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Abstract 
 
A recently developed non-linear transform, called ‘Sign 
Hadamard-Haar transform’ is discussed. The transform is 
unique and converts ternary vectors into ternary spectral 
domain. New transform is extremely effective in terms of 
computational costs when compared with known Sign 
Walsh transform in application inside ternary 
communication system. 
 
1.  Introduction 
 
In many applications of computer engineering and science, 
where logic functions need to be analyzed or synthesized, it 
is useful to transform such functions to the corresponding 
spectral domain that provides various new insights into 
solving some important problems. The most popular ternary 
transform is Reed-Muller transform over GF(3) [8]. It 
operates on ternary logic functions and provides 

n3  ternary 
spectra for a given ternary function. Another family of 
invertible nonlinear transforms, which uniquely map 
ternary logic functions into ternary transform space, are 
sign transforms. The first transform under the name of ‘sign 
transform’ was based on Walsh functions [5, 7, 8] and is 
known as Sign Walsh transform [1].  
In this paper, a recently developed new transform called 
Sign Hadamard-Haar transform [2] that is related to 
rationalized Hadamard-Haar transform [6] is applied in 
ternary communication system. The basic definitions for 
this transform have been given here. Besides applications in 
ternary logic design a new Hadamard-Haar transform can 
be used when there is a need for a unique coding of ternary 
vectors into the special domain of the same dimensions. In 
this article we are showing one such application in the form 
of ternary communication system and compare 
computational advantages of our new transform over 
known Sign Walsh transform. Another area in which our 
new transform could be used is development of 
cryptographic functions that need to be immune to input 
transformations.  
The structure of this article is as follows. For comparison 
purpose, Section 2 covers basic definitions of Sign Walsh 
as well as Sign Hadamard-Haar transforms. Section 3 
shows computational advantages of our new transform over 
Sign Walsh in ternary communication system while Section 
4 concludes the paper.  
 

2.  Definitions of Sign Walsh and Sign 
Hadamard-Haar Transforms 
 
Definition 1: An invertible sign Hadamard-Haar transform 
hh and its inverse transform hh-1 are the mappings hh: 

N
hh

N
)(1,0,-1}{1,0,-1}{ +→+  and hh-1: →+ N

hh)(1,0,-1}{  , 
N1,0,-1}{+ , where nN 2= . In order to obtain the sign 

Hadamard-Haar spectrum hh and its inverse, the results of 
each fast forward or inverse Hadamard-Haar butterfly 
block are quantized first. In the above equations, the 
cardinality of the original data set N1,0,-1}{+  and its 

transformed spectrum is equal to N3 . 
The following symbols are used: Let 
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vector of i zeros, ni ≤≤1 . Let the symbol c⊕ represent 

cyclic addition, the symbol d⊕ represent dyadic addition, 
and the symbol ∧  represent bit-by-bit logical AND. 
When the above operations are applied to two vectors lA

r
 

and kB , kl <≤1 , l and k are two different integer 
numbers, they result in the vector kC

r
 of the length k. Only l 

elements of kB  and all elements of lA
r

 are manipulated on, 



 

remaining (k-1) elements of the resulting vector kC
r

 are not 
affected by the applied operation and are simply the same 
as the elements of the vector kB  between positions k and 

1+l . 
Definition 2: An invertible forward Sign Walsh transform 
w  is defined as [1]: 

( ) ( )( )






























 ∑−= ∑ ∑∑
= ==

=

−

1

0

1

0

1

0 1

1

1

1signsignsignsign
n

n

p
pp

nx x

x
n

x
n xfw αα K  (1) 

The inverse Sign Walsh transform is [1]: 
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In eqns. 1-2, np ≤≤1 . 
Definition 3: An invertible forward sign Hadamard-Haar 
transform hh is [2]: 
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where 11 −<≤ ni . 
The inverse sign Hadamard-Haar transform is [2]: 
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where 11 −<≤ ni . 
In eqns. 1-5, 
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3.  Application of Sign Hadamard-Haar in 
Ternary Communication System 
 
