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INTRODUCTION


The past decade has witnessed the development of wavelet analysis, a new tool that emerged from mathematics and was quickly adopted by diverse fields of science and engineering. In the brief period since its creation in 1987-88, it has reached a certain level of maturity as a well-defined mathematical discipline, with its own conferences, journals, research monographs, and textbooks proliferating at a rapid rate.


Wavelet analysis has begun to play a serious role in a broad range of applications, including signal processing, data and image compression, solution of partial differential equations, modelling multiscale phenomena, and statistics. There seem to be no limits to the subjects where it may have utility.


My aim is to explore some additional topics that extend the basic ideas of wavelet analysis. I concentrated on beyond wavelets. I used MATLAB for applications.


In chapter 1, Haar Transform,Walsh Transform and I compared them with each other were investigated.


In chapter 2, I investigated Continuos Wavelet Transform (CWT) and as an example of Continuos Wavelet Transform (CWT) I focalized on Mexican Hat Wavelet.

Gabor Wavelets and Speech Analysis were analyzed in chapter 3.

In chapter 4, I made applications with MATLAB. I also made my original contributions in MATLAB.

CHAPTER 1 – WAVELET PACKET TRANSFORMS AND APPLICATIONS

In this chapter we shall explore some additional topics that extend the basic ideas of wavelet analysis. We described the theory of wavelet packet transforms, which sometimes provide superior performance beyond that provided by wavelet transforms.

Section 1.1 : WAVELET PACKET TRANSFORMS
A wavelet packet transform is a simple generalization of a wavelet transform. In this section I discussed the definition of wavelet transforms, and in the next section examine some examples illustrating their applications. 

All wavelet packet transforms are calculated in a similar way. Therefore we shall concentrate initially on the Haar wavelet packet transform, which is the easiest to describe. The Haar wavelet packet transform is usually referred to as the Walsh transform. [2]

1.1.1  Haar System:

The Haar orthogonal system begins with ( (t),the characteristic function of the unit interval

( (t) = x [0 , 1)(t).                                            (1.1)

It is clear that ( (t) and ( (t - n), n ( 0, n(Z are orthogonal since their product is zero.  It is  also clear that  (( ( t – n)( is not a  complete orthogonal  system in L2 (R) since its closed linear span Vo consists of 2 piecewise constant functions with possible jumps only at the integers. The characteristic function of (0,1/2), for example, with a jump at  1/2, can not have a convergent expansion.
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In order to include more functions we consider the dilated version of ( (t) as well, ( (2m t) where m(Z. Then by a change of variable we see that (2m/2 ( (2m t – n)( is an orthonormal system. Vm will denote its closed linear span. Since any function in L2 (R) may be approximated by a piecewise constant function fm with jumps at binary rationals, it follows that           is dense in L2 (R). Thus the system (( mn( where 

( mn (t) = 2m/2  ( (2m t - n),                                     (1.2)

is complete in L2 (R), but, since ( (t) and ( ( 2t ) are not orthogonal, it is not an orthogonal system. We must modify it somehow to convert it into an orthogonal system.


Fortunately the cure is simple; we let ((t( ( ( ( 2t ( - ( ( 2t - 1(. Then everything works; (( (t - n(( is orthonormal system, and ( (2t - k( and ( (t - n( are orthogonal for all k and n. This enables us to deduce that ((mn(m,n(Z, where

(mn (t) = 2m/2 ( (2mt – n),                                             (1.3)
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is a complete orthonormal system in L2 (R). this is the Haar system; the expansion of f ( L2 (R)is

 (1.4)
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with convergence in the sense of L2 (R). the standard approximation is the series given by 

(1.5)

The ( (t) is usually called the scaling function in wavelet terminology while ((t) is the mother wavelet. [5]
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FIGURE 1.1. (a) The scaling function and (b) mother wavelet for the Haar system. 

1.1.2  Walsh Function:

The Rademacher functions are an orthogonal system on (0, 1) obtained by adding up all the Haar functions at the same scale. The Rademacher functions were obtained by combining the Haar functions by simply adding them at a given scale. The Walsh functions take sums and differences of the Haar functions to obtain a complete system. We define


Wo (t)  :  =  ( (t), w1 (t) :  = ( (t),

                      
W2 (t)  :  = ( (2t) + ( (2t - 1),

                          
W3 (t)  :  = ( (2t) - ( (2t - 1),


W2n (t) :  = Wn (2t) + Wn (2t - 1),

                
W2n+1 (t) :  = Wn (2t) - Wn (2t - 1).


