
Quantum complexities of ordered searching,
sorting, and element distinctness ∗

Peter Høyer ‡ Jan Neerbek § Yaoyun Shi¶

September 17, 2001

Abstract

We consider the quantum complexities of the following three problems: searching
an ordered list, sorting an un-ordered list, and deciding whether the numbers in a
list are all distinct. Letting N be the number of elements in the input list, we prove
a lower bound of 1

π (ln(N) − 1) accesses to the list elements for ordered searching,
a lower bound of Ω(N logN) binary comparisons for sorting, and a lower bound of
Ω(
√
N logN) binary comparisons for element distinctness. The previously best known

lower bounds are 1
12 log2(N)−O(1) due to Ambainis, Ω(N), and Ω(

√
N), respectively.

Our proofs are based on a weighted all-pairs inner product argument.
In addition to our lower bound results, we give an exact quantum algorithm for

ordered searching using roughly 0.631 log2(N) oracle accesses. Our algorithm uses a
quantum routine for traversing through a binary search tree faster than classically, and
it is of a nature very different from a faster exact algorithm due to Farhi, Goldstone,
Gutmann, and Sipser.

Keywords: Quantum computation, Searching, Sorting, Element distinctness, Lower
bound.

1 Introduction

The speedups of quantum algorithms over classical algorithms have been a main reason for
the current interest in quantum computing. One central question regarding the power of
quantum computing is: How much speedup is possible? Although dramatic speedups seem

∗Research supported by Canada’s NSERC, the EU fifth framework program QAIP, IST-1999-11234, the
National Science Foundation under grant CCR-9820855, and the Pacific Institute for the Mathematical
Sciences.
‡Department of Computer Science, University of Calgary, Alberta, Canada T2N 1N4. email:

hoyer@cpsc.ucalgary.ca. Research conducted in part while at BRICS, University of Aarhus, Denmark.
§Department of Computer Science, University of Aarhus, DK–8000 Århus C, Denmark. email:

neerbek@daimi.au.dk.
¶Department of Computer Science, Princeton University, Princeton, NJ 08544, USA. email:

shiyy@cs.princeton.edu.

1

possible, as in the case of Shor’s [23] algorithms for factoring and finding discrete logarithms,
super-polynomial speedups are so far proven only in restricted models such as the black box
model.

In the black box model, the input is given as a black box, so that the only way the
algorithm can obtain information about the input is via queries, and the complexity measure
is the number of queries. Many problems that allow provable quantum speedups can be
formulated in this model, an example being the unordered search problem considered by
Grover [18]. Several tight lower bounds are now known for this model, most of them being
based on techniques introduced in [6, 4, 2].

We study the quantum complexities of the following three problems.

Ordered searching Given a list of numbers x = (x0, x1, . . . , xN−1) in non-decreasing order
and some number y, find the minimal i such that y ≤ xi. We assume that y ≤ xN−1

so that the problem is always well-defined.

Sorting Given a list of numbers x = (x0, x1, . . . , xN−1), output a permutation σ on the set
{0, . . . , N − 1} so that the list (xσ(0), xσ(1), . . . , xσ(N−1)) is in non-decreasing order.

Element distinctness Given a list of numbers x = (x0, x1, . . . , xN−1), are they all distinct?

These problems are closely related and are among the most fundamental and most studied
problems in algorithmics. They can also be formulated naturally in the black box model. For
the ordered searching problem, we consider queries of the type “xi =?”, to which the oracle
returns the value xi, and for the sorting and element distinctness problems, we consider
queries of the type “Is xi < xi′?”, which are simply binary comparisons. Let Hi =

∑i
k=1

1
k

denote the ith harmonic number. We prove a lower bound for each of these three problems.

Theorem 1 Any quantum algorithm for ordered searching that errs with probability at
most ε ≥ 0 requires at least (

1− 2
√
ε(1− ε)

)
1

π
(HN − 1) (1)

queries to the oracle. In particular, any exact quantum algorithm requires more than
1
π
(ln(N)− 1) ≈ 0.220 log2 N queries.

Theorem 2 Any comparison-based quantum algorithm for sorting that errs with probability
at most ε ≥ 0 requires at least(

1− 2
√
ε(1− ε)

)
N

2π
(HN − 1) (2)

comparisons. In particular, any exact quantum algorithm requires more than N
2π

(ln(N)−1) ≈
0.110N log2 N comparisons.

Theorem 3 Any comparison-based quantum algorithm for element distinctness that errs
with probability at most ε ≥ 0 requires at least(

1− 2
√
ε(1− ε)

)√
N

2π
(HN − 1) (3)

comparisons.

2

The previously best known quantum lower bound for ordered searching is 1
12

log2(N) −
O(1), due to Ambainis [1]. For comparison-based sorting and element distinctness, the
previously best known quantum lower bounds are Ω(N) and Ω(

√
N), respectively, both of

which can be proven in many ways.
We prove our lower bounds by utilizing what we refer to as a weighted all-pairs inner

product argument, or a probabilistic adversary argument. This proof technique is based on
the work of Bennett, Bernstein, Brassard, and Vazirani [6] and Ambainis [2].

Farhi, Goldstone, Gutmann, and Sipser give in [15] an exact quantum algorithm for or-
dered searching using roughly 0.526 log2(N) queries. We provide an alternative quantum
algorithm that is also exact and uses log3(N) + O(1) ≈ 0.631 log2(N) queries. Our con-
struction is radically different from the construction proposed in [15], and these are the only
constructions known leading to quantum algorithms using at most c log2(N) queries for some
constant c strictly less than 1.

