i — _ w®gt _ what

&' = D Miow = P Mresen = = agy
kCoj’ ®at kCog’

4

Forj,#j,k’ coje {k'e ZIk,=0and k", = —or k', =0 and K/,
= -}. In either case, a;’ equal to a GF(2) summation of an odd
number of minterms M, due to k, = k, = 0 and an odd number
of minterms m,e 4, due to k, # k,. For those @ such that o, =
® Miogo0 Mioge0qn the GF(2) summation in eqn. 4 remains
unchanged. Therefore, 2/ = a if ®, = o, In summary, when o,
=@, A = 4. When o, # 0,

whgt Py .
w,:{aj@;t if jp # Jo

a; s .

ay if jp = Jq
Since each coefficient in polarity o is mapped into a distinct coef-
ficient in another polarity ' = 0 @, ¢t, W’ = W. O

Lemma 3: Complementing a function does not alter its w,, but
either increments or decrements its w, by one, for all polarities of
.

Proof of Lemma 3: This is trivial since 4° =1 @, £ for any w. (]

Conclusion: We have proven by using the subnumber operation
that the Reed-Muller weight and literal vectors fully classify
Boolean functions in an NP equivalent class and NPN equivalent
class, respectively. The presented proof leads to applications in
technology mapping and design with universal logic modules.
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Relationship between arithmetic and Haar
wavelet transforms in the form of layered
Kronecker matrices

B.J. Falkowski

The relationship between the arithmetic and Haar wavelet
transforms is investigated. An interesting connection in the form
of layered vertical and horizontal Kronecker matrices between the
two transforms is revealed. The new relations apply to an
arbitrary dimension of the transform matrices and enable the
arithmetic spectrum to be calculated directly from the Haar
wavelet spectrum, and vice versa, without the necessity of re-
obtaining the original function.

Introduction: In the preceding decade there has been increasing
interest in applications of different discrete transforms to the dig-
ital signal processing of integer-valued and complex signals.

ELECTRONICS LETTERS

Depending on the application, some transforms are better suited
than others. It is often advantageous to apply more than one
transform in a given application based on the local properties of a
data signal. In the latter case it is of interest to investigate mutual
relations between various local discrete transforms such as, for
example, the Haar wavelet and arithmetic transforms. Both the
Haar wavelet transform (non-normalised version of the transform
where only signs are entered into the transform matrix) and the
arithmetic transform have been used in many logic design applica-
tions [2, 3, 5, 6, 9]. Therefore it is not only interesting theoretically
but also practical to state their mutual relations. Initial work in
this area has recently been carried out where such mutual relations
were presented for the transformation matrices of order 3 [4]. In
this Letter, for the first time, such relations are presented for an
arbitrary transform matrix order.

Arithmetic and Haar transforms: The matrix of order N = 2 for
the arithmetic transform is defined as [2, S, 6]

A,\,=[_AA¥*‘1 AON] Ai=1 N=23,..
2 F3

Also Ay = A, ®A% for N =2,3,...

The non-normalised Haar transform Hy of order N = 2" can be
defined recursively as [1, 3, 8, 10]

Hyol 1]

HN:{I_I;@D _1]] andH1:1

where I, is an identity matrix of order N/2. In the above equa-
tions, the symbol ‘® denotes the Kronecker direct product {10].

For an n-variable Boolean function F(x,, x, ..., X,), the Haar
and arithmetic spectrum (a column vector of dimension 2" x 1) is
given by H = [H,JF and A = [A,]F where H is the Haar spectrum
and A the Arithmetic spectrum, accordingly. From the above defi-
nitions it is obvious that the first two rows of [H,] are global basis
functions Hy(x) and H,(x), respectively. All subsequent rows com-
prise local basis functions H® (x) in ascending order of / and k. /
=1, 2, ... is the degree of the Haar function describing the number
of zero crossings, and k£ = 1, ..., 2/ is the order of the Haar func-
tion describing the position of the subset / within a function. In
the arithmetic transformation matrix [4,], all rows but the last
comprise local basis functions.

Relations between Haar and arithmetic functions in form of layered
Kronecker matrices: The following relations will be given only for
arithmetic functions and non-normalised Haar wavelet functions.
From earlier results [4] it is trivial to modify the presented equa-
tions for normalised Haar wavelet functions by adding normalis-
ing factors. Also, to make this Letter consistent with other
published papers, Hadamard ordering is used for both transforms.
A, denotes an ith arithmetic function and the Haar functions fol-
low the definition from the previous paragraph. Kaczmarz gave
the definition of Walsh functions by Haar wavelet functions for
the first eight functions (» = 3) [7] and similar developments for
arithmetic and Haar wavelet functions were presented in [4]. Here,
the definitions for higher » are shown for expressing arithmetic
functions by non-normalised Haar functions and vice versa. To
make the work applicable to the transformation matrix of any
dimension, the presented relations are given in the form of layered
Kronecker products.
Mutual relations between the Haar and arithmetic transforms
for the general case of arbitrary » are as follows:
Ay ] r {1 1] ®<né1[1-> -
4 0 —2 0
" . 1
2
Al g
)<L {1
Jo (L]

