and route a frequency of 33.63 Hz
is assigned. This is a lower frequency than the design containing the 16-point
Xilinx FFT, which is expected because the design is more complex. Using this
clock frequency in the simulator determines that the code completes execution
in 4.481 milliseconds. This is still much faster than the 125 milliseconds for the
floating point Matlab doing only a 16-point FFT.

26

=1=x]

e Edit Miew Insert Format Tools Wincow

‘DJ&SE\MI A1 || B R Q@B | BF LR E

3995202 ps

ARl AR I L
[4473160080 po to 447570083 p>__| Wow: 4,761,956, 155 s Dets 1 P

This slide shows the results from the FFT at sample 29. The signal xk_index
goes to 63 for each FFT computation. As does the signal xn_index. So obviously
the data loading and unloading take more time than the Xilinx 16-pint FFT.
Even with the added time the code completes faster than Matlab.

27

e UNI

Jceaahar/lss

PSD from 64-point Xilinx FFT Difference between Floating Point Matlab and Xilinx Verison
. I A i\
/ \ Peaks at: foh 1 [Maximum { \
[P = !\ Difference = .0937 I
P 46.8 Hz [1 I H
o 1875Hz 4 || [|
& | [T Y- A N g | I
g Vo [| e - |
= ! [oL | o, \ ’ |
a” o 1 [V i £ ’ LA S
= A |V = /) AVER
A / | b VA N Y. | Y
ey R [Vo [N
I VA j - | | 1
" 1 ’ \ ’ \ /‘/\\! 1/ ' /’\\/’/\\f ‘/ \\\
\\j | SV | "
- - Ff;queﬁcy (Ifiz) - - Ff;queﬁcy (Ifiz)

With the larger FFT size, more detail can be seen in the PSD plot. On the left
is the PSD data from sample 29 produced by the Amirix board. I looked at the
three main peaks in the plot and found the highest point in each. The peaks
located at 187.5 Hz and 312 Hz, are the same as the results form the other
implementations. But, the frequency that was at 62.5 Hz now seems to be closer
to 46.8 Hz. I would attribute this to the low amplitude assigned to the 100 Hz
signal and my choice of filter length. [used a much higher filter length on the
data than should have been used. This could also be the cause of the addition of
the smaller peaks near the outer frequencies on the graph. Again, I chose to use
this high filter length to show the code’s performance, under maximum
demands.

The plot on the right shows the difference between the PSD of sample 29 on
the Amirix board and the same PSD from Matlab. I changed the Matlab code to
do a 64-point FFT to make the comparison. Apparently at such large FFT
computation, the Xilinx FFT begins to loose some precision. The maximum
difference in the previous designs was 0.002772 and here is 0.0937.

28

Implementation Results

Execution| Execution Time Maximum difference| Chip|
Time on[In Sirulation| between implementation| FFT data| resource
Board (s) (s) and FP Matlab| bit width usage,
Floating Point
Iatlab A 0.125 [HA A A
Fixed Point
Matlab A 0.25 0.0028 A A
WHOL with custarm
16-point FFT 0.004718 0.00412 0.0028 32 99%
WHOL with Xilinx
16-point FFT 0.004718 0.002837 0.002772 24 49%
WHDL with Xilinx
B4-point FFT 0.01838 0.00481 0.0937 24 50%

29

e[JNIVERSITYof TENNESSEE

In summary I began with a PSD estimator written in Matlab. I made a floating
point version and a fixed point version. The execution time for the floating point
version was measured and the fixed point version was used to aid in the
development of a VHDL implementation. My first VHDL implementation that
worked on the Amirix board contained custom 16-point FFT code that I wrote
myself. By doing several butterfly operations simultaneously, it was able to
execute faster than the floating point Matlab version, and precision was
preserved.

For the sake of possibly increasing the FFT size I replaced my custom 16-
point FFT code with Xilinx 16-point FFT block. In comparison with my version,
this one was slightly faster, and used less resources on the chip. But, the bit
width of the inputs and outputs are limited to 24.

Since that design worked I tried a Xilinx 64-point FFT, this design also fit,
and still only uses half of the chip.

Each of the VHDL implementations execute faster than the Matlab version
and reasonable precision is maintained, at least up until the 64-point FFT.

30

mEJNIVERSITYof [ENNESSEE

I have successfully implemented PSD estimation on an FPGA. I have also
used parallel calculations on the FPGA to make the implementation faster than
software. I have also improved the design by increasing the FFT size from 16-
points to 64-points.

31

e[JNIVERSITYof TENNESSEE

It has become apparent that scaling the data by powers of two instead of
powers of ten would yield a more efficient design. This would eliminate the
need for the dividers, since division by a power of two involves simply shifting
the bits. This would be s very significant improvement since the dividers occupy
a very large amount of resources on the FPGA. With this change it may be
possible to expand the custom FFT code to 32 points.

The PSD results could have also been improved if the sample rate for the
input were increased.

Also, since PSD is typically used for determining the frequency content of a
noisy signal, this type of signal should be tried on the VHDL implementation. In
my project I only mixed sinusoids together and did not add noise.

32

e[NIVERSITYof TENNESSEE

This slide marks the begging of the “extra slides” section.

33

rusUNIVERSITYo TENN

The AP130 Development Board is a 66MHz PCI card that can be inserted and
used in a computer that runs Unix as an operating system. It contains one Xilinx
VirtexII Pro FPGA. This chip contains two embedded PPC405 CPU cores. The
board also contains 64 MB of SDRAM and a 4MB configuration flash.