Whereas most quantum algorithms are based on Fourier transforms and amplitude am-
plification [9], our algorithm is based on binary search trees. We initiate several applications
of the binary search algorithm in quantum parallel and let them find the element we are
searching for in teamwork. By cooperating, these applications can traverse the binary search
tree faster than classically, hereby reducing the complexity from log2(N) to roughly log3(N).

There are at least three reasons why the quantum complexities of the three problems are
of interest. Firstly because of their significance in algorithmics in general. Secondly because
these problems possess some symmetries and periodicities of a different nature than other
studied problems in quantum algorithmics. Determining symmetries and periodicities seems
to be a primary ability of quantum computers and it is not at all clear how far-reaching
this skill is. Thirdly because searching and sorting represent non-Boolean non-symmetric
functions. A (partial) function is said to be symmetric if it is invariant under permutation
of its input. Only few non-trivial quantum bounds for non-Boolean and non-symmetric
functions are known.

The rest of the paper is organized as follows. We first discuss the model in Section 2,
prove a general lower bound in Section 3, and then apply it to ordered searching, sorting, and
element distinctness in Sections 4, 5, and 6, respectively. We give our quantum algorithm in
Section 7 and conclude in Section 8.

2 Quantum black box computing

We use the so-called black box model in which the input is given as an oracle and our measure
of complexity is the number of queries to the oracle [7, 4]. Fix some positive integer N > 0.
The input x = (x0, . . . , xN−1) ∈ {0, 1}N is given as an oracle, and the only way we can access
the bits of the oracle is via queries. A query implements the operator

Ox : |z; i〉 7−→

{
(−1)xi|z; i〉 if 0 ≤ i < N

|z; i〉 if i ≥ N .
(4)

Here i and z are non-negative integers. By a query to oracle x we mean an application of
the unitary operator Ox. We sometimes refer to Ox as the oracle. A quantum algorithm A

3

that uses T queries to an oracle O is a unitary operator of the form

A = (UO)TU. (5)

We always apply algorithm A on the initial state |0〉, and after applying A, we always measure
the final state in the computational basis. Thus, a quantum algorithm for oracle quantum
computing is defined by specifying a unitary operator U and a number of iterations T .
Our model for oracle quantum computing is slightly different from, but equivalent to, the
“standard” model used for example in [4]. We favor utilizing this model, since hereby
oracle Ox is a diagonal matrix with respect to the computational basis.

Consider the computation of some function f : {0, 1}N → {0, 1}m. After applying
quantum algorithm A on |0〉, we measure the m rightmost qubits of A|0〉 and output the
outcome w. The success probability px of A on input x ∈ {0, 1}N is defined as the probability
that w = f(x). For complete functions f : {0, 1}N → {0, 1}m, we define the success proba-
bility of A as the minimum of px over all x ∈ {0, 1}N . For partial functions f : S → {0, 1}m,
where S ⊆ {0, 1}N , we take the minimum over S only.

There is a very basic, yet key conceptual idea which is used in this paper and which we
would like to emphasize, and that is that we are concerned about distinguishing oracles rather
than determining the value of the function f . This idea is not new, nor revolutionary; we
do however feel that it helps in developing and conveying bounds on algorithms. For a given
problem we want to identify the pairs of oracles that are hard to distinguish. To capture
the hardness of distinguishing each pair of oracles, we therefore introduce a weight function

ω : {0, 1}N × {0, 1}N → R+ (6)

that takes non-negative real values. The harder an oracle x is to distinguish from an or-
acle y, the more weight we put on the pair (x, y). The total weight W distributed is the
sum of ω(x, y) over all pairs (x, y) ∈ {0, 1}N × {0, 1}N . We do not want to put any restric-
tions on ω in general, though for many applications we probably want ω to be symmetric,
normalized and take the value 0 along the diagonal.

The weight function allows us to easily capture any complete as well as partial function.
Let f : S → {0, 1}m be the function of interest, where S ⊆ {0, 1}N . We say that ω is a weight
function for f if whenever f(x) = f(y) then ω(x, y) = 0, and if for every pair (x, y) 6∈ S × S
we have ω(x, y) = 0. Hereby, we may ignore f and just consider the scenario in which we
are given weight function ω.

3 General lower bound

The first general technique for proving lower bounds for quantum computing was introduced
by Bennett, Bernstein, Brassard and Vazirani in their influential paper [6]. Their beautiful
technique is nicely described in Vazirani’s exposition [24]. Our technique is a natural gen-
eralization of theirs as well as of Ambainis’ powerful entanglement lower bound approach
recently proposed in [2].

Here is the basic idea: Consider a quantum algorithm A = (UO)TU that we use to
distinguish between two oracles x, y ∈ {0, 1}N . Our initial state is |0〉. After j iterations,

4

our state is |ψjx〉 = (UOx)
jU|0〉 if we are given oracle x, and it is |ψjy〉 = (UOy)

jU|0〉 if we are
given oracle y. Two quantum states are distinguishable with high probability if and only if
they are almost orthogonal. If the states |ψjx〉 and |ψjy〉 have large overlap, then they cannot
be distinguished with high probability, and hence more queries are required. If a query can
separate two states |ψjx〉 and |ψjy〉 by only a small additional amount, then many queries are
required.

