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Abstract: In this article, mutual relations between Haar and Reed-
Muller spectral and functional domains are presented. The new rela-
tions apply to any size of the transform matrices in the form of lay-
ered vertical and horizontal Kronecker matrices. They allow the direct
conversions between Haar and Reed-Muller functions and their corre-
sponding spectra.
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1 Introduction

Reed-Muller transform had been successfully applied in many areas such as
signal processing, fault detection, and coding techniques, especially those
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concerned with group or block codes for error control [1]. One reason for
the wide usage of Reed-Muller transform is because it has been found to be
advantageous in terms of area, speed, and testability [2]. Another popular
transform in spectral analysis, synthesis and testing and efficient representa-
tion of logic functions is Walsh transform [3]. An exact and non-exhaustive
algorithm that generates optimal RM expansion for 3-variable binary func-
tions directly from just few Walsh-Hadamard spectral coefficients had been
developed in [4] while the case of one way conversion from Walsh to Reed-
Muller spectra was discussed in [5].

Frequently, it is useful to apply more than one transform in a given task
based on the local properties of a data function [3]. For example, if the
logic function has many zeros in its truth vector, it is better to apply local
transform that has non-zero entries in its own transformation matrix that
almost overlap with the non-zero elements in the truth vector. In this case
it is also of interest to investigate mutual relations between various local
discrete transforms such as, for example, Haar and Reed-Muller transform.
Both Haar and Reed-Muller transforms have been used in many applications
of logic design [2, 3, 6, 7]. Therefore, it is not only interesting theoretically,
but also practical to state their mutual relations. It should be noticed that
Reed-Muller transform is performed over Galois Field (2) (GF(2)), while
Haar transform is performed over integers.

In this article, mutual relations between Haar and Reed-Muller functional
and spectral domains are presented in the form of matrix decomposition and
as layered vertical and horizontal Kronecker product matrices for an arbitrary
transform matrix size order. Due to the fact that Reed-Muller transform
operations are in GF(2) some extra operations in this algebra are necessary.

2 Basic definitions

Definition 1 The normalized Haar transform matrix of order 2n is defined
as [3, 6]

NH(n) =

[
NH(n − 1) ⊗ [1 1]
2(n−1)/2I2n−1 ⊗ [1 −1]

]
, (1)

NH(0) = [1] , n = 1, 2, 3, . . . ,

where I2n−1 is an identify matrix of 2n−1 while the symbol “⊗” denotes
Kronecker direct product [3, 6].
Definition 2 The non-normalized Haar transform is obtained from replacing
the nonzero entries of normalized Haar matrix with their arithmetic signs.
The non-normalized Haar transform preserves all the properties of the nor-
malized Haar transform. Its matrix of order 2n is defined as [3, 6]

H(n) =

[
H(n − 1) ⊗ [1 1]

I2n−1 ⊗ [1 −1]

]
, (2)

H(0) = [1] , n = 1, 2, 3, . . . ,

where I2n−1 is an identify matrix of 2n−1.
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Definition 3 The matrix of order 2n for Reed-Muller transform is defined
as [2-5, 7]

RM(n) =

[
RM(n − 1) 0
RM(n − 1) RM(n − 1)

]
(3)

RM(0) = [1] , n = 1, 2, 3, . . . .

Also RM(n) = RM(1) ⊗ RM(n − 1) =
n⊗

i=1
RM(1) (4)

for n = 1, 2, 3 . . . .

3 Relations between Haar and Reed-Muller functional and
spectral domains

For an n-variable Boolean function F (x1, x2, . . . , xn), Haar and Reed-Muller
spectra (a column vector of dimension 2n × 1) are given by �H = H(n)�F

and �R = RM(n)⊕ �F , respectively, where ⊕ denotes multiplication operation
over Galois Field (2) (GF(2)). Hence, the calculation of Haar spectra �H

is performed in standard algebra while that of Reed-Muller spectra �R is
performed over GF(2). The following general relations are valid between
the non-normalized Haar and Reed-Muller spectra: �H = H(n)

[
RM(n) ⊕ �R

]
and �R =

∣∣∣RM−1(n)H−1(n) �H
∣∣∣ where H−1(n) is inverse of the Haar transform

matrix and RM−1(n) is inverse of Reed-Muller transform in standard and not
GF(2) algebra, while the bracket | | means taking modulo-2 of the absolute
values of the result.