@
H3
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) ® [o-1 o (® 2 1)

HE . 1] [o -1) 2| 4
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In the above equations, the symbols ‘®” and ‘® represent the
Kronecker direct product of n and two matrices, respectively. The
vertical dotted lines denote the layered vertical Kronecker matri-
ces, and the horizontal dashed lines denote the layered horizontal
Kronecker matrices, respectively. A layered horizontal Kronecker
matrix is defined as the horizontal sum of Kronecker matrices
[10]. In a similar manner, in this Letter the notion of a layered ver-
tical Kronecker matrix is introduced that can be defined as the
vertical sum of Kronecker matrices. When the Kronecker direct
product of i matrices is carried out for the above equations for i <
0, then the term ¢ disappears from the above equations.

Example: For n = 3, the above relations become

[ Ao T [ Ho 7
7 1 -p
Az 0 -2 0 0 WY
Az | 10 1 1 HP
o B S GBI E Fe
Az 2|1 o 1 Héz’
wl ACLDClD
LA123] ) La"
r 1 2 0 4 0 0 07 [ Ho
o 0 o0 o -8 0 ©0 O Hy
0 0 -4 0 -4 4 0 O =
—yf0 0 o o 8 -8 0 0| HP
lo -2 -2 2 -2 o 4 o | [|H®
o 0o o0 o0 8 0 -8 0 H?
0 0 4 -4 4 —4 -4 4 ||H®
Lo o o o -8 8 8 -8l lHW]
Ho m e 1 [ Ao
H, [0 _1] e [211 o [21 Ay
HV | W o Az
@
o | = [i f] o b-1 o [u |4
#H? W, N T T Tt Aus
H { (é[l OD & [o-1 Azs
H® 11 LA123.
rs 4 4 4 2 2 17 [40]
o 0o o -4 -2 -2 -1 A1
00 -2 -1 0 0 0 0 Az
_]o 0o 2 -1 0 0o -2 —1f fAn
6 -1 0o 0o 0 0 O o0 As
0 -1 0 -1 0 0 0 0 A1s
0 -1 4 0 0 -1 0 0 Az
lo -1 0 -1 0o -1 o -1l LA123d

As can be easily verified, the results for n = 3 are exactly the same
as those presented in [4].

Conclusion: In this Letter new mutual relations between the Haar
wavelet and arithmetic transforms in the form of layered vertical
and horizontal Kronecker products are presented. These relations
generalise earlier results presented in {4] and allow known results
of spectral logic design in the arithmetic domain [2, 5, 6] to be
transferred to the Haar domain and the efficiency of both
approaches to be compared for different applications of large
Boolean functions. Many other applications of the arithmetic
transform in logic design and other areas were described in [6],
while some applications of the Haar Wavelet transform are availa-
ble in [1, 8, 10].
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Tuning logic simulators for timing analysis

D.M. Maksimovi¢ and V.B. Litovski

An original method for digital circuit delay estimation within a
logic simulator framework and HDL modelling mechanism
needed for its implementation are proposed. The method is
implemented using the simulator Alecsis and its efficiency is
demonstrated on a set of ISCAS’85 benchmark circuits.

The frequency of operation of a circuit is one of the most impor-
tant user requirements to the digital integrated circuit designer.
The maximum operating frequency is determined by the delay of
the longest path in the circuit. Circuit delays are usually extracted
using timing analysis programs [1 — 3]. When timing analysis
shows that the timing requirements are not being met, then the
designer must redesign the circuit. To avoid circuit redesign, the
designer needs to carry out maximal delay estimation as early as
possible in the design process.

In this Letter we show that a versatile logic simulator is capable
of producing an early estimation of circuit delays in quite an
acceptable amount of CPU time. Only a small improvement is
necessary in the simulation mechanism of a standard logic simula-
tor to enable it to act as a timing simulator. We implement this
improvement in the simulator’s input language in the form of a
generalised signal attribute modelling mechanism. The method we
propose estimates the propagation delays of the longest structural
paths for all signals in the circuit with only one run of the logic
simulator.

When a digital circuit is simulated for one specific input vector,
the time instant when the last signal transition occurs determines
the delay of one (rising or falling) edge at that signal for the given
input vector. To obtain the worst-case delays of both rising and
falling signal transitions for any input vector, 2" circuit simulations
must be carried out, where » is the number of primary inputs. This
approach is not feasible when n becomes large.

We propose a logic simulation based method for delay
evaluation that assumes the simultaneous propagation of all input
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