We have to choose how to measure the overlap of states among the plentiful studied
measures. We pick here the probably simplest possibility: inner products. Two states can
be distinguished with certainty if and only if their inner product is zero. Furthermore, two
states can be distinguished with high probability if and only if their inner product is of small
absolute value.

Lemma 4 Suppose that we are given one of two states |Ψx〉, |Ψy〉. There exists some mea-
surement that will correctly determine which of the two states we are given with error prob-
ability at most ε if and only if |〈Ψx|Ψy〉| ≤ 2

√
ε(1− ε).

We are not only interested in distinguishing two particular oracles, but many oracles,
and thus we use an “all-pairs inner product” measure. But as we discussed in the previous
section, some oracles are harder to distinguish than others, and this leads us to our final
choice: we use an all-pairs inner product measure weighted by ω. We now formalize this
approach.

Let A = (UO)TU be any quantum algorithm. For every oracle x ∈ {0, 1}N and every
integer j ≥ 0, let

|ψjx〉 = (UOx)
jU |0〉 (7)

denote the state of the computer after applying j iterations using oracle Ox. For every integer
j ≥ 0, let

Wj =
∑

x,y∈{0,1}N
ω(x, y) 〈ψjx|ψjy〉. (8)

denote the weighted all-pairs inner product after j iterations. Initially, the total weight
is W = W0. After T iterations, the total weight is WT =

∑
x,y∈{0,1}N ω(x, y)〈ψTx |ψTy 〉. If

algorithm A is capable of distinguishing with certainty between all pairs of oracles (x, y) ∈
{0, 1}N × {0, 1}N of nonzero weight, then WT = 0. Conversely, if WT > 0 then there exists
some pair of oracles (x, y) with ω(x, y) > 0 between which algorithm A does not distinguish
perfectly.

In summary, initially all inner products are 1 and the initial weight is therefore W ,
whereas at the end of the computation all inner products are hopefully small and the final
weight WT is therefore small. If the total weight can decrease by at most ∆ by each query, we
require at least W/∆ queries to perfectly distinguish between all pairs of oracles of nonzero
weight.

Theorem 5 Let f : S → {0, 1}m be a given function where S ⊆ {0, 1}N , and let ω be a
weight function for f . Let A = (UO)TU be any quantum algorithm that computes f with
error at most ε ≥ 0 using T queries. Then

T ≥
(

1− 2
√
ε(1− ε)

)
W

∆
(9)

5

where W =
∑

x,y∈{0,1}N ω(x, y) denotes the initial weight, and ∆ is an upper bound on |Wj−
Wj+1| for all 0 ≤ j < T .

Proof By definition, W0 = W , and by Lemma 4, |WT | ≤ 2
√
ε(1− ε)W . Write W0−WT =∑T−1

j=0 (Wj −Wj+1) as a telescoping sum. Then |W0 −WT | ≤
∑T−1

j=0 |Wj −Wj+1| ≤ T∆, and
the theorem follows. �

Our formulation of Theorem 5 has been heavily inspired by the general formulations
used by Ambainis in [2]. In [6], Bennett, Bernstein, Brassard, and Vazirani are interested
in distinguishing one unique oracle x′ from all other oracles. That is, for every pair of
oracles (x, y) ∈ {0, 1}N × {0, 1}N of interest, we have x = x′. Ambainis [2] removes this
restriction, and he also allows a non-uniform interest in different oracles by weighting each
oracle individually. We are also interested in distinguishing general pairs of oracles, but we
discriminate our interest in each pair by weighting each pair of oracles via weight function ω.
This discrimination is essential when applying it to ordered searching, sorting, and element
distinctness.

Let L = [αk,l]1≤k,l<∞ be the Hilbert matrix with αk,l = 1/(k + l − 1). That is,

L =


1 1

2
1
3

1
4
· · ·

1
2

1
3

1
4

1
3

1
4

1
4
...

 .

Let |||·|||2 be the spectral norm, i.e., for any complex matrix M ∈ Cm×m,

|||M |||2 := max
v∈Cm,‖v‖2=1

‖Mv‖2.

Our lower bound proofs make use of the following property of the Hilbert matrix.

Lemma 6 |||L|||2 = π.

Choi [12] has an elegant proof of this lemma.

4 Lower bound for ordered searching

Searching ordered lists is a non-Boolean promise problem: the list is promised to be sorted,
and the answer is an index, not a bit. The input is a sorted Boolean list of size N and the
problem is to find the index of the leftmost 1. We assume that not all values of the list are 0
and hence the problem is always well-defined. Formally, the set S of the N possible inputs
consists of all x ∈ {0, 1}N for which xN−1 = 1 and xi−1 ≤ xi for all 1 ≤ i < N . The search
function f : S → {0, 1}m is defined by f(x) = min{0 ≤ i < N | xi = 1}, where we identify
the result f(x) with its binary encoding as a bit-string of length m = dlog2(N)e.

The first lower bound of Ω(
√

log(N)/ log log(N)) was proved by Buhrman and
de Wolf [11] by an ingenious reduction from the or problem. Farhi, Goldstone, Gutmann,

6

and Sipser [14] improved this to log2(N)/2 log2 log2(N), and Ambainis [1] then proved the
previously best known lower bound of 1

12
log2(N)−O(1). In [14, 1], they use, as we do here,

an inner product argument along the lines of [6].
The first and essential step in our lower bound is to pick a good weight function ω for f .

