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Abstract: An information theoretic approach, to
exploit the additional degree of freedom
associated with don’t cares of incompletely
specified Boolean functions, is applied to quasi-
minimisation of free binary decision diagrams
(FBDDs). The concept of entropy and
equivocation is formulated through paired Haar
spectra of incompletely specified Boolean
functions. The likelihood metric expressed in
terms of selected spectral coefficients is used to
simplify the process of don’t care allocation. The
approach is general and can be extended to other
combinatorial decision problems.

1 Introduction

Spectral techniques have been widely applied to
Boolean function classification, disjoint decomposition,
parallel and serial linear decomposition, spectral trans-
lation synthesis (extraction of linear pre- and post-
filters), multiplexer synthesis, prime implicant extrac-
tion, threshold logic synthesis, state assignment, testing
and evaluation of logic complexity [1-8]. There are at
least two transforms, based on square-wave like func-
tions, that are well suited to Boolean functions: Walsh
and Haar transforms. The Walsh functions are global
like Fourier functions, and consist of a set of irregular
rectangular waveforms with only two amplitude values
+1 and -1 [1, 2, 6, 9]. All but two basis functions in the
Haar transform consist of a square wave pulse located
on an otherwise zero amplitude interval. When applied
to logic design, an unnormalised Haar transform [3, 4,
10-14] is normally used. Computation of the fast Haar
transform (FHT) requires order N (N is the number of
spectral coefficients) additions and subtractions, which
makes it much faster than the fast Walsh transform
(FWT) [1, 2, 8-10]. Hardware-based fast Haar chips
have also been developed [10]. Due to its low comput-
ing requirements, the Haar transform has been used
mainly for pattern recognition and image processing
[7-9]. Such a transform is also well suited in communi-
cation technology for data coding, multiplexing and
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digital filtering {7, 8]. The advantages of computational
and memory requirements of the Haar transform make
it of great interest to VLSI designers as well [1, 3, 4].
The local property of the Haar transform makes it
useful in those applications in computer-aided design
systems, where there are Boolean functions of many
variables that have most of their values grouped
locally. Such local functions frequently occur in logic
design, and can be extremely well described by a few
spectral coefficients from the Haar transform, while the
application of the global Walsh transform would be
quite cumbersome in such cases, and the locally
grouped minterms would be spread throughout the
whole Walsh spectrum. In most engineering design
problems, incompletely specified functions have to be
dealt with. The don’t care sets derived from circuit
structures represent an additional degree of freedom,
and their effective utilisation often results in highly eco-
nomical circuits [15-17]. To better deal with the men-
tioned cases with incompletely specified Boolean
functions, the idea of a paired Haar transform was
introduced [11, 13]. In the paired Haar transform, all
the information about true and don’t care minterms is
kept separate, by what is available in different stages of
CAD process. This paper further explores the proper-
ties of the paired Haar transform, and derives an ele-
gant polynomial Haar expansion for incompletely
specified Boolean functions. This polynomial expansion
is used in conjunction with probability theory to gener-
ate heuristic solutions to classical logic minimisation
problems for incompletely specified Boolean functions.
Finding the minimal realisations for logic functions is
usually associated with the problem of optimising their
reduced representations. For large digital circuits, free
binary decision diagrams (FBDDs) [18, 19] are a more
succinct representation than the cubical representation
of a disjunctive sum-of-products expression for a given
function in two levels. A special subset of FBDD is the
ordered binary decision diagram (OBDD) [12, 19-25],
which is a canonical representation of a Boolean func-
tion with a given ordering of variables. The main dis-
advantage of OBDDs is their sensitivity to the ordering
of input variables [20-25]. The best published exact
algorithm for the computation of an optimal variable
ordering for the OBDD is a dynamic programming
method by Friedman and Supowit [21] with a time
complexity of O(n*3"). There exist important Boolean
functions such as the FHS-function, integer multiplica-
tion, hidden weighted bit function or indirect storage
access function for which the OBDD representations
are exponential for all possible variable orderings.
These functions, however, can be represented by poly-
nomial or even quadratic size¢ FBDDs [18, 19]. As a
natural extension of the OBDD, the FBDD has inher-
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ited many useful properties of the OBDD that allow
basic Boolean manipulations to be performed as effi-
ciently as for the OBDD. Besides being more succinct,
the reduced FBDD of a fixed complete type is also
canonical [19]. Obviously, it is NP-hard to transform
the general circuit topology with an NP-complete satis-
fiability test to an optimal OBDD [20]. This also holds
for the computation of the more general form of the
minimal FBDD. In this paper, a unified entropy
approach operated on the paired Haar spectrum to the
heuristic optimisations of the FBDD, with effective uti-
lisation of the don’t care sets for incompletely specified
Boolean functions, has been developed.