(1.6)

Thus these Walsh functions also belong to the wavelet subspaces of the Haar system:

W0 ( V0 , W1( W0, W2 , W3 ( W1 , W4 , W5 , W6, W7 ( W2 [image: image6.wmf](
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W2m, W2m+1,.............................., W2m+1-1( Wm,........................................   (1.7)


Notice that these defining relations (1.7) are exactly the same as those in the two dilation equations of the Haar system,  

( (t) = ( (2t) + ( (2t – 1),
                  


(1. 8a)

( (t) = ( (2t) - ( (2t - 1).




(1. 8b)

Since all functions defined by (1.8a) are orthogonal to all defined by (1.8b), it follows that W2n and W2n+1 are orthogonal. Also if Wn and Wm are orthogonal so are W2m, W2m+1, …, W2m+1-1 are orthogonal in Wn. Since all of these functions have support contained in [0,1], the {Wn} are an orthogonal system in L2 (0,1). Moreover, there are exactly 2m Haar functions in Wm whose support lies in [0,1], and therefore the Walsh functions in Wm form a basis of this space. Since the Haar functions are complete in L2 (0,1) so are the Walsh functions. [5]
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FIGURE 1.2 One of the Rademacher functions 

1.1.3   Comparing Haar Transform with Walsh Transform:

The Haar wavelet packet transform is usually referred to as the Walsh transform. A Walsh transform is calculated by performing a 1-level Haar transform on all subsignals, both trends and fluctuations.

For example, consider the signal f defined by

f = (4, 6, 8, 10, 12, 14, 16, 18).

           

     (1.9)

A 1-level Haar transform: 
[image: image8.wmf](
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(1.10)
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A 1-level Haar transform and a 1-level Walsh transform of f are identical, producing the following signal: 
(1.11)

A 2-level Walsh transform is calculated by performing 1-level Haar transforms on both the trend and the fluctuation sub signals, as follows:
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(1.12)

Hence the 2-level Walsh transform of the signal f is the following signal:


(14, 30 | -4, -4 | -2, -2 | 0, 0).
          

                    (1.13)

It is interesting to compare this 2-level Walsh transform with the 2-level Haar transform of the signal f. The 2-level Haar transform of f is the following signal : 
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(1.14)

comparing this Haar transform with the Walsh transform in (1.13), we see that the Walsh transform is slightly more compressed in terms of energy, since the last two values of the Walsh transform are zeros. We could, for example, achieve 25 % compression of signal f by discarding the two zeros from its 2-level Walsh transform, but we could not discard any zeros from its 2-level Haar transform. Another advantage of the 2-level Walsh transform is that it is more likely that all of its non-zero values would stand out form a random noise background, because these values have larger magnitudes than the values of the 2-level Haar transform.

A 3-level Walsh transform is performed by calculating 1-level Haar transforms on each of the four sub signals that make up the 2-level Walsh transform. For example, applying 1-level Haar transforms to each of the four sub signals of the 2-level Walsh transform in (1.13), we obtain
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(1.15)
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Hence the 3-level Walsh transform of the signal f in (1.5) is :

(1.16)
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Here, at the third level, the contrast between the Haar and Walsh transforms is even shaper than at the second level. The 3-level Haar transform of this signal is 

 (1.17)

comparing the transforms (1.16) and (1.17) we can see, at least for this particular signal f, that the 3-level Walsh transform achieves a more compact redistribution of the energy of the signal than the Haar transform. [2]

Section 1. 2 : APPLICATIONS OF WAVELET PACKET TRANSFORMS
In this section we shall discuss two examples of applying wavelet packet transforms to audio and image compression. While wavelet packet transforms can be used for other purposes, such as noise removal, because of space limitations we shall limit our discussion to the arena of compression.

First example, we shall use a Coif 30 wavelet packet transform to compress the audio signal greasy. If we found that a 4-level Coif 30 wavelet transform – with trend values quantized at 8 bpp and fluctuations quantized at 6 bpp, and with separate entropies computed for all sub signals achieved a compression of greasy requiring an estimated 11,305 bits. That is, this compression required an estimated 0.69 bpp (instead of 8 bpp in the original). However, if we use a 4-level Coif 18 wavelet packet transform and quantize in the same way, then the estimated number of bits is 10.158 i.e, 0,62 bpp. This represents a slight improvement over the wavelet transform.
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In several respects – in bpp, in RMS Error, and in total number of – significant values – the wavelet packet compression of greasy is nearly as good as or slightly better than the wavelet transform compression. See Table1.1
Transform 
Sign.Values 
Bpp 
RMS Error

wavelet
3685
0.69
0.839
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w.packet
3072
0.62
0.868


