Paired Haar spectra computation through operations on

disjoint cubes

B.J.Falkowski and C.-H.Chang

Abstract: Paired Haar spectra for systems of incompletely specified boolean functions are calculated
from arrays of disjoint cubes. The method is based mainly on two basic cube operations of shifting
and addition that can be efficiently implemented by computer. The method can calculate only a few
selected coefficients or all of them in parallel. To further reduce computational requirement only

nonvanishing coefficients are stored.

1 Introduction

Spectral techniques have been applied to boolean function
classification, disjoint decomposition, parallel and serial lin-
ear decomposition, spectral translation synthesis, multi-
plexer synthesis, prime implicant extraction by spectral
summation, threshold logic synthesis, logic complexity,
state assignment, testing and prefiltering in technology
mapping [1-9]. In contrast to most traditional CAD sys-
tems (MIS-II, BOLD, and Synopsys) based on the unate
paradigm [10], spectral systems are very efficient for
strongly nonunate functions such as parity, addition, or
multiplication that frequently occur in real designs. In addi-
tion, spectral techniques alone perform efficiently parallel
and serial linear decomposition (extraction of linear pre-
and postfilters). There are at least two transforms based on
squarewave-like functions that are suitable as boolean func-
tions: Haar and Walsh transforms. All but two basis func-
tions in the Haar transform consists of a square-wave pulse
located on an otherwise zero-amplitude interval. When
applied to logic design, a nonnormalised Haar transform
[1-3, 7, 8] is usually used. The Walsh functions are global
like Fourier functions and consist of a set of irregular rec-
tangular waveforms with only two amplitude values +1
and ~1 [1, 3, 7, 8, 11-13]. Walsh spectral coefficients of
boolean functions have an easy interpretation and efficient
methods of calculation of such spectra directly from
reduced representation of boolean functions in the form of
disjoint cube representation have been introduced in [35].
Computation of the fast Haar transform (FHT) requires
order N (N is the number of spectral coefficients) additions
and subtractions, which makes it much faster than the fast
Walsh transform (FWT) [3, 7, 8, 11, 13-15]. Hardware-
based fast Haar chips have been developed [14].

Owing to its low computing requirement, the Haar trans-
form has been used mainly for pattern recognition and
image processing [8, 13, 16-18]. Such a transform is also
well-suited in communication technology for data coding,
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multiplexing and digital filtering [8, 16]. The advantages of
computational and memory requirements of the Haar
transform make it of high interest to VLSI designers as
well. For example, the authors of [4-6] presented a set of
CAD tools to perform switch-level fault detection and
diagnosis of physical faults for practical MOS digital cir-
cuits using a reduced Haar spectrum analysis. In their sys-
tem the nonnormalised reduced Haar binary spectrum was
used as a means not only for diagnosing digital MOS ICs
as a tool external to the circuit but also as a possibility for
a self-test strategy. The use of this set of CAD tools
aliowed the derivation of strategies for testing MOS circuits
when memory states were encountered as a consequence of
some fault types. The advantage of Haar functions instead
of Walsh functions in CAD systems based on spectral
methods for some classes of boolean function was shown in
(1, 8]. For example, the analysis in [1] shows that the spec-
tral complexity of conjunction and disjunction increases
with the number of variables exponentially for the Walsh
functions and only linearly for the Haar functions.

The circuit of spectral multifunctional logical module [1,
3] to generate arbitrary boolean functions consists of a gen-
erator of basis functions, an adder, a multiplier, and the
memory to store spectral coefficients. The module can be
reprogrammed by changing dynamically its memory con-
tent. Such a behaviour of the module is useful in real-time
adaptive control systems [3, 8]. Karpovsky [1] noticed that
the size of the memory block can be optimised only when
the Haar basis is used. This is due to the fact that the
number of nonvanishing Haar coefficients is reduced with
the input permutation of variables, a situation which does
not apply to the Walsh basis. The realisation of a permuta-
tion requires no special hardware [1]. Another advantage of
the Haar spectrum in this application is the smaller number
of required arithmetic operations as there are many zero
entries in the Haar transform matrix and the number of
nonvanishing Haar coefficients is reduced.

