of the evaluation phase. The results are summarised in Table 1
and show the proper behaviour of the ternary inverter.

SL.TRO
PHI

SIL.TRO
ouTt

Fig. 2 Simulation of circuit
Signals Phi, IN and OUT are reported

Table 1: Simulation results

Last signal to change
Phi IN
ns ns
l 2.5 26
ty 2.0 2.1
1y 1.3
Iy 35

t, (t,) = delay of gate for raise (fall) transition of output;
t,, and ¢, are delay times for output to return to V; from
V.. and gnd, respectively

Table 2: Truth table of three unary gates introduced

STI NTI PTI
0 2 2 2
1 0 2
2 0 0 0

Logic design: To make it possible to realise any ternary function,
at least two other unary gates are needed [1, 4]; the positive ter-
nary inverter (PTT) and the negative ternary inverter (NTI) (Table
2). The circuit for the PTI gate is shown in Fig. 3; the NTI has a
similar scheme. Their structures are easily derived from that in
Fig. 1 and their behaviour is straightforward; it is important to
note that the output is always brought to logic 1 during the pre-
charge phase, to avoid charge sharing in cascaded gates.

The same structure used to realise the three inverters gives the
ability to construct complex gates like the binary AND-OR-
INVERT gate. Indeed, the scheme of the ternary inverter is very
similar to the binary CMOS inverter, if the cluster of Q1 — 4 (or,
similarly, Q5 — 8) is considered as a single switching element. This
makes it easy to realise other ternary functions, combining the
switches as in binary logic. These few circuits allow the use of the
synthesis method presented in [1] for the implementation of any
ternary function.

Conclusions: A new kind of circuit for ternary logic has been pro-
posed. The most significant feature of it is that, using a standard
CMOS process, only three supply voltages are needed (V,,, V,/2
and gnd) and the logic levels do not suffer any degradation, allow-
ing the maximum possible noise margins. The design of the ter-

nary inverters and more complex gates is easy and no static
current flows through the gates, avoiding static power dissipation.

Fig. 3 Circuit scheme of positive ternary inverter

As compared to the dynamic logic presented in [4], this new struc-
ture eliminates many problems: no process customisation and
body effect induced threshold variations are needed, and only
three power supplies instead of four are used. The only disadvan-
tage of the new logic is the higher number of transistors needed.
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Forward and inverse transformations
betwg,-en Haar wavelet and arithmetic
functions

B.J. Falkowski

Mutual conversions between Haar wavelet and arithmetic
transforms are presented. The new relations allow direct
calculation of an arithmetic spectrum from a Haar wavelet
spectrum and vice versa without the need to back the original

function. As both arithmetic and Haar wavelet transforms are
used widely n many areas, these results should further increase
the scope of their applications.

Introduction: Mutual relations between different transforms have
been investigated for many years. It is known, for example that
the Walsh transform is a special case of an abstract Fourier trans-
form [1, 2] and that Walsh functions can be expressed either by
Rademacher functions [1 - 3], or Haar functions [2, 3] or they can
be defined in a recursive way by the Kronecker product of Had-
amard matrices [1 — 4]. It is frequently useful to calculate the spec-
trum of a function by means of some other known spectrum of the
function without needing to regain the original function. For
example, it is possible to directly convert Walsh and Haar spectra
2, 5].
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Both the Haar wavelet transform (non-normalised version of
the transform where only signs are entered into the transform
matrix) and the arithmetic transform have been used in many
applications of logic design [1, 2, 6, 7]. Therefore it is interesting
not only theoretically, but also practically, to state their mutual
relations, as presented in this Letter. As the arithmetic transform
is related to the Reed-Muller transform, and the latter has been
used in image processing [8], one can expect applications of the
arithmetic transform in image processing as well.

Arithmetic and Haar transforms: The matrix of order N = 2 for
the arithmetic aransform is defined as [6, 7]

Ay 0
A]v = {_A2% A%T_

Also Ay = A; ® A@ for N =2,3, ...

} Al =1 l\r:273,,,.

The non-normalised Haar transform H, of order N = 27 can be
defined recursively as [2, 3]

)

Hy ®[11]
]%®[1 -1

HN:[ } and H; =1

]

where [, is an identity matrix of the order of N/2. In the above
equations, the symbol ‘®” denotes the right-hand Kronecker prod-
uct.