We choose

ω(x, y) =

{
1

f(y)−f(x)
if (x, y) ∈ S × S and f(x) < f(y)

0 otherwise.
(10)

That is, we use the inverse of the Hamming distance of x and y. Intuitively, a weight function
that (only) depends on the Hamming distance ought to be a good choice since it can put
most weight on pairs of oracles that are almost identical.

The initial weighted all-pairs inner product is

W0 =
∑

x,y∈{0,1}N
ω(x, y) =

N−1∑
i=1

Hi = NHN −N, (11)

where Hi =
∑i

k=1
1
k

denotes the ith harmonic number. Note that ln(N) < HN < ln(N) + 1
for all N > 1. Since any query can decrease the weighted all-pairs inner product by at
most πN , Theorem 1 follows by applying Theorem 5.

Lemma 7 For weight function ω defined by Equation 10, we have that

|Wj −Wj+1| ≤ πN

for all 0 ≤ j < T .

Proof For any oracle x ∈ {0, 1}N , we think of x as an infinite bit-string where xi = 0 for
all i ≥ N . Operator Ox defined by Equation 4 is then given by

Ox =
∑
z≥0

∑
i≥0

(−1)xi|z; i〉〈z; i|.

Let I denote the identity operator. For every i ≥ 0, let Pi =
∑

z≥0 |z; i〉〈z; i| denote the
projection operator onto the subspace querying the ith oracle bit.

Let 0 ≤ j < T . By definition

Wj −Wj+1 =
∑

x,y∈{0,1}N
ω(x, y) 〈ψjx|ψjy〉 −

∑
x,y∈{0,1}N

ω(x, y) 〈ψj+1
x |ψj+1

y 〉

=
∑

x,y∈{0,1}N
ω(x, y) 〈ψjx|I − O−1

x Oy|ψjy〉

= 2
∑

x,y∈{0,1}N

∑
i:xi 6=yi

ω(x, y) 〈ψjx|Pi|ψjy〉.

For every 0 ≤ a < N and i ≥ 0, let βa,i = ‖Pi|ψjx〉‖ denote the `2 norm of the projection of
|ψjx〉 onto the subspace querying the ith oracle bit, where x ∈ {0, 1}N is such that f(x) = a
(‘a’ for ‘answer’). Then

Wj −Wj+1 ≤ 2
∑

0≤a<b<N

∑
a≤i<b

1

b− a
βa,iβb,i.

7

Rewrite the above equation in terms of distances d = b− a,

Wj −Wj+1 ≤ 2
N−1∑
d=1

d−1∑
i=0

1

d

(
N−d−1∑
a=0

βa,a+iβa+d,a+i

)
.

For every 0 ≤ i < N − 1, let

γi =

(
N−1∑
a=0

β2
a,a+i

)1/2

and δi =

(
N−1∑
a=0

β2
a,a−i−1

)1/2

denote the total mass that queries the oracle at i index-positions above and below the
leftmost 1. By the Cauchy–Schwarz inequality,

|Wj −Wj+1| ≤ 2
N−1∑
d=1

d−1∑
i=0

1

d
γiδd−i−1 .

The right hand side is the written-out product of 3 matrices. Let γ = [γ0, . . . , γN−2] and
δ = [δ0, . . . , δN−2]t, where t denotes transposition, and let K denote the (N − 1)× (N − 1)
matrix with entry (k, l) defined by

(K)(k,l) =

{
1

k+l+1
if k + l < N − 1

0 otherwise
(12)

for all 0 ≤ k, l < N − 1. Then

|Wj −Wj+1| ≤ 2γKδ ≤ 2‖γ‖2 · |||K|||2 · ‖δ‖2.

Since ‖γ‖2
2 + ‖δ‖2

2 ≤
∑N−1

a=0

∑
i≥0 β

2
a,i ≤ N , we have that ‖γ‖2 ‖δ‖2 ≤ 1

2
N . Since K can

be obtained from a submatrix of the Hilbert matrix L by setting some entries equal to 0,
and since all entries in K and L are nonnegative, |||K|||2 ≤ |||L|||2 = π by Lemma 6. Hence
|Wj −Wj+1| ≤ πN . �

5 Lower bound for sorting

We show that any quantum algorithm requires at least N
2π

(ln(N)−1) comparisons for sorting.
To prove this, it suffices to assume that the N numbers to be sorted, x = (x0, . . . , xN−1),
correspond to some permutation σ on {0, . . . , N − 1}, that is, xi = σ(i) for every 0 ≤ i < N .
We assume that the input is the N ×N comparison matrix Mσ for σ defined by

(Mσ)ii′ =

{
1 if σ(i) < σ(i′)

0 otherwise.

That is, the input to the quantum algorithm is a comparison matrix given as an oracle. The
output is σ. To simplify notation, we sometimes identify the input Mσ with the underlying
permutation σ.

8

The most crucial step in proving the lower bound is again to pick an appropriate weight
function ω. Intuitively, it is hard to distinguish two inputs that are identical almost ev-
erywhere. Consider an input x. Let k and d be non-negative integers satisfying that
0 ≤ k + d ≤ n − 1, and let xu be the element of rank k + d in x. (The rank of xu is
defined to be the number of elements in x of value strictly smaller than xu. The rank of a
smallest element is 0.) Then we may form a new input y by replacing xu by a new element
of rank k. The element in x that has rank i then has rank i+1 in y, for all k ≤ i ≤ k+d−1.
The difference d of the ranks of the elements at index u in x and y, respectively, is a refined
measure of the difficulty in distinguishing between inputs x and y. As for searching, we use
the inverse of d in our weight function, which we now formally define.