TABLE 1.1 Wavelet and wavelet packet compressions of greasy 

Second example, we consider a compression of a fingerprint image. Using the quantizations 9bpp for the trend and 6bpp fort the fluctuations, we obtain an estimated 0.49bpp. That represents a 36 % improvement over the 0,77bpp estimated for the wavelet compression. In Table 1.2 I show a comparison of these two compressions of Fingerprint 1. Although the wavelet packet transform compression does not produce as small a relative 2-norm error as the wavelet transform compression, nevertheless, a value of 0.043 is still better than the 0.05 rule of thumb value for an acceptable approximation. Taking into account the other data from Table 1.2 – the number of significant transform values and the number of bpps – it is clear that the wavelet packet compression of Fingerprint 1 is superior to the wavelet compression. [2]

[image: image21.wmf].

)

t

(

f

),

t

(

dt

)

t

(

f

)

t

(

)

b

,

a

(

CWT

b

,

a

b

,

a

f

ò

ñ

y

á

=

y

=

¥

¥

-

Transform 
Sign.Values 
Bpp 
Rel.2 – norm error

wavelet
33330
0.77
0.35

[image: image22.wmf]),

s

x

(

s

1

)

x

(

s

y

=

y

w.packet
20796
0.49
0.043
TABLE 1.2  Two compressions of Fingerprint 1 

CHAPTER 2 – CONTINUOUS WAVELET TRANSFORM

In the continuous wavelet transform, a function ( (“psi“), which in practice looks like a little wave, is used to create a family of wavelets ( (at + b) where a and b are real number, “a“ dilating (compressing or stretching) the function ( and “b“ translating (displacing) it. The word continuous refers to transform, not the wavelets, although people sometimes speak of “continuous wavelets”.

The continuous wavelet transform turns a signal f (t) into a function with two variables (scale and time), which one can call c (a,b) :

[image: image23.wmf].

F

Ff

s

g

(2.1)

This transformation is in theory infinitely redundant, but it can be useful in recognizing certain characteristics of o signal. In addition, the extreme redundancy is less of a problem than one might imagine, a number of researchers have found ways of rapidly extracting the essential information from these redundant transforms. 

One such method reduces a redundant transform to its skeleton. When certain signals are represented by a continuous wavelet transform, all the significant information of the signal is contained in curves, or “ridges” says Bruno Torréssani of the French Centre National de Recherché Scientifique, who works at the University of Aix – Marseille II. These are essentially the points in the time – frequency plane where the natural frequency of the translated and dilated wavelet coincides with the local frequencies, or one of the local frequencies, of the transform. [3]

Section 2.1 : WAVELET TRANSFORM

Instead of shifts and modulates of a prototype function, one can choose shifts and scales, and obtain a constant relative bandwidth analysis known as the wavelet transform. To achieve this, take a real band pass filter with impulse response ( (t) and zero mean
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Then, define the continuous wavelet transform as

(2.3)
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Here a(R+ and b(R. That is, we measure the similarity between the signal. f(t) and scales of an elementary function, since
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And the factor 1 /       is used to conserve the norm. Now, the functions used in the expansion have changing time – frequency tiles because of the scaling. For small a (a < 1), (a,b(t) will be short and of high frequency, while for large a (a > 1),    (a,b(t) will be long and of low frequency. Thus, a natural discretization will use large time steps for large a, and conversely, choose fine time steps for small a. [4]

Section 2.2 : CONTINUOUS WAVELET METHOD

2.2.1. Analysis and Synthesis:
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e

e

w

)

x

(

w

/

vx

2

i

2

)

w

/

x

(

2

/

1

p

p

-

-

=

y

Although the definition of the wavelet transform was briefly introduced in section 2.1, we repeat it here for completeness. Consider the family of functions obtained by shifting and scaling a “mother wavelet” ( (t)cL2(R), 

(2.5)
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where a, b(R (a( 0), and the normalization ensures that  (( ( a, b (t)(( ( (( ( (t) (( (for now, we assume that a can be both positive and negative). In the following, we will assume that the wavelet satisfies the admissibility condition

(2.6)
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where ( (w) is the Fourier transform of ( (t).  In practice, ( (w)  will always  have sufficient decay so that the admissibility  condition  reduces  to the  requirement that ( (0) = 0 (from discrete Fourier Transform) :

(2.7)
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 Because the Fourier transform is zero at the origin and the spectrum decays at high frequencies, the wavelet has a band pass behaviour. We now normalize the wavelet so that it has unit energy, or

