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INTRODUCTION

Today’s society is one of data transmisson. Data is being transmitted between nearly
everyone in nearly all societies. Methods include eectronic format such as e-mail and the
Internet, broadcast dissemination such as television and radio, and even non-technological
means such as pogtd mail. Tranamitting information in eectronic format has been a topic of
great discussion for many years. Many parts of the world have experienced some eectronic
tranamission, be it from the days of the 1200 baud modem or the OC3 connections of major
corporations. But asthe bandwidth of datatransmission lineshasincreased, so hasthe demand
for it.

It can be argued that as bandwidth increases over time, the demand onit will increase at
least at the same rate if not faster. Therefore, aneed exigs for some more efficient means of
datatransfer. One way to improve the transfer of datais to compress it before it is sent and
then decompress it on the other end of the transmisson. Thisis obvioudy not anew idea. It
has been around for years, and many methods have been developed for this function.
However, the degree of compression and the amount of data-loss are of much concern. This
would indicate the need for a method combining a high compression ratio with alow (or even
zero) amount of data-loss.

Wavdets are one answer to this need. Waveets are mathematica functions that satisy
certain properties and can be used to transform one function representation into another.
Trandorms like this have been around for many years. However, choosing the appropriate
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waveet transform for a particular problem can provide a high compresson ratio with no data
loss. Wavelet transforms have gpplications to image compresson as well as avariety of other
goplications.

EXAMPLE WITH HAAR WAVELET

We will now perform a Haar wavelet transform on a sample data s=t, but later we will
examine just abit more theory. Consder the following string of numbers. For example, they
could be the first row of an 8 x 8 pixel image. They could aso be the functiond vaues of a
discrete dgnd. There is nothing significant about these particular numbers as they are Smply
chosen to avoid fractions in the calculations.

12 20 16 28 32 32 22 14

We will employ the process of averaging and differencing on this sample data. This
process of averaging and differencing will occur three times due to the fact of there being eight
dementsand 8 = 2%, Theformulafor this operation will bef(x) = (a+b)/2. Wewill takethe
8 numbers and group them into pairs of two adjacent numbers. Pair onewill be (12 20), pair
two will be (16 28), and so on. First we will take the averages of the numbersin each one of
these pairs and place the four averages at the beginning of a new row. Then we will subtract
the two numbers and divide by two. These numberswill be placed on the same row after the
averages. Thefirg four numbersin the second row are the averages and the last four are the
differences (referred to as the detail dements). This process is continued on the remaining
averages utill thereis only one average I eft. Detail €l ements are carried down from row to row
and the new detail dements are added in front of the old ones. Here are the 3 stepsto arrive
at the transformed row (the bottom row).

12 20 16 28 32 32 22 14
16 22 32 18 -4 -6 0 4
19 25 -3 7 -4 -6 0 4
22 -3 -3 7 -4 -6 0 4

In the bottom row, we now have only one average but we have seven detall eements.
We can now choose some X to serve as athreshold. Any detail eement that has an absolute
vaue lessthan or equd to this threshold will be replaced with O (zero). The detail eement with
the smallest absolute val ue (greater than 0) is—3. If wechoosex = 3, then our new row would
be:

22 0 0 7 -4 -6 0 4

One nice thing about this transform is that it is eadly reversble because it is Smply
arithmetic. In performing the inverse operation on this transformed row, we get:

18 26 16 28 29 29 11 19

Notice that some of the eements of the original string regppear, but some are obvioudy
not the same. Of coursethese are sample data, and it seemsthat thereisquite abit of dataloss
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involved here. This may be acceptable though. Now if we were to extend this process to a
metrix, wewould perform the above transform on each row and then each column of the matrix.

This is equivaent to performing averaging and differencing on each row then performing the
operations on each row of thetranspose of the row-transformed matrix. 1f wewereto perform
these calculations on an 8 x 8 matrix, P, there would exist exactly one average e ement and 63
detall dements. Thistransformed matrix, M, would be called theHaar transformof P. (Note:
The above method does not conserve the energy of the sgnd. Multiplying each average and

difference by the square root of two will conserve energy. However, it is still possible to
reverse this method to get the origind sgna values)

After performing the Haar transform and then setting al detail dementslessthan or equa
to the threshold to zero, very often asparse matrix might occur. A sparse matrix isonethat has
alarge number of zero-elements. It isobvious that a sparse matrix can take up considerably
lessamount of space (depending on the number of entries equa to zero) than the origina matrix
in which there were very few zero eements. Therefore this process (transform) could grestly
reduce the amount of space needed to store and/or transmit an image or any other type of
information that it could be applied to.