In many practical problems of logic design and machine
learning, weakly specified boolean functions are frequently
encountered [19-23]. These functions are efficiently repre-
sented by the arrays of ON and OFF terms since a major-
ity of their functional domain are ‘don’t cares’. The local
property of the Haar transform makes it of interest in those
applications in computer-aided design systems where there
are boolean functions of many variables that have most of
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their ON minterms grouped locally. Such weakly specified
and local functions can be extremely well described by a
few spectral coefficients from the Haar transform, while the
application of the Walsh global transform would be quite
cumbersome in such cases and the locally grouped mint-
erms would be spread throughout the Walsh spectrum. In
most engineering design problems, incompletely specified
functions have to be dealt with. The don’t-care sets derived
from circuit structures represent an additional degree of
freedom and their effective utilisation often results in highly
economical circuits. To better deal with the mentioned
cases, the concept of the paired Haar transform was intro-
duced [24-28]. In the paired Haar transform, all the infor-
mation about true and don’t- care minterms is kept
separately, by what is available in different stages of CAD
process. Useful properties and applications of paired Haar
spectra in logic design, for example, the minimisation of
mixed polarity Reed-Muller expansion, and generation of
quasioptimal FBDDs and multiplexer synthesis for incom-
pletely specified boolean functions, have been demonstrated
[24, 25, 27].

Although the properties of Haar spectra have considera-
ble interest and attraction, the majority of publications to
date have considered the Walsh rather than Haar trans-
form. This is mainly due to the fact that up to now there is
no efficient method of calculating Haar spectra directly
from reduced representations of boolean functions.
Recently, efficient symbolic methods based on the binary
decision diagram representation for the computation of
nonnormalised Haar spectra have been developed [18, 29,
30]. These methods can be used efficiently in various CAD
systems and the decision diagrams can represent both the
original boolean functions and their spectra. Binary deci-
sion diagrams have proved to be very convenient data
structures for the majority of discrete function representa-
tions, permitting manipulation and calculation with large
discrete functions efficiently in terms of space and time.
Therefore they are frequently used to represent data struc-
tures in modern CAD VLSI systems [31]. However, some
of such systems are based on cubical representation rather
than decision diagrams and this article solves the problem
of efficient calculation of paired Haar spectrum for such
CAD systems [9, 10, 12, 32].

The algorithm presented has overcome the inefficiency of
calculation of both spectra directly from the definition of
the transforms by matrix multiplication. Even if the more
efficient fast transform method of calculating the Haar
spectrum was used, it requires the conversion of the cubical
representation to the full minterm vector. The new algo-
rithm has the advantage over the last-mentioned methods
of operating directly on reduced representation such as
cubes. It is especially beneficial for functions of many varia-
bles because the number of cubes maybe linearly propor-
tional to the number of variables, and the number of
entries in the minterm vector is always exponential to the
number of variables. By representing the boolean function
in the form of an array of disjoint cubes instead of mint-
erms, the spectral coefficients can be computed more rap-
idly from such a reduced representation with smaller
required memory, while the ability to calculate only partial
spectra is still preserved. Hence, the new algorithm has
allowed practical applications of paired Haar transforms
for CAD Systems using cubical rather than graph based
representations of discrete functions.

To use boolean functions that are represented as mint-
erms or arrays of nondisjoint cubes, the input data are pre-
processed by a fast algorithm that generates an array of
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disjoint ON-cubes (in the case of completely specified
boolean functions) or disjoint ON- and DC-cubes (in the
case of incompletely specified functions). The algorithm
that generates such an array and its implementation is
described in [33]. For each disjoint cube, the appropriate
partial spectral coefficients are calculated. The final paired
Haar spectrum is found by adding all the corresponding
partial coefficients contributed by the complete array of
disjoint cubes.

2 Basic definitions

An p-variable boolean function Fx|, x, ..., X,) is a map-
ping F: {0, 1}n — {0, 1, —}* where the symbol ‘- means a
nonspecified value (a don’t care) and k is the number of
outputs. A boolean function is completely specified if all its
outputs contain only elements of the set {0, 1} and incom-
pletely specified if any of its outputs is a nonspecified one.

Definition 1: An n-bit string is a vertex of an object called a
0-cube. An n-variable boolean function is represented as a
n-dimensional space (n-hypercube) in which each vertex
represents a minterm.

A collection of 2%, i € {0, 1, ..., n} adjacent minterms is
called an i-cube [12, 31]. A cube can be represented by an
n-string of symbols 0, 1 and —, where 0 corresponds to the
complemented value of the variable, 1 to the affirmative
value and — to the missing variable in the cube. The ON,
OFF and DC cubes are cubes corresponding to the product
terms of ON, OFF and DC minterms, respectively. An ON
array of cubes of a boolean function F, denoted by ON(F),
is defined as a set of cubes for which F = 1, an OFF array,
denoted by OFF(F), is a set of cubes for which F=0, and a
DC array, denoted by DC(F), is a set of cubes for which F

Definition 2: Two cubes are disjoint if they do not have any
minterm in common. Otherwise, when they share some
minterms, they are nondisjoint.