(2.8)
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As a result, (( ( a, b (t)((2 ( (( ( (t) ((2 = 1 (see 2.5). the continuous wavelet transform of a function f (t)(L2 (R) is defined as :

(2.9)

[4]

Section 2.3 : MEXICAN HAT WAVELET

The Mexican hat wavelet is not the only kind of analysing wavelet. In the next chapter, we shall consider the Gabor wavelet, which is very advantageous for analysing recordings of speech or music. We begin in this section with the Mexican hat wavelet because it is somewhat easier to explain the concept of a CWT using this wavelet.
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Given an analysing wavelet ((x), then a CWT of o discrete signal f is defined by computing several correlations of this signal with discrete samplings of the functions (s (x) defined by








s>0


         (2.10)

The parameter s is called a scale parameter. If we sample each signal (s (x) at discrete time values t1, t2,… tN, where N is the length of f, then we generate the discrete signals gs defined by

gs = ( (s (t1), (s (t2),............., (s (tN) ).                              (2.11)

A CWT of f then consists of a collection of discrete correlations (f:gs) over a finite collection of values of s. A common choice for these values is

s = 2-k/M ,    k = 0,1,2,3,........,I-M ,                                    (2.12)

where the positive integer I is called the number of octaves and the positive integer M is called the number of voices per octave. For example, 8 octaves and 16 voices per octave is the default choice in FAWAV. Another popular choice is 6 octaves and 12 voices per octave. This latter choice of scales corresponds – based on the relationship between scales and frequencies that we describe below – to the scale of notes on a piano (also known as the well – tempered scale).
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One purpose of computing all these correlations that make up a CWT is that making a judicious choice of the width parameter w and the number of octaves and voices can carry out a very finely detailed frequency analysis of a signal. To see this, we observe that Formula (f:g) (       tells us that the DFTs of the correlations (f:gs) satisfy
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 (f:gs) (                                                             (2.13)
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For a Mexican hat wavelet, Fgs is real -  valued; hence             .Therefore Equation (2.13) becomes :

(f:gs) (                                                             (2.14)


Formula (2.14) is the basis for a very finely detailed frequency decomposition of a discrete signal f. for example, in Figure 2.1. (b) we show graphs of the DFTs Fgs for the scale values s = 2-k/6, with k = 0, 2, 4, 6, and 8. These graphs show that when 
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Figure 2.1 (a) The Mexican hat wavelet w = 1/6 (b) DFTs of discrete sampling of this wavelet for scales s = 2-k/6, from k = 0 at the top, then k = 2, then k = 4, then k = 6, down to k = 8 at the bottom.

these DFTs are multiplied with the DFT of f, they provide a decomposition of Ff into a succession of finely resolved frequency bands. It should be noted that these successive bands overlap each other, and thus provide a very redundant decomposition of the DFT of f. Notice also that the bands containing higher frequencies correspond to smaller scale values there is a reciprocal relationship between scale values and frequency values. [2]

CHAPTER 3 – GABOR WAVELETS and SPEECH ANALYSIS

In this chapter we describe Gabor wavelets, which are similar to the Mexican hat wavelets examined in the previous chapter, but provide a more powerful tool for analysing speech and music. We shall first go over their definition, and then illustrate their use by examining a couple of examples.

Section 3.1 : GABOR WAVELETS
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A Gabor wavelet, with width parameter w and frequency parameter v, is the following analysing wavelet

(3.1)
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This wavelet is complex valued. Its real part (3 (x) are
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 (3.2a)

(3.2b)

The width parameter w plays the same role as for the Mexican hot wavelet; it controls the width of the region over which most of the energy of ( (x) is concentrated. The frequency parameter v provides the Gabor wavelet with an extra parameter for analysis.

One advantage that Gabor wavelets have when analysing sound signals is that they contain factors of cosines and sine’s (see (3.2a) and (3.2b)). These cosine and sine factors allow the Gabor wavelets to create easily interpretable scalograms of those signals, which are combinations of cosines and sines – the most common instances of such signals are recorded music and speech. We shall see this in a moment, but first we need to say a little more about the CWT defined by a Gabor analysing wavelet.

Because a Gabor wavelet is complex valued, it produces a complex – valued CWT. For many signals, it is after sufficient to just examine the magnitudes of the Gabor CWT values.
This transform, also called windowed Fourier or continuous short – time Fourier transform. [5]

3.1.1 The Fourier Transform:

Kind of decomposition: frequency

Analysing function: sines and cosines, which oscillate indefinitely.