It should be noted however that in some cases the compression standard used requires
losdess compression.  This means that there is absolutely no data loss throughout the
compression and decompression cycle. Losdesscompressionisemployed in file compresson

Orlginal Image Compressed Imarpe

Figure 1. Example of 1-level Haar Wavelet Transform. Processed in Matlab

formats such as the common zip format. Losdess compression is aso quite important when
compressing any medical image. Image recondruction must be exact. This requirement is
mogly a legd issue though. But many other gpplications do not require this amount of
informationretention. A great deal of data could be lost through the compression of an image,
and the human eye would not be able to recognize any difference. Examine figure 1. If the
pictures were not adjacent and resized, it would be very difficult to tell that one of themisa
compressed image, and the other isthe origindl.
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A TOUCH OF LINEAR ALGEBRA

If we consder the same string of numbers as we did above, we can use matrix
multiplication to arrive a the same transformed vector. Our origina string of numbers now
defined as avector is.

v=[12 20 16 28 32 32 22 14

To caculate the four averages, we will need n/2 waveet functions where n isthe
number of dementsin v. They arein theform:

W = [%,%,o,o,...,o]
Wi =[00,%,%.00...9

Wi, = [o,o,:..,o,%,%]

Totransform v, wewill use \yy 11through W i‘ Thus to get the average (a,) of thefirst

two dements of v, we multiply it by Wll To get the second average (ay), v is multiplied by
W 21 and s0 on until we have al the averages for our vector v. Generdly,

a =v Wt forp=12..,N2
p P

To cdculate the detail lements of our image, the process is quite smilar. The detall

functions are;
D:=(%. %00..9)
D} =[00,% %5.00....0

Dy, = [o,o,.:.,o,y,- A

In the same manner as the average dements, the first detail element is calculated by
multiplying v by Di , and so forth in the same manner. Generdly,
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d =v D! forp=12,..., N2
p p

If we place dl the W'sand D’s in the columns of an N x N matrix P, then dl that is
needed to performthefirst leve of theHaar transformisto multiply v by P. Note: Thiswill not
produce a vector that has only one average dement with n - 1 detail elements (only a1% leve
transform). It produces n/2 averages and n/2 differences.

APPLICATION OF WAVELETS

There are currently many applications where wavelets are used. Take, for ingtance, the
United States Federa Bureau of Investigation's (FBI) collection of fingerprints. Currently, it
around 50 million setsof fingerprints. It isestimated that 5,000 new submiss onsare made each
day to this dready enormous st. Each fingerprint is digitaly scanned a a resolution of 512
pixels per inch. Each pixel will house one of a possible 256 shades of gray. Therefore, one
fingerprint trandates to about 700,000 pixels. Roughly 0.6 Mbytes of spaceisneeded to store
thisdigitized image. So, apair of handswith atota of 10 fingers requires about 6 Mbytes of
storage space.

It isedimated that digitizing the entirefingerprint library of the FBI would consume about
200 terabytes of space. Using the estimation of 5000 new submissions per day would result
in an increase of 30 Gbytes per day. It is obvioudy reasonable to think that some kind of
compressionisneeded. The FBI hasadopted astandard of compression that employswavel et
compression. Currently, the FBI is able to achieve acompression ration of about 26:1. That
would be areduction from 30 Ghytes to less than 1.5 Gbytes of storage space required.

Wavdets are dso useful in the arena of denoising noisy data. The idea is to use a
averaging filter to obtain averages and detail e ements. Then athresholding procedureis applied
which is amilar to the above discussed process. Some threshold is chosen and dl detall
elements less than that threshold are set to zero. The inverse transform is then performed to
retrieve the lessnoisy Sgnd. Using waveetsin this context is quite useful because the wavelet
trandform retains dl the important features while discarding the un-useful noise.

A company named Summus (http:/Aww.summus.com) iscurrently involved in producing
aplug-in for Netscape Navigator and Internet Explorer. The name of this plug-in is Wavel et
Image Viewer. This plug-inisusad in amethod cdled progressve image transmisson. What
happens is that when an image is requested, awavelet encoded copy is sent to the requestor.
The overdl average and larger detall coefficientsare sent and thenthe smdler detail coefficients
are nt. Eventudly al the detail coefficients are sent resulting in the original image being
displayed. Thebeauty liesin thefact that when the user is satisfied with the qudity, theretrieva
of more detail coefficients can be hated.

CONCLUSION

This paper has only touched the very tip of an enormousiceberg. Mathematicians have
spent countless hours working out the gory details of the Haar transform aswell as many other
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wavdet transforms. The author is by no means a mathematician and is interested more in the
gpplication and implementation of wavelets than the deep theory behind them. Numerous
papers have been written on the subject of waveets and there will definitely be many morein
the future. However, onething isfor sure, wavelets will be incorporated into more and more
applications and continue to emerge as the method of choice for many uses.
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