We require the following definition. For every permutation σ on {0, . . . , N − 1}, and
every integers 0 ≤ k ≤ N − 2 and 1 ≤ d < N − k, define a new permutation,

σ(k,d) = (k, k + 1, . . . , k + d) ◦ σ. (13)

For any permutation σ, denote the inverse permutation of σ by σ−1. If τ = σ(k,d), then

σ−1(i) =


τ−1(k) if i = k + d

τ−1(i+ 1) if k ≤ i ≤ k + d− 1

τ−1(i) otherwise.

This implies that the comparison matrices Mσ and Mτ differ only on the following pairs of
entries, {

σ−1(k + d), σ−1(i)
}

=
{
τ−1(k), τ−1(i+ 1)

}
(14)

for k ≤ i ≤ k+d−1. Thus, the comparison matrices Mσ and Mτ differ on exactly 2d entries.
Informally, if Mσ corresponds to some list x, then Mτ corresponds to the list y obtained

by replacing the element of rank k + d in x by a new element of rank k, as described above.
The only way the algorithm can distinguish σ from τ is by comparing the element of rank
k + d in x with one of the d elements of rank i for some k ≤ i ≤ k + d− 1.

We choose the following weight function,

ω(σ, τ) =

{
1
d

if τ = σ(k,d) for some k and d

0 otherwise.
(15)

Then the initial weighted all-pairs inner product is

W0 =
∑
σ,τ

ω(σ, τ) =
∑
σ

N−2∑
k=0

N−1−k∑
d=1

1

d
= N ! (NHN −N). (16)

Since any query can decrease the weighted all-pairs inner product by at most 2πN !, Theo-
rem 2 follows by applying Theorem 5.

Lemma 8 For weight function ω defined by Equation 15, we have that

|Wj −Wj+1| ≤ 2πN !

for all 0 ≤ j < T .

9

The proof of Lemma 8 is similar to that of Lemma 7.

Proof Query operator Oσ is given by

Oσ =
∑
z≥0

∑
i,i′≥0

(−1)m|z; i, i′〉〈z; i, i′|,

where m = (Mσ)ii′ denotes the outcome of comparing the ith element with the (i′)th element
for 0 ≤ i, i′ < N , and where m = 0 whenever i ≥ N or i′ ≥ N . For every pair {i, i′} of
indices with 0 ≤ i, i′ < N , let

Pii′ =
∑
z≥0

|z; i, i′〉〈z; i, i′|+
∑
z≥0

|z; i′, i〉〈z; i′, i|

denote the projection operator onto the subspace comparing the ith and (i′)th elements.
Let 0 ≤ j < T . By definition

Wj −Wj+1 =
∑
σ,τ

ω(σ, τ) 〈ψjσ|ψjτ 〉 −
∑
σ,τ

ω(σ, τ) 〈ψj+1
σ |ψj+1

τ 〉

=
∑
σ,τ

ω(σ, τ) 〈ψjσ|I − O−1
σ Oτ |ψjτ 〉

= 2
∑
σ

N−2∑
k=0

N−1−k∑
d=1

d−1∑
i=0

1

d
〈ψjσ|Pσ−1(k+d),σ−1(k+i)|ψjσ(k,d)〉.

Rewrite the above equation in terms of distances,

Wj −Wj+1 = 2
N−1∑
d=1

d−1∑
i=0

1

d

(∑
σ

N−d−1∑
k=0

〈ψjσ|Pσ−1(k+d),σ−1(k+i)|ψjσ(k,d)〉
)
. (17)

The absolute value of the inner sum is by the Cauchy–Schwarz inequality upper
bounded by√√√√∑

σ

N−d−1∑
k=0

∥∥Pσ−1(k+d),σ−1(k+i)|ψjσ〉
∥∥2

√√√√∑
σ

N−d−1∑
k=0

∥∥Pσ−1(k+d),σ−1(k+i)|ψjσ(k,d)〉
∥∥2
, (18)

which is equal to√√√√∑
σ

N−d−1∑
k=0

∥∥Pσ−1(k+d),σ−1(k+i)|ψjσ〉
∥∥2

√√√√∑
τ

N−d−1∑
k=0

∥∥Pτ−1(k),τ−1(k+i+1)|ψjτ 〉
∥∥2
. (19)

For every 1 ≤ i < N , let

γi =

√√√√∑
σ

N−1∑
l=0

∥∥Pσ−1(l),σ−1(l+i)|ψjσ〉
∥∥2

δi =

√√√√∑
τ

N−1∑
l=0

∥∥Pτ−1(l),τ−1(l−i)|ψjτ 〉
∥∥2
,

10

where we let l range from 0 to N − 1 and simply set the thus caused undefined projection
operators to be zero operators.1 Then

|Wj −Wj+1| ≤ 2
N−1∑
d=1

d∑
i=1

1

d
γiδd−i+1 .

Let γ = [γ1, . . . , γN−1] and δ = [δ1, . . . , δN−1]t. Then, in analogy with the proof of
Lemma 7,

|Wj −Wj+1| ≤ 2π‖γ‖2 · ‖δ‖2.

Since ‖γ‖2
2 ≤ N ! and ‖δ‖2

2 ≤ N !, we conclude that |Wj −Wj+1| ≤ 2πN !. �

6 Lower bound for element distinctness

Our lower bound for element distinctness is almost identical to the lower bound for sorting.
As in Section 5, when we talk about permutations, the underlying set is {0, 1, . . . , N − 1}.