Variable: frequency

Accessible information: the frequencies that make up the signal

Suited for: stationary signals (predictable: obeying constant laws).

Noted: With the fast Fourier transform (FFT) it takes long computations to compute the Fourier transform of a signal with n points.

3.1.2 The Windowed Fourier Transform:

Kind of decomposition: time – frequency

Analysing function: a wave limited in time, multiplied by trigonometric oscillations. The size of the wave, or “window” is fixed for each analysis, but the frequency inside the window varies.

Variables: Frequency; position of the window.

Information: The smaller the window, the better time information one has, at the cost of losing information about low frequencies; large windows give better frequency information but less precision about time.

Suited for: quasi – stationary signals (stationary at the scale of the window).

Notes: Sometimes this is called “short – time Fourier analysis”, or, when a Gaussian is used as the envelope of the window, the “Gabor transform”. While the Fourier transform is orthogonal, the most obvious forms of windowed Fourier can not be orthogonal. [4]

Section 3.2 : WAVELETS, MUSIC, AND SPEECH


Dennis Gabor developed windowed Fourier analysis in the context of acoustics. “This type of analysis is in constant use in speech and acoustics; it’s a fundamental tool”, says Christophe d’Alessandro of the French Centre National de Recherché Scientifique, who works at the University of Paris – Sud at Orsay. 

Has multiresolution wavelet analysis been an important development in this field? The first attempts to analyse speech with orthogonal wavelets were “a total failure, researchers couldn’t interpret the wavelet coefficients”, says Yves Meyer. Today researchers in speech and acoustics give a somewhat more positive assessment. “In speech recognition, for the moment the wavelets haven’t produced anything noteworthy, but there have been interesting results in pitch recognition in speech”, says d’Alessandro. 

He suggest that the apparent lack of new applications of wavelets in speech and acoustics is at least partially due to the fact that “the same kind of techniques, without the name wavelet; already long existed in these fields” (for example, in the form of the quadrature mirror filters used in speech, in addition to older techniques). “In the short term, wavelets have a new impetus to these techniques, but in fact they were already well known and exploited; transforms like wavelet transforms have been fundamental for some 50 years. It’s thanks to them that modern theories about the production, perception, and transmission of speech were born”. 


Victor Wicker Hauser points out, however, that the original quadrature mirror filters, which weren’t very regular, produced annoying artefacts when they were used with number of iterations necessary to obtain high compression ratios. Daubechies’s regular wavelets made more efficient decompositions possible. (But the wavelets used in speech are not necessarily the same as those used in other applications. “They are wavelets that are very localized in frequency, very different from the wavelets in image processing.” Says Stéphane Mallat.)


Wavelets are also used in the study of music. Richard Kronland-Martinet and others in Marseille use wavelets to analyse and synthesize musical sounds; Neil Todd (of City University, London University) uses wavelets to analyse rhythm. [4] 

CHAPTER 4 – APPLICATIONS with MATLAB


In this chapter I presented my original contributions. I translated points from Microsoft Excel to MATLAB and I constituted my original wavelets.

Section 4.1 : WAVELET PACKET 1-D

4.1.1  Example 1:
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The original signal consists of 400 points. I used Haar wavelet packet 1-D to analyse the signal.


4.1.2  Example 2:


I displayed the same procedure for a signal consisting of 1000 points.
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Section 4.2 : CONTINUOUS WAVELET 1-D


In this section one-dimensional CWT is applied on an analysing signal.

4.2.1 Example 1:

[image: image46.wmf]),

2

,

2

,

2

,

2

4

,

4

2

8

2

22

(

-

-

-

-

-

-

-

The coefficients, the coefficients line and the maxima lines are presented.
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Example 2:


I displayed the same procedure for a signal consisting of 1000 points.
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CONCLUSION


Wavelet analysis is useful for problems in many applied disciplines as well as within mathematics itself tells us that there is something special about it: Wavelet analysis provides a systematic new way to represent and analyse multiscale structures. The prevalence of multiscale structures in nature and in engineering is one reason that wavelets  are broadly valuable. Wavelet analysis is also a far-reaching generalization or orthogonal bases of functions whose particular new contribution is a systematic way to represent functions on unbounded domains by linear combinations of orthogonal basis functions that are compactly supported and overlapped. These are the kinds of basis functions that are potentially realizable by physical devices. 

My project had two main parts. In the first one I introduced, the notions of wavelet packet transforms and the continuous wavelet transform. I presented several examples in order to illustrate the main differences between these approaches.


In the second part of my project I investigated, with MATLAB, two one-dimensional signals consisting of 400 and 1000 points respectively.
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