Definition 3: A nonnormalised Haar transform is defined in
term of the nonnormalised Haar functions, which are rep-
resented as rows of a nonnormalised Haar matrix, Ty of
order N =2"1, 7, 8}

Ty ®[1 1]
I%@)[l —1]

where I vy, is an identity matrix of order N/2 and the sym-
bol ® denotes the right-hand Kronecker product. It can be
easily seen that the nonnormalised Haar matrix so defined
is not orthogonal since TyTy” = kI where k is a constant.
Hence to recover a boolean function from its nonnormal-
ised Haar spectrum, various methods have been developed
[24, 25, 27-29].

For an n-variable boolean function F(x;, x , ..., x,) the
Haar spectrum is given by R = [Ty] F where R is the Haar
spectrum (a column vector of dimension 2" x 1) and F is
the R-coded truth vector of the boolean function F(X) [3,
12, 35]. In R coding, the false minterms are coded as 0, true
minterms as 1 and don’t care (DC) minterms as 0.5.

Besides the first two Haar spectral coefficients ry (so
called dc coefficient corresponding to de function) and 7,©,
which are globally sensitive to F(X), the remaining 2" — 2
Haar spectral coefficients are only locally sensitive. A spec-
tral coefficient r® is characterised by its degree / and
order k.

Definition 4: A standard trivial function (STF), denoted by
u, 1€ {1,2, ..., 2" — 1}, associated with each Haar spectral
coefficient r,, or r/® describes some set of (1 — ) cubes that

TN:[ ] and Ty =1 (1)
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has an influence on the value of a spectral coefficient r,, or
r where 0 </=n~1and 0 <k =<2 - 1. For each index 1
of u,, there exists a unique value of / and k. Formally, u;
can be expressed as a product term

!
ke
ug=u; =1 and uy = H”jn—l+r
r=1

for1<l<n-land0<k<2 -1

2)
where £, is the rth bit of bin(k). The operation bin(k) gives
the binary representation of a natural number k.

Property I: For a Haar spectrum of an n-variable boolean
function F, there are 2/ spectral coefficients of degree /, each
gives a correlation between the boolean function and a
standard trivial function corresponding to the coefficient.
The value of ry is equal to the number of minterms of F
and the coefficient ry® describes the difference between the
number of minterms in the functions X, and x,,.

Property 2: The degree [ of Haar coefficient indicates the
number of literals present in a STF w, for I = 1, 2, ..,
2t —1.

Property 3: The order k of Haar spectral coefficient r® is
the decimal equivalence of the binary Mtuple formed by
writing a 1 or 0 for each variable in a STF u; (I =2, 3, ...,
2" — 1) according to whether this literal appears in affirma-
tion or negation. When & is expressed as a binary /-tuple,
the most significant bit (MSB) corresponds to the literal x,,
and the least significant bit (LSB) corresponds to the literal
X n-l+1:

For each index I of a STF u,, there exist unique values /
and k such that 7 =2/ + k.

Recently, a paired Haar transform has been introduced
[24-28] to efficiently allocate don’t-care minterms in the
optimisation of free binary decision diagrams (FBDDs)
and multiplexer synthesis of incompletely specified boolean
functions.

Definition 5: A paired Haar transform (PHT) for an incom-
pletely specified n-variable boolean function F is a mapping
x (Fon, Fpd) = (Row, Rpg), where Roy = T x Fpy and
Rpc = T x Fpe. Foy is obtained by replacing all don’t-care
outputs of F by 0s, and Fpc 1s obtained from F by replac-
ing all true outputs by 0s and don’t-care outputs by 1s. T is
the nonnormalised Haar transform. The tuple (Rpy, Rpc)
is known as the paired Haar spectrum. Spectral coefficients
from spectra Rpy and Ry are indicated by lower-case let-
ters accordingly.