Here is a basic idea for creating two inputs that are hard to distinguish. Consider an
input x that contains no collisions. Then we can create another input with a unique collision
by replacing any of the elements in x with a copy of any other element in x. Though
this describes a perfectly good procedure for creating hard input pairs, we will, however,
describe a different and more complicated procedure for obtaining the same net result. The
more complicated procedure consists of two stages. Consider an input x that contains no
collisions. First we create a new input y that also contains no collisions, and then we create
an input y′ with a unique collision. Pick integers k and d so that 0 ≤ k ≤ N − 2 and
1 ≤ d < N − k. Form input y from x by replacing the element of rank k + d in x with a
new element of rank k. The element in x that has rank i then has rank i + 1 in y, for all
k ≤ i ≤ k + d− 1. Now form input y′ from y by replacing the element of rank k in y with a
copy of the element of rank k + 1 in y. Then y′ contains a unique collision. Of course this
procedure is essentially just a complicated version of the simple procedure described above,
but it is helpful of thinking of the creation of an input with a unique collision in these terms
in what follows.

For every permutation σ, and every integers 0 ≤ k ≤ N − 2 and 1 ≤ d < N − k, let the
permutation τ = σ(k,d) be defined as in Equation 13 in Section 5. For every permutation τ
and every integer 0 ≤ k ≤ N − 2, let τk denote the input defined by

τk(i) =

{
k + 1 if τ(i) = k

τ(i) otherwise.
(20)

We refer to input τk as an annotated permutation. Write σ
(k,d)
k as shorthand for (σ(k,d))k.

For every permutation σ and every annotated permutation τk, define the value of the weight
function on (σ, τk) in analogy with Equation 15,

ω(σ, τk) =

{
1
d

if τ = σ(k,d) for some d

0 otherwise.
(21)

1Though γi = δi for all 1 ≤ i < N , we prefer to use both variables to increase readability by mimicking
the proof of Lemma 7.

11

The comparison matrices Mσ and Mτk differ on all but one of the 2d entries given in Equa-
tion 14. They differ on the 2d− 2 entries given by{

σ−1(k + d), σ−1(i)
}

=
{
τ−1(k), τ−1(i+ 1)

}
for k < i ≤ k + d− 1, and on the entry

(
σ−1(k), σ−1(k + d)

)
.

The total weight after j iterations is given by

Wj =
∑
σ

N−2∑
k=0

N−k−1∑
d=1

1

d
〈ψjσ|ψjσ(k,d)

k
〉.

The initial weight is the same as in the case of sorting, W0 = N ! (NHN − N). Since any
query can decrease the weighted all-pairs inner product by at most 2πN !

√
N , Theorem 3

follows by applying Theorem 5.

Lemma 9 For any integer j with 0 ≤ j < T , we have that |Wj −Wj+1| ≤ 2πN !
√
N .

Proof Almost identical to the proof of Lemma 8. In analogy with Equation 17, we have

|Wj −Wj+1| ≤ 2
N−1∑
d=1

d−1∑
i=0

1

d

(∑
σ

N−d−1∑
k=0

∣∣〈ψjσ|Pσ−1(k+d),σ−1(k+i)|ψjσ(k,d)
k
〉
∣∣). (22)

Because the comparison matrices Mσ and Mτk differ only on 2d− 1 entries and we sum over
all 2d entries as in the proof for sorting, we use a less-than-or-equal sign in Equation 22.
This is a mere technicality and it is valid since we take absolute values on either side.

Similar to Equations 18 and 19, we apply the Cauchy–Schwarz inequality to upper bound
the inner sum by√√√√∑

σ

N−d−1∑
k=0

∥∥Pσ−1(k+d),σ−1(k+i)|ψjσ〉
∥∥2

√√√√∑
τ

N−d−1∑
k=0

∥∥Pτ−1(k),τ−1(k+i+1)|ψjτk〉
∥∥2
.

For every 1 ≤ i < N , let

γi =

√√√√∑
σ

N−1∑
l=0

∥∥Pσ−1(l),σ−1(l+i)|ψjσ〉
∥∥2

δi =

√√√√∑
τ

N−1∑
l=0

∥∥Pτ−1(l),τ−1(l−i)|ψjτl〉
∥∥2
,

where we let l range from 0 to N − 1, and define the vectors γ and δ as in the proof of
Lemma 8. We then have that

|Wj −Wj+1| ≤ 2
N−1∑
d=1

d∑
i=1

1

d
γiδd−i+1 = 2γKδ,

12

where the matrix K is given by Equation 12. Besides having ‖γ‖2 ≤ N ! as in the proof of
Lemma 8, we also have that

‖δ‖2 =
N−1∑
i=1

∑
τ

N−1∑
l=0

∥∥Pτ−1(l),τ−1(l−i)|ψjτl〉
∥∥2 ≤ N !N,

and thus |Wj −Wj+1| ≤ 2π
√
N !
√
N !N = 2πN !