The concept of entropy [17, 26, 27] in probability
theory arose from an attempt to develop a theoretical
model for the transmission of discrete information in
noisy channels. Since the introduction of Shannon’s
theorem on channels with noise, in terms of a quantity
known as equivocation [26, 27], the exposition of the
theory of entropy and equivocation has appeared in
various disciplines. In this paper, we exploit the general
nature and theoretical significance of this mathematical
apparatus to bridge the gap between communication
theory and combinatorial decision problems. The con-
cept of entropy and equivocation is applied to the gen-
eration of quasi-optimal FBDD of incompletely
specified Boolean functions. We show that entropy and
equivocation can be elegantly formulated by a paired
Haar spectrum. Moreover, the unified and systematic
entropy approach that has evolved from the presented
theorems to this general decision problem is intuitively
appealing. There is no need to generate an initial BDD
with an arbitrary variable ordering, followed by
improving the variable ordering with local search
[22, 25], or simulated annealing [23, 24], in two steps.
The algorithm for the FBDD minimisation can be used
for multiplexer universal logic module network synthe-
sis in tree type realisation [5, 6], by treating each vertex
as a set of control variables with multiple children. The
extension of the FBDD minimisation algorithm to mul-
tiplexer synthesis permits mixed control variables
within each level, if it leads to early termination of
more paths with constants or single variables.

2 Basic definitions

An n-variable Boolean function F(x|, x,, ..., x,,) is a
mapping F:{0, 1}* — {0, 1, =}*, where the symbol ‘-~
means a non specified value (a don’t care), and k is the
number of outputs. A Boolean function is completely
specified if all its outputs contain only the set {0, 1},
and incompletely specified if any of its outputs is non
specified.

An n-bit string is a vertex of an object called a 0-
cube. An n-variable Boolean function is represented as
an n-dimensional space (n-hypercube) in which each
vertex represents a minterm. A collection of 2/, i € {0,
1, ..., n} adjacent minterms is called an i-cube. A cube
can be represented by an n-tuple string of 0, 1, and —,
where 0 corresponds to the complemented value of the
variable, 1 to the affirmative value, and — to the vacu-
ous variable in the cube. The cardinality of an i-cube is
2! where i is the number of vacuous variables of the
cube. The ON, OFF and DC cubes are cubes corre-
sponding to the product terms of ON, OFF and DC
minterms, respectively. The sets of ON, OFF and DC
cubes are called ON, OFF and DC arrays, respectively.
A cube is an implicant of a function F if its intersection
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with the OFF array is empty. A prime implicant is an
implicant that has the largest cardinality, such that
removal of any of its literals results in a cube that is
not an implicant.

A binary decision diagram (BDD) [12, 18-25] is a
rooted directed acyclic graph representation with vertex
set V and edge set E. The vertex set consists of two
types of vertices, the nonterminal and terminal vertices.
A nonterminal vertex v € V has as attributes an index,
denoted by index(v), to identify an input variable of a
function, and two children (or successors), low(v) and
high(v) € V. A terminal vertex (or terminus) u € V has
no child and it has a value, denoted by value(u). val-
ue(u) = 0, 1 or 0.5 for the functional value of logical
zero, one or don’t care, respectively. The edge set con-
sists of two types of edges. A 0-edge is a link from a
node v to its low child low(v), and a 1-edge is one that
connects v to high(v). A root is the topmost or the first
non-terminal vertex in the BDD. A path from a vertex
v, to a vertex v, is a set of vertices and edges traversed
from v, to v,. A free binary decision diagram (FBDD)
[18, 19] is a BDD for which each variable of the func-
tion represented by it is encountered at most once
along any path from the root to a terminal vertex. An
ordered binary decision diagram (OBDD) [12, 19-23,
25] is a special subset of the FBDD in which the input
variables in all paths appear in a fixed order, and there
exists an index function for every nonterminal
vertex v € V such that index(low(v)) < index(v) and
index(high(v)) < index(v).

Property 2.1: A path with k vertices represents a (n—k)-
cube, where k = 1, 2, ..., n, since an absent vertex corre-
sponds to a vacuous variable in a product term, or ‘=
in a cube notation.

Definition 2.2: Let X be a finite space with eclementary
events X; and the probability distribution p(X;) for 1= i
=< n and 2%, p(X;) = 1. The entropy H(X) of the finite
space X is defined as [27]:

H(X) ==Y p(X;)logy p(X;) 1)
=1

where the expression p(X;)log,p(X) is taken to be 0 if
pX) = 0.

Entropy is a reasonably good measure of the amount
of uncertainty associated with a given finite scheme.
The entropy H(X) = 0 if and only if p(X;) = 1 for only
one value of i, and p(X)) = 0 for all other values of i.
This is an extreme situation where the outcome of an
experiment can be predicted with complete certainty.
For a fixed finite number of events », maximum
entropy occurs when each event X, is equally likely, i.e.
pX)=1nVi=1,2,..,n

Definition 2.3: Let X and Y be two finite spaces with
elementary events X;, ¥; and their probability distribu-
tions p(X;) and p(Y)), respectively. 1 =i<n, 1 <j=m,
Ly pX) = 1and TP p(Y) = 1. X, and Y; may be
dependent. The conditional entropy H(Y | X;) of space
Y, based on the assumption that event X; has occurred
in space X, is given by [27]:

H(Y|X:) =~ p(Y;|X:)loga p(Vi|X:)  (2)
j=1

Since the occurrence of each event X; results in a
specific value of H(Y | X)), the conditional entropy
H(Y | X}) can be regarded as a random variable defined
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on the space X. The mathematical expected value of
this random variable leads to the definition of equivo-
cation.