In the previous Section, it has been shown that Sign 
Hadamard-Haar transform similarly to well know Sign 
Walsh transform exhibit non-linear properties. Though non-
linear, these transforms are unique and invertible. With 
intrinsic coding property, these transforms reveal possible 
application in secured communication systems [3]. In this 
Section, the application of Sign Hadamard–Haar as the 
sequence for ternary communication system will be 
considered. For comparison the well known Sign Walsh 
transform will also be used in the same application. In such 
a system, the incoming binary/ternary data is first encoded 
by performing Sign Hadamard-Haar transform on it. The 
digital modulation technique responsible for carrying 
information in Sign Hadamard-Haar spectra is Ternary 
Amplitude Frequency Shift Keying (TAFSK) [3, 4]. In this 
signaling, a ternary +1 is transmitted by a Radio Frequency 
(RF) pulse of carrier t1cosω , a ternary -1 is transmitted by 
an RF pulse of carrier t2cosω , and a 0 corresponds to no 
RF pulse. The technique combines Binary Amplitude Shift 
Keying and Binary Frequency Shift Keying for the ternary 
case. The Power Spectral Density (PSD) of the resultant 
signaling is given by 
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Proof. Let Sign Hadamard-Haar transform of 
binary/ternary data streams be represented by   
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where )(tp  represents a full rectangular pulse which repeats 
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( ) ( )ωω 12 AA = . Using the frequency shifting property and 
since 
 ttAttAts 2211 cos)(cos)()( ωω +=  
the proof of eqn. 7 is complete.           □ 
  For 12 ωω > , if 012 2ωωω =−  then the transmission 
bandwidth of TAFSK signaling is 04 f  (where Tf /10 =  is 
the clock frequency). 
  A new recursive transform can also be developed based on 
Sign Hadamard-Haar transform. As an example, Sign 
Hadamard-Haar transform can be applied twice onto a 
ternary truth column vector F  such that a new transform 
space is developed. The overall transform is named as Sign 
Hadamard-Haar-2 transform. In general, there are together 

N3  different Sign Hadamard-Haar transform spaces, 
denoted as Sign Hadamard-Haar-q transforms with 

Nq 31 ≤≤ , where when 1=q , the transform yields the 
original Sign Hadamard-Haar transform. For comparison 
purpose, Sign Walsh-q transform can be defined similarly. 
  Figure 1 shows the block diagram of a TASFK 
transmitter. The continuous streams of binary/ternary data 
are converted to parallel words of length N by means of a 
serial-parallel converter. Sign Hadamard-Haar-q transform 
is applied to each word before converting back to the 
format of serial data. The output signal V of the parallel-
serial converter controls the output frequency of the 
voltage-controlled oscillator, and both outputs are fed 
together into the mixer. The output of the mixer is TAFSK 
signaling. The output of the oscillator is mathematically 
given by  

( )[ ]tVffVVCO mc += π2cos0        (8) 
where { }1 ,0 ,1−∈V  and 0V  is an arbitrary amplitude. 
If 0ffm = , then the resultant transmission bandwidth will 
be 04 f , and 20 fff c =+ , 10 fff c =− . 
  Figure 2 shows a block diagram of a TAFSK receiver. The 
incoming noisy RF signal is bandpass filtered centered at 
frequency cf . The bandpass filters centered at 2f  and 1f  
are matched to the two RF pulses corresponding to ternary 
logic of -1 and +1, accordingly. The outputs of the two 
matched filters are detected by two envelope detectors. The 
envelope detector is sampled at 0Tt =  to make the ternary 

decision of -1 or 0 and 1 or 0 by negative and positive 
threshold devices, respectively. The output of summer is 
ternary, which is fed to a serial-parallel-serial converter, an 
inverse Sign Hadamard-Haar-q transform block and a 
parallel-serial converter to extract the original message. 
 