√
N . �

7 A log3(N) algorithm for ordered searching

We begin this section by considering binary search trees on which our quantum algorithm
is based. A binary tree T is complete if the difference in depths of any two leaves is at
most 1. A complete binary tree T is right-complete if the leaves with the largest depth lie in
the rightmost positions. A binary tree is perfect if all leaves have the same depth. For the
purpose of explaining our algorithm, we shall extensively refer to binary trees populated by
pebbles. The following definitions are illustrated in Figure 1.

e
e ee e e ee e e e e e e ee e e e e e e e e e e e e e e e�� �� �� �� �� �� �� ��BB BB BB BB BB BB BB BB

JJ JJ JJ JJ

�
��

�
��Z

ZZ
Z
ZZ

��
��
� H

HHHH

u u u u u u u u u u u
r

r r

r r r rr r r r

hh h h h h h h h h h
r r rr r r r r r r r

Figure 1: A covering of the perfect binary tree T with N = 32 leaves by N ′ = 11
pebbles. The leaves are not shown. We use 11 pebbles of each of 4 colors, yielding
a total of 44 pebbles. The 11 black pebbles are placed on black-colored vertices, red
pebbles on vertices marked with an ’r’, white pebbles on vertices marked with an
outer circle, and pink pebbles on vertices marked with an inner filled circle. Note that
the placements of the pebbles of each color is obtained by shifting the placements of
the black pebbles horizontally. The covering is fair since every color is used exactly
11 times. The covering is tight since on every vertex, either there is 1 pebble and
none on its parent, or there are exactly as many pebbles as on its proper ancestors
in total. The four vertices at depth 2 constitute the boundary vertices, since they
are populated by pebbles while their parents are not.

Let T be a binary tree with N ≥ 2 leaves. We put colored pebbles on the (internal)
vertices of T subject to the 2 conditions:

(A) on every path from the root of T to a leaf, there is exactly 1 pebble of each color, and

(B) the number of pebbles pv on any vertex v ∈ T is at least as large as the total number
of pebbles on its proper ancestors.

13

We say that T is covered by N ′ pebbles if we can satisfy the 2 above conditions using at most
N ′ pebbles of each color. We want to minimize the maximum number N ′ of pebbles used of
any color.

We say a covering is fair if it uses the same number of pebbles of every color. We do not
put any restrictions on the number of colors used. Note that if a tree can be fairly covered by
N ′ pebbles using s colors, then it can also be fairly covered by N ′ pebbles using any multiple
of s colors, simply by doubling the number of pebbles on each vertex. We say of a vertex
v ∈ T for which pv > 0 that it is populated by pebbles, or shortly, that it is populated. If a
vertex v ∈ T is populated, but its parent is not or its parent is undefined, then we say that
v is a boundary vertex and that it is located on the boundary. Vertices not on the boundary
are said to be non-boundary.

We say a covering is tight if for every vertex v ∈ T , either pv equals the total number
of pebbles on its proper ancestors, or v is on the boundary. Note that a covering is tight
if whenever we walk down the tree from the root and record the number of pebbles on the
vertices passed, we recognize the sequence (0, . . . , 0, 1, 1, 2, 4, 8, 16, . . .) or an integral multiple
of it. A tight covering satisfies that, for all leaves ` and all vertices v in T ,

pv =

{
2s+1/2d(v,`) if v is boundary

2s/2d(v,`) if v is populated and non-boundary,
(23)

where 2s is the number of colors used and d(v, `) denotes the absolute value of the difference
in depths of vertex v and leaf `.

Consider a right-complete binary tree with N leaves. This tree can clearly be covered by
bN/2 + 1c pebbles, for example, by putting one (say, black) pebble on each of the vertices
adjacent to a leaf. We can, however, do better than this. Indeed, we can cover some
binary tree with N leaves by only N ′ = bN/3 + log2(N)c pebbles. A covering of the perfect
binary tree with N = 32 leaves by N ′ = 11 pebbles is given in Figure 1. A straightforward
generalization of the covering in this figure yields Lemma 10 and Theorem 11.

Lemma 10 A perfect binary tree T with N = 2 · 4n leaves can be fairly and tightly covered
by N ′ = 1

3
(N + 1) pebbles using 2n colors.

Proof See Figure 1 for an illustration of the case N = 32 = 2 · 42. We use 2n colors,
{c0, . . . , c2n−1}. Label the 2n subtrees of T rooted at vertices at depth n by {T0, . . . , T2n−1}.
For each color ci, put a pebble colored ci on the root of Ti. For each color ci and for each
1 ≤ d ≤ n, put a pebble colored ci on each of the 2d · 2d−1 vertices at depth d in the 2d−1

subtrees T[i+2d−1], . . . , T[i+2d−1], where T[k] denotes the subtree Tl with l = k mod 2n.
By construction, Condition (A) holds. Let v ∈ T be a vertex at depth d, and let pv

denote the number of pebbles on v. If d < n then pv = 0, if d = n then pv = 1, and
if n + 1 ≤ d ≤ 2n then pv = 2d−n−1. Thus, Condition (B) holds. We have used exactly
1 +

∑n
d=1 2d · 2d−1 = 1

3
(N + 1) pebbles of each color. In conclusion, we have given a fair and

tight covering of T by N ′ = 1
3
(N + 1) pebbles. �

Theorem 11 For every even N ≥ 2, there exists a binary tree with N leaves that can
be fairly and tightly covered by N ′ = b1

3
N + log2(N)c pebbles using 2s colors, where s =

blog4(N/2)c.

14

Proof Write N =
∑s

i=0 ai2 · 4i, where s = blog4(N/2)c and 0 ≤ ai ≤ 3 for 0 ≤ i ≤ s. Let
T ′ be any binary tree with a =

∑s
i=0 ai leaves. For each 0 ≤ i ≤ s, substitute ai of the

original leaves of T ′ by perfect binary trees with 2 · 4i leaves. The resulting tree T has N
leaves. Each of the substituted subtrees of T can be fairly and tightly covered using exactly
2s colors, and thus so can T .