In R coding, the nonnormalised Haar spectrum is related
to the paired Haar spectrum as follows:

R = Ron + 0.5 %X Rpo (3)

Example I For the four-variable incompletely specified
boolean function F(X) = ZppM8, 9, 10, 14, 15) + ZpA1, 4,
5), the paired Haar spectrum (Roy, Rpo) = [((Fon)ue
rpAa)) (ron)o®. pAe®) (ronh®, rpc@) .. ((ron)a”,
(rpMN” = (5, 3) (-5, 3) (0, -1) (1, 0) (0, 1) (0, 2) (1, 0)
(-2, 0) (0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (1, 0) (0, 0) (0, 0)]".

3  Calculation of paired Haar spectrum for single
output function

In this Section the boolean function from which the paired
Haar spectrum is calculated is represented by an array of
disjoint ON and DC cubes.
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Definition 6: The partial spectral coefficient of an ON or a
DC p-cube of a boolean function F is equal to the value of
the spectral coefficient that corresponds to the contribution
of this cube to the full n-space spectrum of the boolean
function F. The number of partial spectral coefficients
(npsc) describing the boolean function F is equal to the
number of ON and DC cubes describing this function.

The following two properties are new and form the basis
of our procedure to calculate paired Haar spectra of
incompletely specified boolean functions.

Property 4. The partial dc coefficient ((rop)ae (Fpc)ae) con-
tributed by a p-cube C of a boolean function F is equal to
(27, 0) if C is an ON cube and equal to (0, 27) if Cis a DC
cube.

Property 5. Each ON (or DC) cube contributes a partial
paired Haar spectral coefficient (ron)® (or (rpo)®) of
degree / and order k depending on the logical value of the
literal x,; (0 < /< n—1, x, is the MSB and x, is the LSB).
Each literal x; (1 < i < n) of a p-cube C contributes a value
v to the paired Haar coefficient, (rop),.* if C is an ON
cube and to (rp),* if Cis a DC cube. Depending on the
literal x; and the order k of the spectral coefficient, the

value v is given by
9p—q
U= {—21"1 if bin(k) C p;(C) and z; =1°  (4)
0 otherwise
where p{C) is the cube obtained by a logical right shift of
the cube C by i bits, and ¢ is the number of - in the cube
pLO), ie. g = loglp{C). The operation bin(k) gives the
binary representation of a natural number k. v = 0 if x; =
-~ or the binary representation of the order & is not cov-
ered by the cube p{C). A logical right shift by / bits means
that the i least significant bits will be deleted and i zeros will
be fed from the left to cover the new i most significant posi-
tions. From eqn. 2, the standard trivial function u; =
A, xfr,,. It follows that the value of the rth bit in bin(k)
determines the polarity of the variable x,, ., in the intersec-
tion of the cube C and u;. Hence, shifting the cube C with
the logical right shift operation by i = n - / positions reveals
the number of minterms of the cube covered by the stand-
ard trivial function corresponding to the coefficient.

if bin(k) C p;(C) and z; =0’

Procedure partial_coeft (Paired Haar spectrum PHS, cube C, degree /)
{
order_list = {k eN | bin(k) < p,.AO)}.
Initialise(PHS);
for (each k in order_list) {
p =number of ' in C ; ¢ = number of '~' in p,.(C);
if (bitx,,of C =0)v=2rv
else if (bitx, , of C = 1) v=-2r9;
if (lookup(PHS, 1, k, (ron){®, (ruc)®) = 0) create((ron)®, (rpe )
if (C is an ON cube) (ron)® = ron) +v;
else if (C is a DC cube) (r,x;)S” = (l‘[)(;)(]k) +v;
if ((ron)® = 0 and (rpc)® = 0) remove(PHS, 1, k);
else insert(PHS, 1, k, (ron){®, (rpc){);
}
}

Fig.1  Procedure for calalating partial spectrum contributed by a p-cube

The procedure to calculate the partial paired Haar spec-
tral coefficient (ron)/®, (rpc)® contributed by a p-cube of
an n-variable boolean function F based on the foregoing
properties is given in Fig. 1. In Fig. 1, order_list is an array
of integers representing the minterms covered by the cube
P£..LC). PHS is a link list of nonzero valued paired Haar
spectral coefficients sorted in ascending order of degree /
and order k. The routine lookup searches from PHS for
any nonzero paired Haar coefficient of degree / and order