Definition 2.4: The equivocation H(Y | X) [27] is defined
as the conditional entropy of the finite space Y aver-
aged over the space X. Mathematically

HYIX) =Y pHYX) @)

3 Polynomial Haar expansion and paired Haar
spectrum

Definition 3.1: The unnormalised Haar transform Ty
[1-4, 10-13] of order N = 2" can be defined recursively
as

Tn @1 1]
2

Iﬂ@[l —1]
2

where Iy, is an identity matrix of order N/2, and the
symbol ® denotes the right-hand Kronecker product.

For an n-variable Boolean function F(x{, x,, ..., X,),
the Haar spectrum is given by R = Ty x F, where R is
Haar spectrum (a column vector of dimension 2" x 1),
and F is the R-coded vector of the Boolean function
F(X) [1, 2, 11-13]. In R-coding, the false minterms are
coded as 0, the true minterms as 1, and the don’t care
(DC) minterms as 0.5.

Besides the first two Haar spectral coefficients r,.
(the so called dc coefficient corresponding to the dc
function) and ry®, which are globally sensitive to F(X),
the remaining 2"-2 Haar spectral coefficients are only
locally sensitive. A spectral coefficient % is character-
ised by its degree / and order k, where 0 < / < n—1 and
0=ks<2-1.

Property 3.2: For a Haar spectrum of an n-variable
Boolean function F, there are 2/ spectral coefficients of
degree /, and each measures a correlation of a different
set of 27! neighbouring minterms, where / = 1, 2,
..., i—=1. The value of the dc coefficient r, is propor-
tional to the number of true and don’t care minterms
of F, and the coefficient r,'® describes the difference
between the number of truth and don’t care minterms
in the subfunctions X, and x,,.

Definition 3.3: A standard trivial function, denoted by
upb I=2"+kand I € {1, 2, ..., 27 — 1}, associated with
each Haar spectral coefficient r,, or rf®, describes some
set of 27/ neighbouring minterms on a Karnaugh map
that has an influence on the value of a spectral coeffi-
cient ry or r®, where 0 < /<n—1land 0=k <2/ - 1.
For each index I of u,, there exists a unique value of /
and k. Formally, #; can be expressed as a product term:

{
uo=u; =1 and u;y = Hl’ii—uﬂ Vi,ke Z;
=1

1<l<n—-land0<k<2 -1

TN:[ ]andlel @)

(3)
where Z is the set of integers, and £; is the ith bit value
when k is expressed as a binary /~tuple kk,;...k,.

Property 3.4: The degree I of a Haar coefficient indi-
cates the number of literals present in a standard trivial
function y; for I =2, 3, ..., 2" — 1.

Property 3.5: The order k of a Haar spectral coefficient
r/® is the decimal equivalence of the binary I-tuple,
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formed by writing a 1 or 0 for each variable in its
standard trivial function u; (I = 2, 3, ..., 2" — 1), accord-
ing to whether this literal appears in affirmation or
negation. When k is expressed as a binary /-tuple, the
most significant bit (MSB) corresponds to the literal
X,, and the least significant bit (LSB) corresponds to
the literal X, ;.

Based on the recursive definition of an unnormalised
Haar transform in eqn. 4, a polynomial Haar expan-
sion of an n-variable Boolean function F can be
derived.

Lemma 3.6
FX) = = drge + (1)l
- n dc 0
n—1 2l-1 n
AL AR DU | B
=1 k=0 i=n—I[+1

(6)
where k; € {0, 1} is the ith bit in the binary /-tuple of
order k; x/ = x;if j = 1 and x/ = X, if j = 0.

Proof: The inverse unnormalised Haar transform Ty!

of order of N = 27 can be defined in a similar recursive
form as in eqn. 4:

1
Ty' = .Gy (7)

where

GN:[ﬂlzzv@[l 1 and G; =1

Comparing eqns. 4 and 7, Gy is generated from Ty
by incorporating a scaling factor of N/2. For n = 1,
since each iteration of eqn. 7 generates an additional
degree of inverse Haar functions, the scaling factor of
2! can be applied to every forward Haar function of the
same degree / to obtain the corresponding row in Gy.

Hence, T-1(0) = (1/2)T7(0) and T-'(/) = (1/2") x 2! x
T7(I), where I = 1, 2, ..., 2" — 1, the superscript T
denotes matrix transpose, and 7(J) is the row vector
corresponding to row [ of the matrix T, where I = 2/
+ k.