Serial
Parallel

Converter

Parallel
Serial

Converter

Sign
Hadamard-

Haar-q
transform

Bandpass
Filter

certres at  acf
V

VCO

q-control

N N

)(ts
Binary/
Ternary

Data

Figure 1  Block diagram of TAFSK transmitter. 
 
  The proposed non-coherent system is the simplest 
implementation of a ternary communication system. Other 
possibilities include the complicated M-ARY 
communication systems [3]. The addition of a Sign 
Hadamard-Haar transform provides security in the digital 
communication system. The level of security is easily 
adjustable by controlling q, which corresponds to Sign 
Hadamard-Haar-q transform applied q times. If q is varied 
for each word transformed in a manner transparent to a 
friendly receiver, the level of security in the communication 
system will be further enhanced. It is obvious that Sign 
Hadamard-Haar transform provides security to information 
data, however another possibility to increase the security of 
the digital communication system is the use of Sign 
Hadamard- γ -Haar- χ transform described in the 
conclusion. Though the latter transform is more 
computationally expensive, it can be also in the form of 
Sign Hadamard-γ -Haar- χ -q transform, it provides better 
security properties by its design and is suitable for 
cryptographic systems. 
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Figure 2  Block diagram of TAFSK receiver. 

 



 

 
Table 1  Comparison of computational costs in ternary 

communication system 
 

Sign Hadamard-
Haar- q transform 

Sign Walsh-q 
transform q n 

qn ×−× + )823( 1  nqn22  
1 12 12 
2 48 48 3 
3 120 144 
4 440 640 
5 920 1,600 5 
6 1,880 3,840 
7 6,080 14,336 
8 12,224 32,768 8 
9 24,512 73,728 
10 61,360 204,800 
11 122,800 450,560 10 
12 245,680 983,040 
13 589,728 2,555,904 
14 1,179,552 5,505,024 12 
15 2,359,200 11,796,480 

 
 
The application of Sign Hadamard-Haar transform in a 
ternary communication system has been considered. Such 
application may be used by other quantized transforms as 
well. When the well known Sign Walsh transform is 
applied to the ternary communication system, Sign 
Hadamard-Haar-q transform will be replaced by Sign 
Walsh-q transform in the Figure 1 and Figure 2. Table 1 
shows some results about computational costs of two 
systems where Sign Hadamard-Haar-q transform and Sign 
Walsh-q transform are implemented respectively. From 
Table 1, it is obvious that the system based on Sign 
Hadamard-Haar-q transform is much more efficient than 
the one based on Sign Walsh-q transform due to much 
smaller number of computations especially for higher q and 
n. 
 
4.  Conclusion 
 
A non-linear transform called ‘Sign Hadamard-Haar 
transform’ has been applied in ternary communication 
system. It has been shown that the transform exhibits a non-
linear property. Essentially, it transforms ternary data into 
ternary spectrum. Though non-linear, the transform is 
unique, and hence invertible. Recursive definition of the 
transform has been given.  
  Sign Hadamard-Haar transform is just another 
representative of a family of quantized transforms based on 
the usage of sign function as the quantizer and as shown in 
this article it has advantage over well known Sign Walsh 
transform in application inside of ternary communication 
system. In order to further enhance its cryptographic 

properties, one may develop a new recursive sign transform 
with just Sign Hadamard-γ -Haar- χ  transform as the basis 
where γ  and χ  show the number of butterflies in 
Hadamard and Haar part of the transform. By simply 
applying Sign Hadamard-γ -Haar- χ  transform twice onto a 

ternary truth column vector F  such that a new transform 
space is developed, and name the overall transform as Sign 
Hadamard- γ -Haar- χ -2 transform. In general, if n is the 
number of variables of the ternary function, there are 
altogether n3  different Sign Hadamard- γ -Haar- χ  
transform spaces, denoted as Sign Hadamard-γ -Haar- χ -q 
transforms with nq 31 ≤≤  which is well suited to security 
coding in cryptographic systems and ternary security 
communication systems, where when 1=q , 1=γ  and 

1−= nχ , the transform yields the original Sign Hadamard-
Haar transform of size n. 
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