119



k. If found, it returns the coefficient in the tuple ((ron)®,
(rpo)f®). Otherwise the routine create is called to allocate
new paired Haar coefficient of degree / and order k. If the
computed values of (ron)®, (rpc)f® are both equal to zero,
the routine remove is called to remove the paired Haar
coefficient of degree / and order k£ from PHS. Otherwise,
the routine insert is called to insert the nonzero coefficient
in PHS according to / and k. The partial dc coefficient can
be easily computed from the cardinality of the cube C by
property 4. By summing the respective partial coefficients
contributed by all disjoint cubes, the full paired Haar spec-
trum for the n-variable boolean function F is obtained. The
algorithm in Fig. 2 describes the procedure of calculating
the complete paired Haar spectrum. In Figs. 1 and 2 the
routine Initialise sets up the link list PHS and initialises all
the Haar coefficients to 0. The number of partial spectral
coefficients npsc is equal to the number of disjoint ON and
DC cubes. To conserve disc space, it is sufficient to store
only the nonvanishing paired Haar coefficients. The proce-
dure Paired Haar can be modified to include options to
just calculate a selected paired Haar coefficient or only
spectral coefficients for a complete degree. In the former
case, the procedure Partial coef can be simplified to accept
the desired degree / and order k as arguments. In the latter
case, the degree [ is supplied as an additional input argu-
ment to procedure Paired Haar and the for loop involving
[ is omitted.

Procedure Paired_Haar(Array of disjoint ON and DC cubes D)
{
Initialise(PHS),
foreach (cube C; € D, j = 1 to npsc) §
p =number of '~'in C;;
if (C; is an ON cube) (ron)uc = (row)a + 27 ;
else if (C; is a DC cube) (rpc)u = (roc)u + 275
for (/ = 0 to n—1) partial_coeft (PHS, C;, I);
}
return PHS ;
}

Fig.2  Algorithm to calculate complete paired Haar spectrum

Table 1: Calculation of paired Haar spectrum from array of
disjoint cubes

Cube --1-  110- 001 0000 Total spectrum
/ k {rond® ronf® (rond® (i (ropdi*, (o))
dc coefficient 8 2 2 1 (12, 1)

0 0 0 -2 2 1 0,1

1 0 0 0 0 1 0,1

1 1 0 -2 0 0 =2,0)

2 0 -2 0 1 1 -1, 1)

2 1 -2 0 1 0 -1,0)

2 2 -2 0 0 0 (-2,0

2 3 -2 2 0 0 (0,0)

3 0 0 0 -1 1 -1, 1

3 1 0 o] 0 0 (0,0)

3 2 0 0 -1 0 -1,0

3 3 0 0 0 0 0,0)

3 4 0 0 0 0 (0,0)

3 5 0 0 0 0 (0, 0}

3 6 0 0 0 0 0, 0)

3 7 0 0 0 0 (0,0

Example 2: An example for calculating the paired Haar
spectrum by procedure Paired Haar is shown in Table 1.
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The four-variable incompletely specified boolean function
used in this example is F(X) = Zpp(l, 2, 3, 5, 6, 7, 10, 11,
12, 13, 14, 15) + =pA0). The disjoint ON and DC cubes
describing F are given in the first row of Table 1. Since
there are four disjoint ON and DC cubes, npsc = 4. The
column under each disjoint cube shows its corresponding
partial spectral coefficients. The total spectrum obtained by
summing all partial coefficients is given in the last column.

The sample calculation of one of the paired Haar
spectral coefficients ((ron)?, (rpe)®) using procedure
partial coeft in Fig. 1 is demonstrated as follows:

Since / = 1, n— [ = 3. For the ON cube C; = —1—, p = 3,
0, LC)) = ps(—1-) = 000-, ¢ = 1. Since x3 of C; is —,
(rom® = 0. For the ON cube C, = 110-, p, (C) =
px(110-) = 0001. Since £ = 0 = 0000, & p, AC;) = 0001,
(ronh® = 0. For the ON cube C; = 0-01, p = 1, p, (C3) =
03(0-01) = 0000, ¢ = 0. Since x; of Cyis ‘=, (ron® = 0.
For the DC cube C; = 0000, p,_(Cy) = p5(0000) = 0000, p
=g = 0. Since k = 0 = 0000, C p, (Cy) = 0000 and x; of
Cyis ‘0, (rpoh®@ = 2 = 1. Hence, ((ronh?, (rpch®) =

©.1)