FX)=T"'xR
= [T 1O rae + [T () 7"
+[T7 @) + [T 3) )
4o [Tfl(zn _ 1)]Tr(2"_1‘1)

n—1
1 n—-12'—1
k
= 57 3 TO)rac + SN 2T+ ke
=0 k=0

The forward Haar functions representing each row of
the transform T are given by: 7(0) = 1, 7(1) = (X, —
X, and T(J) = T(2' + k) = ufX, ; — x,_), where u; is
the standard trivial function corresponding to the Haar
function 7(J). Since X, - x,; = 1 if x,;, = 0, and -1 if
X, = 1, X, ;- x,; = (1) The standard trivial func-
tion u; can be represented by the product T2, xf-n+,
where k;_,.; € {0, 1} is the (/ — »n + )th bit in the binary
I-tuple of order k, x}ini = x;if ki = 1, and xfint =
X;if ki 4y = 0. Thus,
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1
F(X) = — { rac + (=1)*1§”

omn

n—12—1 n

DI ISR | R
=1 k=0 i=n-—I+1

1 0

= o f e+ (07

n—1 21

S A ] e
=1 i=n—I[+1

Example 3.7: Consider the four-varlable incompletely
specified Boolean function F(X) = 200, 2, 5, 6, 10,
11) + =pA1, 4, 14), where the numbers enclosed in
Zonl...) and Zp(...) indicate the truth and don’t care
minterms, respectively. The Haar spectrum calculated
from the R-coded vector of F is given by:

R= [ro r[()o) 7{0) r§1) réo)

@ 0 Tgv)f’

T2 T3

[75 25 0 15 05 05 -2

-05 05 1 =05 1 0 0 0 05"
From lemma 3.6, the Haar expansion of this function
is given by:

%{7.5 + (=1)74(2.5) + (=1)* (3z4)

+ (—1)z2 (25453 + 2541133 - 8%453— 2$4$3)

+ (——1)“(4545352 + 8T4T3x2 — 4T423T2

F(X) =

+ 8T x370 + 4:1?41:3172)}

Consider the input assignment X = 1 = 0001,, i.e. x4
= x3 = x, = 0 and x; = 1. The R-coded value of F
under this input assignment can be calculated from the
above expansion: F(1) = (1/16}(7.5 + 25+ 0+ 2-4) =
0.5.

For efficient synthesis of incompletely specified
Boolean functions, instead of operating on a single
spectrum from the R-coded vector, a paired Haar
transform has been introduced [11, 13].

Definition 3.8: A paired Haar transform (PHT) for an
incompletely specified n-variable Boolean function F is
a mapping x: (Fon, Fpc) = (Rown. Rpc), where Roy =
T x FON and RDC =T x FDC' FON 1s obtained by
replacing all don’t care outputs of F by zeros, and Fp¢
is obtained from F by replacing all true outputs by
zeros and don’t care outputs by ones. T is the unnor-
malised Haar transform defined in eqn. 4. The tuple
(Rons Rpe) is known as the paired Haar spectrum.
Spectral coefficients from spectra Rpy and Rpc are
indicated by lower case letters accordingly.

In R coding, the unnormalised Haar spectrum is
related to the paired Haar spectrum as follows:

R=Ron +0.5%x Rpc (8)
Example 3.9: For the four-variable incompletely speci-
fied Boolean function from example 3.7, the paired
Haar spectrum (Ron, Rpo) = [((rowies (rpoa)

((VON)O(O)a (r DC)O(O)) ((r ON)l(O)a (rpoh™ ... ((r ON)3(7)a
(rpds™MN” = [(6, 3) 2, 1) (0, 0) 2, -1) (0, 1) (0, 1)
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(_25 0) (07 _1) (ls “1) (la 0) (_17 1) (17 0) (07 0) (03 0)
(0, 0) (0, DI".

Definition 3.10: Let X; be an input assignment covered
by a cube C whose cardinality is equal to |C], then the
output signal probability p(C) under the set of input
assignments X; Vi =1, ., |C} is given by:

IC|
P(C) = 151 2 ZF (9)

where F(X;) is the Rcoded functlonal value of the
input assignment Xj.

The value of p(C) lies between 0 and 1, which indi-
cates the likelihood of the cube C being an implicant of
the function F. p(C) = 1 if C is an ON cube, and p(C)
=0 if Cis an OFF cube.

When applying the statistical decision theory to logic
synthesis problems, we are often interested in compar-
ing the equivocations for different input assignments,
and selecting one with the maximum likelihood.
Depending on the formulation of the problem, the
maximum likelihood decision corresponds to either the
maximum or minimum equivocation. Since the condi-
tional entropies plog,p and plog,p + (1 — p)log,(1 — p)
encountered in the decision problems are monotonic
increasing for 0 < p < 0.5, and monotonic decreasing in
the range of 0.5 =< p < 1, an appropriate metric to
describe the equivocation for an input assignment C
would be a number that is proportional to [p(C) — 0.5],
where | | denotes the absolute value. We call this
number the likelihood metric.

