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Abstract

Different properties of recently introduced Paired Haar transform have been shown. Non-
polynomial Haar expansion of incompletely specified Boolean functions has been presented.
Based on the labo'ue properties and exparnsion some applications of Paired Haar spectrum have
been proposed. Algorithm for the calculation of Haar Pair spectrum from disjoint cubes for
systems of incompletely specified Boolean functions has also been developed.

1 Introduction

Spectral techniques have been applied widely to Boolean function classification, disioint
decomposition, parallel and serial linear decomposition, spectral translation synthesis (extrac-
tion of linear pre-and post-filters) , multiplexer synthesis, prime implicant extraction, thresh-
old logic synthesis, state assignment, testing and evaluation of logic complexity [7,8,10—
13]. There are at least two transforms which are based on square —wave like {functions that
are well suitable for Boolean functions; Walsh and Haar transforms. The Walsh functions are
global like the Fourier functions and consist of a set of irregular rectangular waveforms with
only two amplitude values +1 and —1 [1, 3,6—8]. Each but two basis functions in Haar
transform consists of a square wave pulse located on an otherwise zero amplitude interval.
Computation of the fast Haar transform (FHT) requires order N (N is a number of spectral
coefficients) additions and subtractions, which makes it much faster than the fast Walsh trans-

form (FWT) [1,7—9]). Due to its ow computing requirements, Haar transform has been
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used mainly for pattern recognition and image processing [1,14]. Such a transform is also well
suited in communication technology for data coding, multiplexing and digital filtering [14].
The advantages of computational and memory requirements of the Haar transform make it of
big interest to VLSI designers as well [7,10,11).

Local property of Haar transform makes it useful in those applications in computer-aided
design systems where there are Boolean functions of many variables that have most of its values
grouped locally. Such weakly specified and local functions {requently occur in logic design and
can be extremely well described by few spectral coefficients from Haar transform while the ap-
plication of Walsh, global transform would be quite cumbersome in such cases and the locally
i grouped minterms would be spread throughout all Walsh spectrum. To better deal with the
mentioned cases, the idea of Paired Haar Transform was introduced [4]. In Paired Haar
Transform, all the information about true and don’t care minterms is kept separately, by what
it is available in different stages of CAD process.

In this paper more properties allowing application of Paired Haar Transform in different
problems of logic design are described. An incompletely specified function or group of such
functions can be represented by nonpolynomial Haar expansions. To obtain Paired Haar spec-
trum in an efficient way, the methods are presented that calculate such spectra directly from
disjoint cube representation of incompletely specified Boolean functions. It should be noted that
efficient representation of incompletely specified functions is extremely important in algorithms
used in many pattern recognition systems [2] and for such cases the Paired Haar transform can
also be applied. Introduced properties and algorithms allow also on more efficient manipulation
of different representations of Boolean functions during synthesis process since Paired Haar
spectra and their expansions are available to the designer and either of them maybe used inter-

changeably dependent on the requirements of the design process.

2 Normalized Haar Spectrum

Definition 1 The normalized Haar transform Hy of order N=2" can be defined recur-
sively as [1,13]:

Hy

Hy®@[11]
B [Ig@[l -1

where I¥ is an identity matrix of order y and the symbol '®" denotes the right-hand Kro-

]:l and H, =1 ‘ 1)

2
necker product.
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For an n-vanable Boolean function F(x,, x;,***, x,) Haar spectrum is given by R =
[Hx]F, where R is Haar spectrum (a column vector of dimension 2*X1) and F is the R-cod-
ed truth vector of Boolean function F(X) [4,5,7,8,13]). In R coding, the false minterms are
coded as 0, true minterms as 1 and don’t care (DC) minterms as 0. 5.