4 Paired Haar spectrum for system of incompletely
specified boolean functions

In this Section an efficient method for the calculation of
paired Haar spectrum of a system of incompletely specified
boolean functions that can have any number of functions
and arbitrary locations of don’t care minterms in each of
the functions of the system is presented. Consider a system
of ¢ incompletely specified functions. By ordering the sys-
tem of ¢ functions to form a binary t-tuple F,_; F,; ... F,
where F,_; is the MSB, a single multivalued output function
Fis obtained [1]. Furthermore, let Fjoy be the truth vector
obtained from F; by replacing its don’t care outputs by 1,
and Fjpc be the truth vector obtained from F; by replacing
its true outputs by Os and its don’t care outputs by Is. The
functions Fy and Fj can be written as a weighted sum of
each individual function F; as follows:

t—1 -1
Fox =Y 2 Fjon and Fpg = 2 Fipc  (5)
j=0 7=0

Applying paired Haar transform to both sides of the
expression,

R()N = 2jRjON and RDC’ = 2jR]'DC (6)

where the tuples (RON’ RDC) and (RjON’ Rch) are the
paired Haar spectra of the multiple output function F and
its jth output F;, respectively. The total spectrum (Roy,
Rp ) is called the ordered paired Haar spectrum since it is
sensitive to the relative position of each output function
within the system. Since the weighted sums Fy and Fpc
are formed from super increasing sequence, it is trivial to
show that the ordered paired Haar spectrum obtained in
this way is unique.

One way to calculate the ordered paired Haar spectrum
(Rons Rpe) is by applying the algorithm Paired Haar in
Fig. 2 to each individual output F; (0 <j =< 7 —1). Then, the
¢ resulting paired Haar spectra (Rion, Ripc) are weighted by
2 and summed according to eqn. 6. However, the ordered
paired Haar spectrum obtained by direct application of
eqn. 6 is very inefficient when the number of functions ¢ is
large as a large number of disjoint ON and DC cubes are
duplicated in some arrays of Fj. Fortunately, the algorithm
in [33] can generate a single array of near optimal number
of disjoint cubes for a system of ¢ functions. Each disjoint
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cube C consists of an input part (x, x,_; ... X;) and an out-
put part (y,_; ¥, ... Vo), Where the input variable x; = 0, 1
or — (1 = i < n) depending on whether x; appears as comple-
mented or affirmative form or does not appear in the prod-
uct term represented by C, and the output variable y; = 0, 1
or — (0 =j =t - 1) depending on whether the cube repre-
sented by the input part of C is a OFF, ON -or DC cube of
the function F). Instead of operating on ¢ arrays of disjoint
ON and DC cubes separately, procedure Paired Haar in
Fig. 2 can be modified to produce the paired Haar spec-
trum for a system of incompletely specified functions by
accepting a single array of disjoint cubes. The new proce-
dure Ordered Paired Haar is given in Fig. 3. The global
variable ONweight and DCweight accumulates the weight
factors contributed by all ON and DC outputs of each
cube C;. Hence the partial coefficient is calculated once for
each cube C; as opposed to s times in the previous method
if the input part of C; appears s times in ¢ arrays. The if and
else if statements on lines 7 and 8 of procedure partial_coeft
(Fig. 1) have to be modified to (rop)® = (rom)® + v x

ONweight and (rpo)f® = (rp)® + v x DCweight accord-
ingly. Procedure Ordered_Paired Haar in Fig. 3 also allows
independent calculation of either some selected coefficients
or a complete degree of spectral coefficients by inclusion of
additional arguments and removal of the inner for loops as
described.

Example 3. Consider the system of incompletely specified
functions F, and F; taken from examples 1 and 2, respec-
tively. The ordered paired Haar spectrum is calculated by
procedure Ordered Paired Haar in Table 2. The array of
disjoint cubes describing the system of functions is given by
{—I1-10, 110~ 10, 0-01 1-, 111- 01, 10-0 01, 0000 -0, 0100
0-, 1001 01}. The input part x, x3 x, x; and the output
part y; yo of the cubes are listed in the first two rows of
Table 2. The ONweight and DCweight are given, respec-
tively, in the third and four rows under each cube. The par-
tial coefficients contributed by each cube are given in
columns 2 to 9 and are summed to give the total spectrum
for the system of functions in the last column.