Theorem 3.11. Let p(C) be the cube resulting from a
logical right shift of the cube C by i bits, and y(C) be
the number of ‘- in C between bit 1 and bit 7 inclusive.
Then, the likelihood metric M(C) can be expressed as
the summation of selected paired Haar coefficients:

1
M(C) = |Mon(C) + iMDC(C) —2n~HC|| (10)
where Mop(C) = |Cl(ron)ac + Zfzg Son(l), where
0 if Tn—| = =’
= 2@ T (ron)Y
%on(?) XEpnaa(C) :
if Tn—1 # ‘=
(11)
and MpAC) = [Cl(rpac + ZF0 dpc(l), where
0 lf Lp—1 = ‘-
I+ 1(C)(_1)Zn—t (X)
i) ) = 2 ( 1) Z (TDC)
pcl) X€pnat(C)
if By £
(12)

In the above equations, X € p,_(C) denotes the set of
input assignments (in decimal number representation)
covered by the cube p,_(C).

Proof: From eqn. 6, for any /, 0 = / < n-1, the product
M2, ;. xfn+ = 1iff k = | X/2*/], and = 0 for any
other k in the range of 0 = k = 2'-1, where X is the dec-
imal number representation of an input assignment,
and the symbol |z| denotes the largest integer not
exceeding z. Substituting the second summation in
eqn. 6 by the non vanishing coefficient »® of each
degree I, where k = | X/2™|, we have

{rdc—i—ZZl )En= ITLEHL_TJ} (13)
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It should be noted that the value | X/2"| can also be
obtained by shifting n—/ bits in X to the right.

We can substitute all input assignments covered by
the cube C into the simplified expression of eqn. 13 for
the term 2,‘91 F(X)) in eqn. 9. Since the MSB and LSB
of the product term representing the standard trivial
function are x, and x,., respectively, the value of
| X72"| in eqn. 13 is identical for all input assignments
with the same bit values x; for all n—/+1 < i < n. Thus,
[ X727 = X for all X covered by p, (C). As there are
27-1(C) input assignments covered by p,_(C), the sum-
mation in eqn. 13 is given by:

n—1 n—1
Z 5(1) = Z 2l+7n—l(c)(_‘1)$n—-l Z T{(X)
=0

1=0 X€pn_i(C)

When x,_, = -, there is an equal number of positive
and negative r/% for all X covered by p,_{(C) due to the
multiplier (-1)¥. Therefore, &(/) = 0 for x,; = . In
addition, the term r . is summed |C] times as there are
|C| input assignments covered by C. Hence, =9 F(X))
= 3{|Clrge + =/ ()}, where

0 if Tp—i = ‘-’
Lo X
5(1) = 21O (—1)ent 3 Tt( )
Xepn-1(C)
1f Tn—y 75 -’

From Definition 3.10, [p(C) — 0.5] is proportional to
[ A(X) - |C12|. Hence, M(C) = | |Clrge + 2[5 ()
= 2% . Since ry. = (rop)ac + 0.5 x (rpc)g. and 1K) =
rom® + 0.5 x (rpd)f®, p(C) can be divided into
pon(C) and ppA{O), with r® replaced by (rop)/* in
Son(D) from eqn. 11, and by (rpo)® in SpAl) from
eqn. 12, respectively.

Lemma 3.12: When Moy(C) + MpAC) = 27(|, the
cube C is an implicant of F, provided that all the don’t
care minterms covered by C are assigned as 1.

Lemma 3.13: When Mgp(C) = 0, the cube C is an
implicant of F, provided that all the don’t care mint-
erms covered by C are assigned as 0.

Example 3.14: Consider the four variable incompletely
specified Boolean function from Example 3.9. The cal-
culation of M(C) for the cube C = —I10 by theorem
3.11 is shown below.

From eqns. 11 and 12, dppM0) = Spn(1) = 8pA(0) =
dpc(1) = 0 since x4 = x3 = — px(C) = 00—, 1,(C) = 0.
don2) = 220D ((ropn? + (romt! + (rop® +
(ron)2®) = 8. 8p(2) = -4((rpc))? + (rp)V + (rp)?
+ (rpe)®) = 4. pi(C) = 0—1, 1(C) = 0. dpp(3) =
2Y=DU(ron)s) + (ron)s? + (row)s® +Hrow)s'”) = 8(2)
= 16. 6pc3) = 8((rpc)V + (rp)™® + (rp)s® +
(rpc)s™) = 8. Since |C| = 4, we have Mpp(C) = 4 x 6 +
8+ 16 =48 and MpAC) =4 x 3 -4+ 8 =16. From
eqn. 10, M(C) = |48 + 0.5 x 16 — 8 x 4] = 48. The like-
lihood metric M(C) is relatively low, indicating a high
probability that C is an implicant of the function or its
complement. In fact, from Lemma 3.12, since Mpp(C)
+ MpAC) = 16 x 4 = 64, C is an implicant of the func-
tion by assigning the don’t care minterm 1110 to ‘1°.