Besides the first two Haar spectral coefficients 7, (so called dc coefficient corresponding to
dc function) and r§®, which are globally sensitive to F(X), the remaining 2"—2 Haar spectral
coefficients are only locally sensitive. A spectral coefficient 7;" is characterized by its degree /

and order 4.
Property 1  For a Haar spectrum of an n-variable Boolean function F, there are 2’spec-

tral coefficients of degree /, each measures a correlation of a different set of 2"~ neighboring
minterms where  =1,2,+, n. The dc coefficient r,, and the zero degree coefficient r,‘” mea-
sure a correlation of 2" neighboring minterms (the whole Karmnaugh map). The value of 7. is e-
qual to the number of minterms of F and the coefficient r,'” describes the difference between
the number of minterms in the functions z, and z..

Definition 2 A standard trivial function (STF), denoted by #;, I€ {0, 1,+-, 2"—1},
associated with each Haar spectral coefficient r,, or r,*” describes some set of 2"~* neighboring
minterms on a2 Kamaugh map that has an influence on the value of a spectral coefficient r,, or
7® where 0</<<n—1 and 0<A<2'—1.

An index I of a STF u; is equal to 2'+4.

Property 2  The degree / of Haar coefficient indicates the number of literals present in a
STF w, for I =1,2,%+, 2"—1.

Property 3  The order & of Haar spectral coefficient 7,*’ is the decimal equivalence of the
binary Z-tuple formed by writing a 1 or 0 for each variable in a STF «,(I = 2, 3, -, 2"—
1) according to whether this literal appears in affirmation or negation. When % is expressed as
a binary /—tuple, the most significant bit (MSB) corresponds to the literal z, and the least
significant bit (LSB) corresponds to the literal z,_,,.

Property 4 The positive standard trivial function (PSTF) and the negative standard
trivial function (NSTF) are the cofactors of the Shannon’s decomposition of the STF with re-
spect to z,_;and z,_,;, respectively.

Ezample 1  All STFs of Haar spectrum for a four variable Boolean function are shown
as areas filled with circles and triangles in Fig. 1. The area {illed with circles is the PSTF and
the area filled with triangles is the NSTF. For the STF u,, index I = 9. For 0<{/<<n—1 and
0<r<2'—1, 2'+£=9=>!=3,k=1. This function describes 2'"°= 2 neighboring minterms

for the spectral coefficient of degree 3.
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3 - Paired Haar Spectrum of Boolean Functiions

In efficient synthesis of incompletely specified Boolean functions there is a need for filling
don’t care minterms of the original function by '0' and '1' in such a way that the resulting
completely specified Boolean function will be easily implemented by available basic gate struc-
tures and Programmable Logic Devices (PLDs). Different complexity criteria are used in order
to make such a choice of minterms optimal [7,8]. In order to make easier to {fulfill the above
requirements on the {inal values of spectral coefficients the Paired Haar transform has been in-
troduced [4].

Definition 3 A paired Haar transform for an incompletely specified n-variable Boolean
function F is composed of 2" vectors, each having four elements. The elements in the first vec-
tor are denoted b& @ys bas Cacs da and in the remaining vectors by a* .6, ,¢,*’, d,“’where 0

<I<n—1, 0< < 2'—1 and the elements o, 5, ¢{” and d,¥ are defined as; a,*’ is the

@) - )

number of true minterms in the NSTF; 4 is the number of true minterms in the PSTF; ¢,“

is the number of don’t care minterms in the NSTF; &4,*

is the number of don’t care minterms
in the PSTF. a, and c, represents the total number of true and dc minterms respectively and
b, and d, are always 0. 1n the case of a completely specified function, Paired Haar transform
is described by 2* vectors, each having only two elements: a,, and &, for the first vector and
a* and 4,® for the remaining vectors, since for completely specified Boolean functions ¢,*’ and

d,® are always 0.

Ezample 2  Consider the Boolean function presented by Fig. 1. Paired Haar spectrum
of this function is given by all the values ¢,*’, 8,%“, ¢,* and &, listed below each Kamaugh
map.

Property 5 The Pax"red Haar spectrum of the complement (¥) of a Boolean function F is
given by:

(@ gt a3 ar da') = (2" — @4y bys 2" — cu» da)

(a5 d ) = (2 — o T — P, — (P —aP) ()
where the prime superscripts' are used to indicate the spectral coefficients of the complement
functionF. I =0,1, » , n—land 2= 0, 1, +, 2'—1.