Let us now introduce the mutual relations between Haar and Reed-Muller
transforms for a general case of an arbitrary n using recursive definition for
the transformation matrices. It should be noticed that presented in this ar-
ticle relations apply to conversions not only between Haar and Reed-Muller
spectra but also between Haar and Reed-Muller functions. Therefore, in the
following developments, the symbols for functions instead of spectra will be
used. However, Reed-Muller and Haar functions can be freely replaced with
Reed-Muller �R and Haar �H spectra, when needed. It is trivial to modify
the presented equations for a case of normalized Haar functions as described
in Definition 1 by adding normalizing factors. From Definition 2 presented
earlier for non-normalized Haar transform matrix, it is obvious, that the first
two rows of H(n) are global basis functions H0(x) and H1(x), respectively.
All subsequent rows are constituted by local basis functions H

(k)
l (x) in an

ascending order of l and k. l = 1, 2, .. is known as a degree of Haar function
describing the number of zero crossings, and k = 1, .., 2l is an order of Haar
function describing the position of the subset l within a function. In Reed-
Muller transformation matrix RM(n), all but the last row are local basis
functions and RMi denotes an i-th Reed-Muller function. The symbol R∗

i

denotes Reed-Muller spectrum obtained from the calculation using inverse
Reed-Muller transformation matrix RM−1(n) in standard and not GF(2) al-
gebra. The conversions for higher n are shown for expressing non-normalized

c© IEICE 2005
DOI: 10.1587/elex.2.37
Received December 14, 2004
Accepted December 21, 2004
Published January 10, 2005

39



IEICE Electronics Express, Vol.2, No.1, 37–42

Haar functions by Reed-Muller functions and vice verse in the form of layered
Kronecker product as follows.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0

H1

H
(1)
2

H
(2)
2

H
(1)
3

H
(2)
3

H
(3)
3

H
(4)
3

:
:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
2 1
0 −1

]
⊗
(

n−1⊗
i=1

[ 2 1 ]
)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[
1 0
1 1

]
⊗

(
[ 0 −1 ]

)
⊗
(

n−2⊗
i=1

[ 2 1 ]
)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -(
2⊗

i=1

[
1 0
1 1

])
⊗

(
[ 0 −1 ]

)
⊗
(

n−3⊗
i=1

[ 2 1 ]
)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -(
3⊗

i=1

[
1 0
1 1

])
⊗

(
[ 0 −1 ]

)
⊗
(

n−4⊗
i=1

[ 2 1 ]
)

...
...

...
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -(
j−1⊗
i=1

[
1 0
1 1

])
⊗

(
[ 0 −1 ]

)
⊗
(

n−j⊗
i=1

[ 2 1 ]
)

...
...

...
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RM∗
0

RM∗
1

RM∗
2

RM∗
12

RM∗
3

RM∗
13

RM∗
23

RM∗
123

:
:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RM0

RM1

RM2

RM12

RM3

RM13

RM23

RM123

:
:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2n

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
1 1
0 −2

]
⊗
(

n−1⊗
i=1

[
1
0

])
...[

1 0
−1 1

]
⊗

(
2

[
1

−2

])
⊗
(

n−2⊗
i=1

[
1
0

])
...(

2⊗
i=1

[
1 0

−1 1

])
⊗

(
4

[
1

−2

])
⊗
(

n−3⊗
i=1

[
1
0

])
...(

3⊗
i=1

[
1 0

−1 1

])
⊗

(
8

[
1

−2

])
⊗
(

n−4⊗
i=1

[
1
0

])
...