A typical design for this board would include C code that transfers data from
the SDRAM to a user defined memory structure in the VirtexII Pro. The C code
is executed by a PPC. The user defined memory structure is synthesized on the
FPGA fabric using VHDL. VHDL would further be used to define a logic
function to be performed on the data. Results would then be transferred back to
SDRAM through the PPC.

34

mEJNIVERSITYof [ENNESSEE

35

Design Summary:
Number of errors: a}
Number of warnings: 15
Logic Utilization:
Total Number Jlice Registers: 8,547 out of 27,392 31%
Nurber used as Flip Flops: 8,544
MNurber used as Latches: 3
Mumber of 4 input LUTs: 7,135 out of 27,392 Z6%
Logic Distribution:
MNumber of occupied Slices: 6,837 out of 13,606 49%

MWumber of Slices containing only related logic: 6,837 out of 6,837 100%

Mumber of Slices containing unrelated logic: 0 out of 6,537 0%

*S3ee NOTES below for an explanation of the effects of unrelated logic
Total Number 4 input LUTs: 7,885 our of 27,392 28%

MNumber used as logic: 7,138

MNumber used as a route-thru:

Mumber used for Dual Port RAMsS:

{Two LUTs used per Dual Port RAM)
MHumber used a3 16x1 Rils:
MNumber used as Shifr registers:

MHumber of bonded IOBs:

IOB Flip Flops:

IOE Dual-Data Rate Flops:
Humber of PPC405s:
Mumber of Block RiMs:
Mumber of MULT18X183:
MNumber of GCLEs:
Humber DCls:
Mumber GT=:
MNurber GTi0s:

Xilinx 16-point FFT implementation

This design used less logic slices than my design. This may be due to the
variable scaling and the reduced bit width. But, since the usage is so low it
means that a larger Xilinx FFT block could possibly be used.

36

8 1:vlsiB.engr.utk.edu - default - SSH Secure Shell

|| Bl Edi view window Help

| BeR(ss nee a0 e e

[RA

Xilinx 16-point FFT implementation

This slide shows the actual use of the design on the board. The C code location
on the SDRAM is again at hex address 0x00100000. The Amirix board time
measurement begins and ends at the same time the implementation with my
custom FFT code did. The number of elapsed PPC clock cycles here was
1415712. This is the same as the previous implementation. With the PPC clock
frequency set at 300 MHz, the calculation is completing in 4.719 milliseconds
on the board. This is slightly higher than the number obtained in VHDL
simulation, 2.927 milliseconds, but is still much faster than the 125 millisecond
run time for floating point Matlab.

37

=1=x]

fle Edit Mew Insert Format Tools Wincow

| QHSEM}[%K'I:{}\E @, € @ B 3¢ || BF ELEIE 3

2927865349 ps

I 1 ARl
2926107694 ps o 2027696108 s | Now: 3312708327 p3 Deltni |

Implementation with Xilinx 16-point FFT.

This slide shows the output of the FFT for sample 30 in detail. The numbers can
actually be seen.

38

Design Swmmary:
MHumber of errors: [u}
MNuber of warnings: 22
Logic Ucilization:
Total Number Slice Registers: 8,818 out of
HNunkber used as Flip Flops: G,
Nurkber used as Lateches:
Number of 4 input LUTs: 7,294 out of .39z 26%
Logic Distribution:
Nuwber of occupied Slices: 6,965 out of ;696 50%
Number of Slices containing only related logic: 6,965 out of 6,965 100%
Nuwber of Slices containing unrelated logic: 0 out of 6,965 0%
*Zee NOTES below for an explanation of the effects of unrelated logic
Total HNumber 4 input LUTS: 8,081 out of 27,392 29%
Nuwber used as logic: 7,294
Number used as a route-thru: 177
Nuwber used for Dual Fort RiMs: 344
(Two LUTs used per Dual Port RAM)
Number used as 16x1 RiMs: 64
Nuwber used as Shift registers: 202

Number of bonded I0Es: 164

ICE Flip Flops: 2058

ICE Dual-Data Rate Flops: 4z
Number of PPC405s: 1 out of
Nuawber of BElock RAMs: 53 out of
Nuwber of MULT18X18s: 18 out of
Number of GCLK=: 8 of
Muwber of DCHs: of
Nuwber of GTs3: of
Number of GT10s: of

Implementation with Xilinx 64-point FFT.

It is very interesting how this design does not use up much more space on the
chip than the design with the 16-point FFT. That design used 49% of the logic
slices, this design uses 50%. This means that the FFT size could be increased
even more. But, also more dual port block RAMs would need to be added to
store the results.

edu - default - 55H Secure Shell

H Eile Edt View Window Help

|Han sz e alan e e

Connected to visid. engr.utk.edu |55HzZ - aes128-che - hmac-mdS - none | 80x23 ’_ EZ— ,_ ’?

Implementation with Xilinx 64-point FFT.

For this design, since more time is required to load and unload the block
RAMs with the extra data, more time is required on the board execution. The
number of elapsed clock cycles for this one was 5509563. Again, if the PPC
clock frequency is assumed to be 300MHz then execution time was 18.36
milliseconds. Also much faster the Matlab’s time of 125 milliseconds.

40