Property 6 The sum of all elements a,*” and 4,*’ with the same degree { is equal to a;,

and the sum of all elements ¢, and d,”” with the same degree [ is equal to c,.. i.e. ,

-1 7
(a® +b®) =g and D (c? +d*) =, (3

k=0 k=0

J
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Property 7 If for some Z and k,4,"+¢,*=2""""" and b’ +d{¥ =0, then there exists
an ON (n—{—1)-cube equal to the corresponding NSTF with some assignment of don’t care
minterms. Similarly, if for some ! and &, ¢, 4+¢,* = 0 and §,*+d,*® = 2™, there ‘exists
an ON (n—I—1) —cube equal to the corresponding PSTF with some assignment of don’t care
minterms. )

Property 8 1If an n-vanable Boolean {unction is independent of the vanable z;, then

PR 2"
E al, = Z 6L, (4

=0 =0
By filling don’t care minterms ¢,*’ and d,” by 0 or 1 such that (4) is fulfilled for some I, an
optimal or near optimal assignment of such minterms can be obtained.

Property 9  With the consideration of all possible assignments of don’t care minterms in
an incompletely specified Boolean function, the size of the largest prime implicant has the upper
and lower bounds given by: [ n—Imax —1< p<Clog {as+cy)] where £ is the numberof '—
* in the cube representation of the largest prime implicant and /max is the maximum degree {

& &
® or d,* for some order &.

that has at least one maximal valued (2°7"!) element a,*,5,* ¢,

Ezample 3  As a numerical example, consider a four variable incompletely specified
Boolean function for which all STFs and their respective Paired Haar spectral coefficients
(a*,6%, ¢*, d¥) are given in Fig. 1. According to the relationship given in [4], Haar
spectral coefficients for this function are calculated as follows:

re=5+0.5 X 3 =6.5; r, V= 0—540.5(3—0) = —3.5; "= 0—04 0.5(1—
2) = —0.5; r,P= 3—-24+0.5(0—0) = 1; n,"= 0—0+0.5(1—0) = 0.5; r,""= 0—0
+0.5(2—0) = 1; r,%= 2—14+0.5(0—0) = 1; ,'¥= 0—2+40.5(0—0) = —2; ;=
0—0-40.5(0—1) = —0.5; 7= 0—0+0.5(0—0) = 0; r{®= 0—0+0.5(1—1) =

@ = 0—040.5(0—0) = 0; = 1—140.5(0—0) = 0; ry¥= 1—0+0.5(0—0) =

1; 7= 0—0+40.5(0—0) = 0; r,”= 1—1+0.5(0—0) =

From Property 9 , since lmax = 2, 4—2—1< p<C log,(5+3), 1< p<< 3. In this ex-

ample, p = 1 since the size of the largest prime implicant 1s equal to 2.
4 Probabilistic Analysis By Paired Haar Spectrum

Lemmal A non polynohial Haar expansion can be expressed as follows:
2’-1 L)
FOO = 3 {ra+ (= D™ + Zz'(—— 1% 5,0 T zbest) (5)

k=0 jup—i+1

where k,€ {0,1} is the i—th bit in the binary |—tuple of the order ky x/=ux,if j = 1 and x/
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=Z.if j = 0.

In order to apply Paired Haar transform to the optimization of digital circuits and the opti-
mal assignment of don’t care minterms, a probabilistic function P(C) is introduced. The val- ‘
ue of Pr(C) lies between 0 and 1 which indicates the likelihood of the cube C being an impli-
cant of the function F. Pr(C) = 1if all minterms covered by C are true minterms. P,(C)\=
0 if C is an OFF cube.

Definition 4 Let m be any minterm covered by the cube C whose size is equal to [C| ,

then the probabilistic function P;(C) is given by

PH(C) = 71 S F(m), (®

meC
where F(m) is the R—coded functional value of the minterm m.

Property 10 When Pg(C) 2 0.5, C may be changed to an ON cube by assigning all dc
minterms covered by it to 1. Conversely, when Pr(C) < 0.5, it is impossible to make from C
an ON cube even by assigning all dc minterms covered by C to 1.