4 Generation of quasi-optimal FBDD and OBDD
through paired Haar spectrum

The notions of the free binary decision diagram and
ordered binary decision diagram have been discussed in
Section 2. It should be noted that the choice of the
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decision variable at each vertex of the FBDD and
OBDD has a strong influence on the size of the result-
ing decision diagram, in terms of the number of verti-
ces. However, optimal selection of decision variables is
an NP-complete problem [18-25]. Particularly, the allo-
cations of don’t care minterms are to be considered
together when the BDD is to be optimised for an
incompletely specified Boolean function. In the worst
case, the decision diagram has 2" — | nonterminal verti-
ces. The depth of a path is the number of nonterminal
vertices in it. A path with a depth d eliminates a com-
plete subtree of 24 — 1 nonterminal vertices from the
worst case decision diagram. Hence, our aim is to min-
imise the depth of as many paths as possible in the
selection of decision variables for each level.

From property 2.1, for each vertex v in a path n, if
its 1-edge is also contained in 7, then the variable x; is
present in the cube, where i = index(v). Otherwise, the
variable X; is present. The logical value of the cube fol-
lows the functional value ¢ of the terminal vertex in the
path. The cubes obtained from any two paths of an
FBDD or an OBDD are disjoint. Since each path of an
FBDD or an OBDD that leads to a 1- or a 0-terminus
is a disjoint cube of the Boolean function or its comple-
ment, our primary goal is to search for disjoint cubes
with cardinalities as large as possible that completely
cover a given function or its complement.

Let X and Y denote the random variables associated
with the decision variables and the terminal value of a
path, respectively. Then, the conditional entropy H(Y
= ¢£X,) 1s the likelihood or expectancy that the children
of the vertex are terminal vertices with value &, given
that a decision variable x; has been selected. Therefore,
a quasi-optimal FBDD can be generated by recursively
seeking a maximum likelihood metric for each path of
an FBDD in a depth first traversal. Let C = <c¢, ¢,

. ¢;> be the cube associated with a vertex v of the
FBDD, where ¢; is the edge value of the decision varia-
ble x; being traversed from the root to v, and the vacu-
ous variables in C, denoted by ‘-, are all the possible
decision variables for the vertex v. Then, we have the
following propositions:

Proposition 4.1: Let C denote the cube associated with
the path from the root of the FBDD to a vertex v. At
the root of the FBDD, C is an n-cube. During depth
first traversal of the FBDD, a candidate vacuous varia-
ble x; of C is selected for the vertex v, such that
Mmax(C N xz) = maxx‘yeg(maX(M(C N Xs)vM(C N XS)))s
where Q is the set of m vacuous variables of C. The
candidate variable x; is used to decompose C into two
(m-1)-cubes Cy = C N X; and C| = C N x; associated
with the children low(v) and high(v), respectively. When
Mo(C) + MpAC) = 27C), the vertex associated with
the cube C can be replaced by a I-terminus. When
Mon(C) = 0, the vertex associated with the cube C can
be replaced by a O-terminus.

Proposition 4.2: To improve the quality of the results
obtained from proposition 4.1, if there is more than
one vacuous variable x; of C with the maximum
likelihood metric M,,,{C N X;), any variable among
them with the maximum likelihood metric of Mpc,,, (C
N X) = maxgeq MpdC N X;) is selected as a
candidate variable, where Q' is the set of literals with
M(C n X,) = ]\lmax(cvm 'xl)

In proposition 4.2, when two variables lead to the
same conditional entropy, we select one that leads to
the decomposition with more allocable don’t care out-
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Table 1: Calculation of likelihood metrics

Vertex Co (o ModCp)  MpdC)  MICq)  MopC)  MpclCy)  MUC,)  max(M(Cy), MKCyr))
a:{-—-—} -—0 -1 64 32 16 32 16 24 24
—0- —1- 32 32 16 64 16 8 16
-0-—- -1-- 64 16 8 32 32 16 16
00— 1-— b4 32 16 32 16 24 24
b:{---0} -—-00 --10 16 16 8 48 16 24 24
-0-0 -1-0 48 0 16 16 32 0 16
0-—-0 1--0 48 16 24 16 16 8 24
c:{——1 —-—01 -1 16 16 8 16 0 16 16
-0-1  -1-1 16 16 8 16 0 16 16
0—1 1--1 16 16 8 16 0 16 16
d:{—-00} -000 -100 16 0 0 0 16 8 8
0-00 1-00 16 16 8 0 16 16
e:{--01} -001 -101 0 16 8 16 0 0 8
0-01 1-01 16 16 8 0 16 16
fr{——113 -011 -1 16 0 0 0 16 16
0-11 1-11 0 16 16 0 16
g:{-011} 0011 1011 0 8 16 0 16

puts for the children, i.e. one that maximises the
entropy of H(Y = 0.5|X)). The algorithm for the selec-
tion of a good decision variable for a vertex v for an
incompletely specified Boolean function from its paired
Haar spectrum, (Rppy, Rpc) 1s shown below:

Procedure Select_var(Roy, Rpc, O) {

for (each x; € Q, the set of vacuous variables of C) {
Calculate Mop(C N X)), MpAC N X;) Mop(C N
x;) and MpAC N x;) from (Ron, Rpe);
M(C N %) = |Mpi(C N %) + 3MpdC N X)) ~
e n x|
M(C N x) = |MoM(C N x) + sMpdC N x)) -
2"NC N x;
M(C N x) = max(M(C N x), M(C N xp));

}

V= {x; € QMyu,(CN X)) = min, coM(C N XY};

if (7] = 1) Select any variable x; € V such that

MDCmax(C n xi) = max)'csEQ’MDC(C N Xs),

return index of the selected variable;

}

In the procedure Select_var, the likelihood metric
M(C N x;) can be calculated from selected coefficients
of the paired Haar spectrum by eqn. 10. A computa-
tional cache may be used to cache the previously calcu-
lated likelihood metrics. Based on propositions 4.1 and
4.2, the algorithm for the generation of a quasi-optimal
FBDD for an incompletely specified Boolean function
is shown below:

FBDD_MIN(Roy, Rpe) §

Initialize(C, fbdd, unique_table),

fbdd—root = FBDD MIN_AUX(Ry,
unique_table);

return fbdd;

}
FBDD MIN_AUX(R,y, Rpe, C, unique_table) {

p = probability(Roy, Rpc, C, &pon, &ppc);
if (poy = 0) return FBDD_ZERO;

RDC’ C7
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if poy + Ppc =1) return FBDD _ONE,
i = Select_var(Rop, Rpc, O);
Co=CNnNx; C=CnNx;
low = FBDD _MIN_AUX(Roy, Rpe, Cy, unique_
table);

high = FBDD _MIN_AUX(Royn, Rpc, Cy, unique_
table),

if (low = high) return low;

return unique_table find(unique table, x;, low, high);

}

The procedure Initialize sets up the FBDD structure
fbdd and a unique node table unique_table, that keeps
only unique vertices generated by the algorithm. The
cube C is initialised to be an n-cube, where n is the
number of input variables. The procedure FBDD_
MIN_AUX is a recursive routine that generates the ver-
tices of the minimal FBDD by depth first traversal. In
FBDD MIN _AUX, FBDD ZERO and FBDD ONE
are the 0- and 1-termini, respectively. The procedure
Select_var in the first algorithm is used to determine
the best top variable x; for the present vertex. The vari-
ables low and high are the pointers to the low and high
children of the present vertex, respectively. The proce-
dure unique_table find searches in the unique table for
the vertex with the specified top variable and children.
If found, it returns the pointer to the targeted vertex.
Otherwise, a new vertex with the specified top variable
and children is inserted in unique_table and returned.

Example 4.3: Consider the incompletely specified
Boolean function from example 3.7. Fig. 1 shows the
FBDD generated by the procedure FBDD_MIN, and
the vertex variables are decided based on the maximum
likelihood metrics calculated in Table 1. The minimised
FBDD consists of six nonterminal vertices. Inciden-
tally, it is also an OBDD of variable ordering <1, 2,
3, 4>,

5 Experimental results

The algorithm FBDD MIN is implemented in C, and
the minimal or near minimal FBDDs are generated on
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c
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Fig.1 Generation of quasi-optimal FRDD

an HP Apollo Series 715 workstation for some bench-
mark functions from the two-level examples of the
MCNC benchmark suite. Since our present algorithm
is designed to work with a single output, incompletely
specified function, a simplified and direct extension of
FBDD_MIN is adopted to generate a mult-root FBDD
for multiple output functions by treating each output
independently. The results are compared with the mini-
mal OBDD generated by the dynamic variable reorder-
ing technique [22, 25] in Table 2. In the dynamic
variable reordering technique, each variable is moved
throughout the order to find an optimal position for
that variable, assuming all other variables are fixed.
Since the method [22, 25] does not deal with incom-

pletely specified functions, the don’t care outputs, if
any, are randomly allocated before their OBDDs are
generated. In Table 2, the columns labelled ‘#inputs’
and ‘#outputs’ are the numbers of input variables and
outputs for each system of functions, respectively. The
columns labelled ‘Size (OBDD)’ and ‘Size (FBDD)’
denote the number of non-terminal vertices of the
multi-root OBDD obtained by the dynamic variable
reordering algorithm, and the FBDD obtained by our
algorithm, respectively. The column labelled ‘Time’ is
the system execution time of our algorithm in seconds.
Due to the temporary exponential size blow up in
reshuffling the variables in the midst of the minimisa-
tion, an overflow occurs for the benchmark function
ex1010 in the dynamic variable reordering algorithm.
For single output functions, our algorithm always gen-
erates better results, and for multiple output functions,
the quality of the results is comparable. The less
favourable results for functions with a large number of
outputs can be explained by the fact that our local min-
imisation effort of individual output does not always
contribute to a global minimisation effectively. When
different selected outputs of the functions apex4 and
bw are tested separately, our algorithm always gener-
ates a smaller FBDD than the minimal OBDD gener-
ated by the dynamic variable reordering algorithm. In
order to achieve such a global minimisation of the
FBDD for all functions at once, a statistical test or
measure of the percentage isomorphic subgraphs
among different outputs for all possible decisions has
to be formulated. At present, a good likelihood metric
for the information theoretic approach to this problem
has not been derived.