Procedure Ordered_Paired_Haar(Array of disjoint cubes D)

{
Initialise(PHS);
foreach (cube C;e D, j = 1 to npsc) {
p = number of -'in C;;
ONweight = DCweight =0 ;

foreach (output variable y; of C;, i=0to -1 ) {

if (y,=1) ONweight = ONweight

+2f;

else if (y; = — ) DCweight = DCweight + 2/ ;

(Fon)ae = (ron)ae + 2 x ONweight,
("ocdue = (rocda: + 27 x DCweight;

/* Note : Subroutine partial_coeft is modified by multiplying the partial value v by ONweight */
/* for (r(m)?‘) and DCweight for (roc)® +/
for (/ = 0 to n—1) partial_coeft (PHS, C, I);

}
return PHS ;
}
Fig.3 Algorithm for calculating paired Haar spectrum for system of functions

Table 2: Calculation of ordered paired haar spectrum for system of boolean

functions

XgXaXpXy ---  110- 001 111- 10-0 0000 0100 1001

VaVo 10 10 1- 01 01 -0 0- 01 Total
Onweight 2 2 2 1 1 0 0 1 spectrum
DCweight -0 0 1 0 0 2 1 0

(roM e (roddde) (16,00 (4,00 (4,2 (2,00 (2,0 (0,20 (0.1 (1,00 (29,5)
((rondo™®, (rpch'®) 0,00 {-4,00 (4,2 (2,00 (2,00 (0,2) (0,1 (-1,0) (5,5)
(troph™®, (rpc),@) (0,00 (0,00 (0,00 (0,00 (0,00 (0,2 (0,-1 (0,00 (0,1
(troph'", (rpe)s™) (0,00 (4,00 (0,00 (2,0 (2,00 (0,00 (0,00 (1,00 (3,0
((ron)2@, (rpe)2®) (-4,00 (0,00 (2,1 (0,00 (0,00 (0,20 (0,00 (0,0 (23
(tron2™, (rpg2™) (-4,0) (0,00 (2,1 (0,00 (0,00 (0,00 (0,1 (0,00 (2,2
({ron2*2, (rpg)2) -4,00 (0,00 (0,00 {0,00 (0,00 (0,00 (0,00 (1,00 (3,0
((ron2®, (rpe)2®) (-4,0) (4,00 (0,00 (2,00 (0,00 (0,0) (0,00 (0,0} (-20)
{trons®, (rpda™®) 0,00 (0,00 (2,-19 (0,00 (0,00 (0,2 (0,00 (0,0) (2,1
(trons™, (rpds™ 0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 {0,0)
(trona?, (rpcls®) (0,00 (0,00 (-2,-1) (0,00 (0,0) (0,00 (0,1) (0,00 (2,0
((rona®, (rpga™) 0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,0
(tronds'®, (rpg)a') 0,00 (0,00 (0,00 (0,00 (1,00 (0,0) (0,0} (-1,0) (0,0
((rons®, (rpd)3™) 0,00 (0,00 (0,00 (0,00 (1,00 (0,00 (0,00 (0,00 (1,0
(tron)a®, (rpd)3®) 0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,0
(trons™, (rpc)s™) 0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,00 (0,0
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Table 3: Experimental results

Function Inputs Outputs Disjoint Coefficients (Tcl)r;ﬁ) Eﬁ% (SSIZE?DD) gSSD)
9sym 9 1 145 211 0.01 0.03 33 50
Z9sym 9 1 185 21 0.03 0.01 - -
5xp1 7 10 75 128 0.02 0.02 88 140
Z5xp1 7 10 128 128 0.04 0.02 -~ -
alud 14 8 1043 12008 0.07 0.07 1352 2420
sao2 10 4 96 102 0.02 0.03 154 220
apex4 9 19 523 511 0.04 0.02 1021 1800
bw 5 28 106 29 0.03 0.04 138 190
clip 9 5 176 504 0.02 0.02 254 370
con1 7 1 85 0.03 0.03 18 20
inc 7 33 128 0.01 0.04 - -
misex1 8 32 232 0.03 0.02 47 70
misex3 14 14 1641 3168 0.13 0.08 1301 2290
misex3c 14 14 2630 4100 0.14 0.08 1275 2150
table3 14 14 179 8992 0.02 0.06 941 1540
tableb 17 15 166 78011 0.13 0.31 - -
sqrt8 8 4 40 255 0.02 0.04 42 50
1481 16 1 887 28231 0.08 0.15 32 50
b12 15 9 58 28872 0.06 0.14 - -
ex1010 10 10 1017 1021 0.05 0.04 - -
squarb 5 8 32 32 0.02 0.03 - -
xor5 5 1 16 17 0.03 0.02 9 20
rd53 5 3 32 32 0.02 0.02 23 30
rd73 7 3 141 128 0.04 0.04 - -
rd84 8 4 256 256 0.02 0.06 59 80