Lemma 2 Let Z(C) be the cube resulting from ratating the cube C by i bits to the right
and 7,(C) be the number of ‘—’ in C between bit 1 to bzt i

2=

PL(C) = 2'|CI {IClre 4+ 20},

i=0

0; 1{1: e’

n—l

S =1g0i®@ym S0 00, g 0

NeX__©

In Equation (7), M E.%,_,(C‘) denotes the set of integers whose binary representations are e-
qual to the minterm numbers covered by the cube Z,_,(C) .

Ezample 4  Consider the cube C =—1—01in Fig. 1, from (7), 8(0)=0 since z,=—;
Z(C)=000—,75(C)=1,8(1)=2"" (=)' (P +rP) = —4(—0.5+1)=—2;8(2) =0
since ,=—3 Z(C)=0—1—,%,(C)=0,8(3) =2 (—=1)° P +r® ++O ++P) =8(0+0
+0+40)=0. since |C|=4 and r,,=6.5, {from (7),

Pe(C) =

16X4{4><65+(o-—2+o+0)}--——x24—0 375.

Since P,(C)<<0. §, it is impossible to make C an ON cube by any assignment of don’t care

minterms.

Tran [15] introduces a 73 majority i —cube as an —cube containing at least —%XZ" true

minterms. He has used it successfully as a selection criterion in the decomposition method for
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minimization of Reed —Muller polynomials in mixed polarity for completely specified Boolean
functions. By Definition 4, the -43 majority cube can be detected by (7) from Haar spectrum

since any cube C is a 7:} majority cube if and only if P,(C) = 0. 75 for a completely specified

Boolean function. The concept of 73 majority cube is further extended to the case of incom-

pletely specified functions by the following lemma and definition. With the extended defini-
tion, Paired Haar spectrum can then be utilized as a selection criterion in decomposition method
for the minimization of mixed polarity Reed — Muller expansions of incompletely specified
Boolean functions.
Lemma 3
Pe(C) = P (C) 4+ 0.5 X P (C), (®
where -

1

Poap(C) = sl IClag + D0uD)}s
z|C] =
0, . ifz,_,= ‘-,

On ()= 2 i O (= 1) Z [a* — b™], if ,_,7# ‘=7,
NeT_(©)
Definition 5 When
P (C) + P, (C) = 0.75,

Cis known as a % majority cube for any completely or incompletely specified Bookan function

F.

Based on the above Lemmas and Properties, Paired Haar spectrum can be applied to mul-
tilevel multiplexer circuit synthesis using the heuristic approach from [12]. The basic principle
is to minimize level by level the multiplexer modules by an appropriate choice of data select -
variables by using the three basic conditions for which the next module is redundant: the input
function is a trivial function (constant 0, 1 or single variable z;or z;), the input function is i-
dentical to or is the complement of another input function to a multiplexer in the same level
[12]. When C;is the cube formed by the conjunction of the % data select variables in some po-
larity 7 and F, is the cofactor obtained by decomposing the function F around C;, the latter
problem is translated into finding a cube C, that maximizes the possibility of the next level mod-
ule being redundant. The following conditions lead to a trivial input function;

(1) ¥ Par(C,) = 0, all don’t care minterms covered by C, should be assigned to ‘0.

G ' '

P.(C)+ P (C)=1,
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~ all don't care minterms covered by C; should be assigned to “1’.
3 I
P,;(Cube ;) + P, (Cube ) = 1
or
P,;(Cube z) + P,,(Cube z,) = 1
where z; has not been used as the data select variables.
Additionally, the data input functions that are complements of each other in the same lev-
el can be recognized by Property 5 and the input function that is independent of the data select
variables can be recognized by Property 8.
If there is more than one set of data select variables that fulfill the above criteria, the sup-

- plementary condition (4) is taken into account
(4) The set of % variables is selected for which the absolute value

£
|27 = SHP(CD) + PoC}|
wen(

is the greatest.