For an n-variable Boolean function Fx,, x,, ..., Xx,), the Haar
and arithmetic spectra (a column vector of dimension 2 x 1) is
given by H = [H,)F and A = [A,]F where H is the Haar spectrum
and A is the arithmetic spectrum. From the above definitions it is
obvious that the first two rows of [H,] are the global basis func-
tions Hy(x) and H,(x), respectively. All subsequent rows are con-
stituted by the local basis functions H#(x) in ascending order of /
and k. 1 =1, 2, .. is known as a degree of the Haar function
describing the number of zero crossings, and & = 1, ..., 2/ is an
order of the Haar function describing the position of the subset /
within a function. In the arithmetic transformation matrix [4,], all
but the last row are local basis functions.

Mutual relations between Haar and arithmetic functions: The first
set of relations will be given for arithmetic functions and non-nor-
malised Haar wavelet functions, as both have applications in logic
design. As we anticipate the application of the arithmetic trans-
form in other areas, the relations between arithmetic functions and
standard Haar functions will also be given. The way in which the
basic functions are entered into the transform matrix is called an
ordering of the transform. There are many possible orderings for
both transforms [1, 2, 6, 7). Our derivations are independent of
ordering, since by applying a permutation matrix, the presented
equations can be expressed for any ordering. The value of each
basis orthogonal function does not depend on their ordering in the
transform matrix as long as the proper subscripts and superscripts
of the basis functions remain constant during the permutation.
However, to make this Letter consistent with other presentations,
Hadamard ordering is used for both transforms. 4; denotes an ith
arithmetic function and the Haar functions follow the definition
from the previous paragraph. Kaczmarz gave the definition of
Walsh functions by Haar wavelet functions for the first eight func-
tions (n = 3) [3]. The definitions for higher values of »n can be
derived in a similar way. Here we will give similar definitions to
express arithmetic functions by non-normalised Haar functions
and vice versa.

"Ap7 11 2 0 4 0 o o7 [H]
A 00 0 0 -0 o of]|M
Ay 00 -4 0 -4 4 0 0 %
A | _1 0 0 0 8 -8 0 0] |
A | 780 2 =2 2 —4 0 4 o |*|H"
A 00 0 0 8 0 8 0] |gP?
Ao 00 4 44 —4 -4 4] |g®
LA123} lo 0 0 0 -8 8 & -8] H;@

On the other hand, the non-normalised Haar functions can be
obtained in terms of the arithmetic functions as follows:

[f0] rs 4 4 2 4 2 2 17 AT
;ﬁn 00 0 0 —4 -2 -2 —1 A
2 oo —2-10 0 0 0 Aq
H, 00 -2-10 0 -2 -1 Az
H’|Tlo -1 0 0 0 0o o0 o ™| 4
HY 0-1 0 -10 0 0 0 Ags
| [0-10 0 0 -1 0 OJ AgSJ
_H§4) l10 -1 0 -1 0 -1 0 -1 LA123

When the relations between normalised Haar functions and arith-
metic functions are investigated, the general form of the above
equations remain similar. However, when arithmetic functions are
expressed in terms of Haar functions the difference is the division
by V2 of each Haar function of the second group, and by 2 of
each Haar function of the third group. For example, the first
equation for normalised Haar functions would read

Ap = Hy + Hy +2/vV2H + 4/2H"
= Ho + Hy +V2HS" +2H)

The normalised Haar functions can be expressed by similar rela-
tions to the ones presented for non-normalised Haar functions,
taking into account that each Haar function of the second group
has to be divided by V2 and of the third group by 2 (as previously
stated). For example, H? N2 = 24, — Ay, ~ 24y, — Ay, and HY/
2 = —A4,, etc. When the relations for higher groups of normalised
Haar functions and arithmetic functions are investigated, such
relations can be obtained from similar equations for non-normal-
ised Haar functions by dividing the non-normalised Haar furc-
tions (starting from group 1) by a number equal to the number of
square roots multiplied » times, where n is the group number of
Haar functions. Hence for n = 1 we have division by V2, forn=2
by 2, for n = 3 by 242, etc. The basic equations for higher groups
are not given here since the method for their generation is obvious
from the equations already presented. As for the recursive defini-
tions for Grey code ordered Walsh functions, higher order matri-
ces can be obtained by using operations of shift and copy [4].

Conclusion: In this Letter, new mutual relations between Haar
wavelet and arithmetic transforms are presented. Since the equa-
tions are given for both types of Haar function, the presented der-
ivations may be useful for applications of both transforms in arcas
other than logic design. On the other hand, applications of the
arithmetic transform in logic design are much wider than those of
the Haar transform. With the equations presented in this Letter, it
is possible to transfer the known results of spectral logic design in
the arithmetic domain [6, 7] to the Haar domain, and to compare
the efficiency of both approaches in different applications.
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