~" indicates data not available
5 Experimental results

The algorithm Ordered Paired Haar is implemented in C,
and the computation time and space requirement of the
paired Haar spectra for some MCNC benchmark functions
[34] are given in Table 3. The MCNC benchmark functions
in PLA format are preprocessed by the disjoint cube algo-
rithm [33, 35] before the test. The number of disjoint cubes
is given in the fourth column labelled ‘disjoint’ in Table 3.
The number of input and output variables of each function
are also given in the second and third columns, respec-
tively. The column labelled ‘coefficients’ is the number of
nonvanishing paired Haar coefficients and the column
labelled ‘Time (OPH)’ is the system execution time in sec-
onds on a HP Apollo Series 735 workstation. For compar-
ison, the computation of paired Haar spectra for the same
set of benchmark functions by the fast Haar transform
method [3, 7, 8, 11, 13, 14] is implemented and run on the
same workstation. The execution times in seconds for the
fast Haar transform algorithm are shown in the column
labelled ‘“Time (FHT). As MCNC benchmark functions
have to be converted into full minterm vector before appli-
cation of the fast Haar transform, preprocessing to gener-
ate true and don’t care minterms is done but this
computation time is not included in the column ‘Time
(FHT). Although the execution times of both methods are
comparable, our method requires considerably less memory
than the fast Haar transform method, particularly when
the number of disjoint cubes is small. Besides the difference
in the dimensions of the inputs (i.e. disjoint cubes against
minterms) in the algorithms, an amount of storage propor-
tional to 2" where » is the number of input variables is
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required for the intermediate and final results using the fast
Haar transform method. By contrast, the memory for the
spectral coefficients calculated by our algorithm can be
dynamically allocated and freed when necessary during the
computational process.

Recently, an algorithm to compute Haar spectrum by
symbolic methods was presented in [18]. The same algo-
rithm was modified to calculate the paired Haar spectrum
and the results obtained from R.S. Stankovic are added as
columns labelled ‘Size (SBDDY and ‘Time (SBDD). The
columns ‘Size (SBDDY and ‘Time (SBDDY’ are the sizes of
the shared binary decision diagrams (SBDDS) for the

‘paired Haar spectra and the execution time in seconds for

the computation of paired Haar spectra from shared binary
decision diagrams of the benchmark functions, respectively.
The calculations are performed on a 133MHz pentium PC
with 32Mbyte of RAM. In SBDD, two bytes are required
for each node to store the calculated spectral coefficient
values while each nonvanishing paired Haar coefficient in
our implementation requires one integer storage for the
index and two integers storage for the values. Moreover,
each node in SBDD has, according to R.S. Stankovic [pri-
vate communication], the following data structure:
struct node = record;
low, high: pointer to node;
index: 1 ... n+1;
left, right: integer;
id: integer;
end;
Hence, from the results it may be concluded that the
SBDD-based algorithm has similar space complexity as
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ours. However, it does not allow direct computation of
selected coefficients as easily as ours and also requires pre-
processing of original benchmark functions by converting
them into reduced decision diagrams. As with other results
presented the results for “Time (SBDD)’ do not include this
preprocessing time.

6 Conclusion

A new algorithm that generates paired Haar spectrum for
system of incompletely specified boolean functions from
the disjoint cube representation has been shown. Since the
number of such cubes can be considerably smaller than the
number of minterms, the memory requirement can be
reduced significantly. The advantages of this kind of repre-
sentation used frequently in modern CAD VLSI systems [9,
10, 12], especially that for practical functions the number of
disjoint cubes is much smaller than the number of mint-
erms, has been manifested in [32]. Recently, the concept of
entropy and equivocation is formulated through paired
Haar spectra of incompletely specified boolean functions
and applied to quasiminimisation of free binary decision
diagrams [24, 25]. The ability to calculate only some spec-
tral coefficients made possible by this research is very
important since there are many spectral methods in digital
logic design for which the values of only selected spectral
coefficients are needed [1, 3].

The fundamental advantage of the algorithm is the usage
of a reduced representation of boolean functions in the
form of disjoint cubes as the internal data from which the
algorithm calculates the spectra. Such an approach gives
the algorithm the ability to yield solutions to problems of
very high dimensions and is applicable to these CAD sys-
tems which use cubical representation for discrete func-
tions. The algorithm is very well suited for systolic VLSI
realisations, and may be implemented as a hardware
coprocessor in a manner similar to those used for other
binary expansions [2].
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