Condition 4 is based on the conjecture that a higher concentration of true or false
minterms tends to reduce the complexity of the data input function and hence the number of
modules in the next or subsequent levek. By examining the probabilistic functions of different
classes of functions, additional criteria may be introduced to improve the quality of the results.

5 Calculation of Paired Haar Spectrum From and Array of Disjoint Cubes

To enhance the efficiency in the applications of Paired Haar spectrum, we extend the con-
cepts used in [3,4,6] to cakulate Paired Haar spectrum from an array of disjoint cubes. The
advantages of the presented algorithm are that it allows on the independent cakulation of only
some selected coefficients and the partial spectral coefficients contributed by each disjoint ON
or DC cube can be executed simultaneously in parallel dedicated processors.

Definition 6 The partial spectral coefficient 6f an ON or a DC p—cube of a Boolean
function F is equal to the value of the spectral coefficient that corresponds to the contribution
of this cube to the full #—space spectrum of the Boolan function F. The number of partial
spectral coefficients npsc describing the Boolean function F is equal to the number of ON and
DC cubes describing this function. A - '

Property 11  The partial dc coefficient (2, b, 1cs» ds) contributed by a p—cube C of
a Boolean function F is equal to (2’, 0, 0, 0) if C is an ON cube and equal to (0, 0, 2*, 0)
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if C is a DC cube.

Property 12 Each ON (or DC) cube contributes a partial Paired Haar spectral coeffi-
cients ( ¢,*, 5*) (or (¢, d,”)) of degree I and order % depending on the logical value of
the literal z,_,(0< I<< n—1, z,is the MSB and z, is the LSB). Each literal x;0f a p—cube C
contributes a pair of values (v,, v;) to a degree I = n—¢ of Paired Haar coefficient ( a”,
&®) if C is an ON cube and to ( ¢,*, d,*’) if C is a DC cube. The values of (v,, v,)} which
depend on the kteral x; and the order £ of the spectral coefficient are giveix by:

(22 #iC R(C)and x; = ‘-’
@,0) if :C Z,(Cland z; = ‘0’
(vy,v0) = . £
(0,277) it :C R(Cland x; = ‘1’
(6,0) Otherwise, |

In the above Equation, / = n—i forall 1<< < n and ¢ is the number of ‘—’ in the cube -
R€) ,le, qg=log,| R(C)| . v,= v,= 0 iff the binary representation of the order % is
not eovered by the cube Z(C) . '

Based on Property 12, the procedure to cakulate the partial spectral coefficient (a,*,
5" contributed by an ON p—cube of an »-variable Boolean function F is given below;
Procedure partial_coeft_ouncube (ON p—cube C, degree {, order k)

{
if (RSZE,-,(C)){
p=number of ‘—’ in Csq=number of ‘—" m R,_,(C);
Switch (logical value of literal x, ; of C){
case ‘—’ gV =pP=2""",
break; ’
case ‘0’ 1a” =25 =0,
break;
case ‘17 :a’=0,4"=2"
break;
-}
Yelse a® =bP=0;

 return (@,5{");

} : '
The procedure partial _coeft_dccube which is used to calculate the partial spectral coeffi-

cient (c,*,d,**) contributed by a DC p—cube is similar to the procedure partial_coeft_on-
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cube except that the input argument ON p—cube C is replaced by DC p—cube C and every oc-
currence of the return values (a5 are replaced by *,d*), accordingly.

By summing up the partial coefficients a,.» 2, and 5,* which are contributed by al the'
disjoint ON cubes and the partial coefficients ¢, ¢* and d* contributed by all the dxs,omt

DC cubes, the full spectrum composed of Paired Haar spectral coefficients @®, b*, c, ’
d,®) for the n—variable Boolean function F is obtained. The following algorithm describes the
procedure of cakulating the complete Paired Haar spectrum:
Procedure Paired_Haar(Array of disjoint ON and DC cubes D)
{ |
for (row =010 2" —l)a[mv]=b[mw]=c[raw]=d[rm]=0;
" 8[0]=d[0]=0;
for (each cube C;€ D,j=1 to npsc){
p=number of *—" in C;;
for (=0 to n—1){
for (k=0 to 2'—1){
indez =2"+ks
if (C;is an ON cube){
a[0]=al0]+2%;
(a[éndez),blindex)) = (alindex] ,b[index])+partial _coeft_oncube(C;,1,k)3
Yelse{
c[o]=c[0]+2*;
(c[indez], d[mdcx]) (c[index], d[mdex])-l—partlal coeft_dccube(C;sl,2) 3