An M(k) universal logic module (ULM) is a multi-
plexer with & control inputs and 2* data inputs. By
modifying the FBDD vertex structure such that it con-
tains k vertex variables and 2% edges corresponding to
2% possible minterms of k variables, the same algorithm
FBDD_MIN can be used for M(k) ULM network syn-
thesis. Besides constant termini, additional exit condi-
tions are introduced to check whether the data input

Table 2: Benchmark results for FBDD_MIN and multiplexer synthesis

#inputs #outputs (SOIZBeDD) (SF:';eDD) Time,s #M(2) Time,s #M(3) Time,s
9sym 9 1 35 33 0.06 15 0.07 " 0.08
Z9sym 9 1 35 33 0.04 15 0.09 1M 0.15
5xp1 7 10 81 104 0.04 52 0.09 38 0.07
Z5xp1 7 10 71 69 0.04 49 0.07 38 0.12
sao2 10 4 134 130 0.11 75 0.31 40 0.67
apex4 9 19 1118 1465 0.54 884 0.73 720 1.47
bw 5 28 126 139 0.05 79 0.07 29 0.03
clip 9 5 177 207 0.10 108 0.24 77 0.40
conl 7 2 20 21 0.03 11 0.04 7 0.03
inc 7 9 97 89 0.06 51 0.08 36 0.1
misex1 8 7 51 54 0.08 31 0.16 20 0.19
sqrt8 8 4 53 41 0.02 22 0.1 14 0.12
ex1010 10 10 - 1231 0.86 767 1.49 512 2.63
squarb 5 8 42 48 0.03 24 0.01 12 0.02
xors 5 1 1 9 0.05 3 0.03 1 0.06
rd53 5 3 25 23 0.02 9 0.02 2 0.03
rd73 7 3 45 43 0.05 19 0.04 13 0.03
rd84 8 4 61 59 0.10 30 0.07 8 0.09
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can be terminated with a single variable. With the
modified algorithm, the incompletely specified function
from example 3.7 can be synthesised by a 2-1 multi-
plexer network consisting of four M(1) ULMs. The
result is shown in Fig. 2. The same benchmark func-
tions are optimised by a network implemented with
M(2) and M(3) multiplexers, and the results are shown
in the rightmost four columns of Table 2, where the
columns labelled ‘#M(2) and ‘#M(3)’ are the number
of M(2) and M(3) ULMs required, respectively. Unlike
the level-by-level technique used in [5], our algorithm
permits mixed control variables within each level, if
this would result in more data paths being terminated
with a shorter depth. However, owing to the same sim-
plified approach towards minimisation of multiple out-
put functions, and the fact that input inverters between
modules are not used in our implementation, the qual-
ity of our results appears to be less attractive than the
published results of [5] for the same benchmark func-
tions.

UM, b,
]
Y ULM X
o A o 2
[
|
X,
uM,  f——x
0o 1 8
| |
X, O

Fig.2  Svnthesis of 2-1 multiplexer network

6 Conclusions

The paired Haar transform has been introduced as an
extension of the unnormalised Haar transform, to spe-
cially deal with the added complexity in allocating the
don’t care sets of incompletely specified Boolean func-
tions [11, 13]. In the applications of the paired Haar
spectrum to logic minimisation, the free binary decision
diagrams have been considered. Since exact minimisa-
tion of the FBDDs has been proven to be NP-hard, the
algorithms proposed for their optimisation are heuris-
tic. By treating them as a general combinatorial deci-
sion problem, the concept of entropy and equivocation
are adopted and re-formulated in terms of the paired
Haar spectrum. Although we have demonstrated the
minimisation methods by examples of single output,
incompletely specified Boolean functions, the presented
theorems can easily be extended to the paired Haar
spectrum for a system of incompletely specified func-
tions. The minimisation problems can also be easily
extended to other decision based applications in logic
synthesis, for example, multiplexer synthesis [5], where
the level-by-level heuristics can be modelled as a special
free decision diagram with k-variables for each vertex,
and 2% edges corresponding to the different polarities of
k data select variables. In addition, the equivocation or
conditional entropy computation can be biased to suit
different cost functions or priorities of conflicting crite-
ria. A good example is in the case of OBDD optimisa-
tion: if there exist many vertices at the same level,
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which belong to some classes of functions that have
small OBDD sizes under some specific orderings of
variables, the conditional entropies can be weighted so
that those orderings of variables have greater prece-
dence.
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