...
...

...(
j−1⊗
i=1

[
1 0

−1 1

])
⊗
(

2j−1

[
1

−2

])
⊗
(

n−j⊗
i=1

[
1
0

])
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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:
:

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6)

In the above equations, there are two 2n × 2n matrices, the vertical dot-
ted lines denote the layered vertical Kronecker matrices, and the horizontal
dashed lines denote the layered horizontal Kronecker matrices, respectively.
A layered horizontal Kronecker matrix is defined as the horizontal sum of
Kronecker matrices while a layered Kronecker vertical matrix is defined as
the vertical sum of Kronecker matrices. It should be noticed, that the bracket
| | in Equation (6) is as defined previously. When Kronecker direct product
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of j matrices is carried out for the above equations for j ≤ 0, then the term
j⊗

i=1
disappears from the above equations. The meaning of the symbols and

the restriction on the term
j⊗

i=1
is the same as above also for the following

example.
Example 1: For n = 3, the above relations become:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -[
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]
⊗

(
[ 0 −1 ]

)
⊗
(
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[ 2 1 ]
)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -(
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(
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)
⊗
(

3−3⊗
i=1

[ 2 1 ]
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
2 1
0 −1

]
⊗ [ 2 1 ] ⊗ [ 2 1 ]

- - - - - - - - - - - - - - - - - - - - - - - -[
1 0
1 1

]
⊗ [ 0 −1 ] ⊗ [ 2 1 ]

- - - - - - - - - - - - - - - - - - - - - - - -[
1 0
1 1

]
⊗
[

1 0
1 1

]
⊗ [ 0 −1 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RM∗
0
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1
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13

RM∗
23
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123

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 4 4 2 4 2 2 1
0 0 0 0 −4 −2 −2 −1
0 0 −2 −1 0 0 0 0
0 0 −2 −1 0 0 −2 −1
0 −1 0 0 0 0 0 0
0 −1 0 −1 0 0 0 0
0 −1 0 0 0 −1 0 0
0 −1 0 −1 0 −1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
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×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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1 1
0 −2

]
⊗
(

3−1⊗
i=1
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0
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⊗
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⊗
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1
0
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⊗
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4
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
23

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⊗
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⊗
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]
...[
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]
⊗
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⊗
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[
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
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×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2 0 4 0 0 0
0 0 0 0 −8 0 0 0
0 0 −4 0 −4 4 0 0
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0 −2 −2 2 −4 0 4 0
0 0 0 0 8 0 −8 0
0 0 4 −4 4 −4 −4 4
0 0 0 0 −8 8 8 −8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
4 Conclusions

In this article, mutual relations between Haar and Reed-Muller functional
and spectral domains for an arbitrary transform size have been shown. Reed-
Muller transform can represent an arbitrary logic function by using EXOR
and AND gates only [2]. The recent interest in applications of such expres-
sions in logic synthesis is caused by their excellent properties for testability
and the fact that many practical functions have a big content of strongly non-
unate functions (e.g. parity, addition and multiplication) that are best real-
ized by EXOR and AND expressions [2]. Also many multilevel circuits based
on EXOR elements are more advantageous when area, speed and testability
are of main concern [2]. Many other applications and achievements of Reed-
Muller transform in finding logic symmetries [7] as well as in error correcting
codes [1] are also well known. The recent applications of Haar transform in
logic design are described in [6]. The mutual relations between these two
transforms are introduced here through recursive equations in the form of
layered vertical and horizontal Kronecker products. The presented relations
allow transfer known results of spectral logic design in Reed-Muller domain
to Haar domain and vice verse and compare efficiency of both approaches in
different applications for large Boolean functions. Finally it should be also
noticed that presented derivations based on layered matrices can be efficiently
implemented in the form of operations on spectral decision diagrams [3] for
both Reed-Muller and Haar transforms using software or as hardware oper-
ations using Look-Up Table cascades in a similar manner as Walsh function
generator was implemented in [8].
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