)
retarn(arrays a,b,¢,d);
}

The procedure Paired_Haar can be modified to include options to just cakulate a selected
Paired Haar coefficient or only spectral coefficients for a complete degree. In the former case,
the desired degree / and order £ are supplied as additional arguments to the procedure Paired_. |
Haar and the two inner for loops with / and & are skipped. In the latter case, the degree / is
supplied as an input argument to Paired_ Haarandthemnerforbopthhhsommed.

Ezample 5 An example for cakulating Paired Haar spectrum by Procedure Paired_



B. J. Falkowski et al: Properties and Calculation of Paired Haar Transform 11

Haar is shown in Table 1. The four—variable incompletely specified Boolean function used in
this example is ON(F) = z,+z,254 Zo5px,» DC(F) = Z,z.Z,%,. The disjoint ON and DC
cubes describing F are generated by the algorithm in [3]. They are given in the first row of
Table 1. Since there are four disjoint ON and DC cubes, npsc = 4. The column under each
disjoint cube shows the partial spectral coefficients corresponding to that cube. It is obvious
that the partial values ¢, and d,*’ contributed by an ON cube and the partial values a,*’ and
5% contributed by a DC cube for any / and % are equal to zero. The total spectrum obtained by
summing all partial coefficients is given in the last column. The cakulation of Paired Haar
spectral coefficient (2,86, »¢,'” ,d,) is explained as follows:

For the ON cubes ——1—, 110— and 0—01, Procedure partial _coeft_oncube is applied
to calculate their respective partial spectral coefficient. Since I = 1, n—1I = 3. For the cube
——1—, p =3, Ry ——1—) = 000—, g = 1. Since & = 0 = 0000, 000— and z,=
67, 4= p,@= 2"""'= 2. For the cube 110—, ,( 110—) = 0001. Since £ = 0 =
0000,Z-0001, a,”= "= 0. For the cube 0—01, p =1, Z,( 0—01) = 0000, ¢ = O.
Since £ = 0 = 0000,& 0000 and z;= *—’, a, V= 5= 2'"""'= 1. The contribution to
¢, and d,” by the DC cube 0000 is calulated by Procedure partial_ coeft_dccube. %, (
0000) = 0000, p = g = 0. Since £ = 0 = 0000,< 0000 and z,= *0’, 6 ®=2""=1,
d,® = 0. Hence (2,,6,,¢,”,d,”) = (2200) +(0000) +(1100+(0010) =
(3310).

6 Conclusion

The essential relationships between classical (Kamaugh maps and disjoint cubes) and
spectral (Paired Haar Spectra and Expansions) representations of Boolean functions used in the
design of VLSI digital circuits have been stated. Paired Haar Transform based on local basis
functions is especially well suited to spectral processing of weakly defined locally grouped multi
—variable incompletely specified Boolean functions. It can also be applied to optimal don’t care
assignment for mixed polarity Reed—Muller expansions of incompletely specified Boolean func-
tions and optimization in the multiplexer synthesis. |

In order to calculate Paired Haar transform in an efficient way, the procedure to convert
disjoint cube representation of incompletely specified Boolean {unctions has been introduced. It
is also possible to modify recently introduced method of conversion of Binary Decision Diagram
representation of Boolean functions to/from standard Haar spectrum [5] to the case of Paired

Haar spectrum.
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The research summarized here will have not only impact on the more efficient applications

of Paired Haar transform in logic design. but should ako influence the application of such a

transform in the areas where standard Haar transform is used outside logic design. Some of

such possible areas are pattern recognition and image processing, especially when some locally

mosaic types of patterns and images are considered [2].
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Fig. 1. Standard trivial functions %, and Paired Haar spectrum of a four-variable incompletely

specified Boolean function.
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