We have shown that T can be covered by N ′ =
∑s

i=0 ai
1
3
(2 · 4i + 1) pebbles. Rewriting,

we have N ′ ≤ 1
3
N + (s+ 1) ≤ 1

3
N + (log4(N/2) + 1) ≤ 1

3
N + log2(N). The theorem follows

by noting that we can only use an integral number of pebbles. �

We also require the following lemma when bounding the complexity of our algorithm
given below.

Lemma 12 Let integer-valued function F̃ be recursively defined by

F̃ (N) =

{
F̃
(
b1

3
N + log2(N) + 1c

)
+ 1 if N > 8

1 if N ≤ 8.

Then F̃ (N) = log3(N) +O(1).

7.1 The algorithm

We now give our log3(N) + O(1) quantum algorithm for ordered searching. The input
x = (x0, . . . , xN−1) ∈ {0, 1}N is given as an oracle, and it satisfies that xN−1 = 1 and
xi−1 ≤ xi for all 1 ≤ i < N . The problem is to determine the leftmost 1 in x, that is, to
compute f(x) = min{0 ≤ i < N | xi = 1}.

Without loss of generality, we assume that N is even. Let T be a binary tree with N
leaves for which Theorem 11 holds. Let s = blog4(N/2)c and N ′ = b1

3
N + log2(N)c be as

in Theorem 11. We label the N leaves of T by {0, . . . , N − 1} from left to right. Let `f(x)

denote the leaf labeled by f(x), and let P denote the path from the root of T to the parent
of `f(x). We think of P as the path the classical search algorithm would traverse if searching
for f(x) in tree T .

Let C = {c0, . . . , c2s−1} be the set of 2s colors used in Theorem 11. For each color c ∈ C,
let Vc denote the set of vertices in T populated by a pebble of color c. By Condition (A),
there are at most N ′ such vertices, that is, |Vc| ≤ N ′. Let vc denote the unique vertex in
Vc that is on the path P . We think of vertex vc as the root of the subtree that “contains”
the leaf `f(x). Though trivial, please note that vc ∈ P for every color c ∈ C, and that∑

v∈P pv = 2s.
In the following description, we use two registers. The first register is used to store

information about our current position in the search tree. The set of basis vectors for the
first register is the union of three sets. We use a basis vector for each vertex and leaf
in T , {|u〉 | u is a vertex or leaf in T }, two additional basis vectors for each vertex on the
boundary, {|v; b〉 | v is boundary and b is a bit}, and also some dummy value {|0〉}. The
second register holds information about a color. We use a basis vector for each color and
some dummy value, {|c〉 | c ∈ C} ∪ {|0〉}.

15

Our algorithm utilizes 3 unitary operators, U1, O′x, and U2. The first operator, U1, is
defined by

U1 : |v〉|0〉 7−→ |v〉
(

1
√
pv

∑
c

|c〉
)

(v ∈ T), (24)

where the summation is over all colors c ∈ C that are represented by a pebble on vertex v.
We refer to U1 as the coloring operator and its inverse as the un-coloring operator.

The query operator O′x is defined by

O′x : |v〉 7−→

{
|v ; xi〉 if v is boundary

(−1)xi|v〉 if v is populated and non-boundary,
(25)

where i denotes the label of the rightmost leaf in the left subtree of vertex v. Query oper-
ator O′x is clearly unitary (or rather, can be extended to a unitary operator since it is only
defined on a proper subspace). Operator O′x is slightly different from, but equivalent to, the
query operator defined in Section 2. It mimics the classical search algorithm by querying
the bit xi that corresponds to the rightmost leaf in the left subtree of v.

We also use a unitary operator U2 that maps each vertex to a superposition over the
leaves in its subtree. For every vertex and leaf u in T , let L(u) denote the set of leaves in
the subtree rooted at u, and let

|Φu〉 =
∑
`∈L(u)

1√
2d(u,`)

|`〉, (26)

where d(u, `) denotes the absolute value of the difference in depths of u and leaf `. The
unitary operator U2 is (partially) defined as follows. For all boundary vertices v ∈ T ,

|v ; 0〉 7−→ |Φright(v)〉 (27.1)

|v ; 1〉 7−→ |Φleft(v)〉, (27.2)

and for all populated non-boundary vertices v ∈ T ,

|v〉 7−→ 1√
2

(
|Φright(v)〉 − |Φleft(v)〉

)
. (27.3)

Here left(v) denotes the left child of v, and right(v) the right child.
By Equations 25 and 27, for all populated vertices v on path P , we have that

〈`f(x)|U2O′x|v〉 =

{
2−

1
2

[d(v,`f(x))−1] if v is boundary

2−
1
2

[d(v,`f(x))] if v is non-boundary,

which, by Equation 23, implies that

〈`f(x)|U2O′x|v〉 =
√
pv/2s (28)

for all vertices v on path P .
Our quantum algorithm starts in the initial state |0〉|0〉 and produces the final state

|`f(x)〉|0〉. Let F (N) denote the number of queries used by the algorithm on an oracle x of
size N .

16

1. We first set up a superposition over all 2s colors,

1√
2s

∑
c∈C

|0〉|c〉.

2. We then apply our exact quantum search algorithm recursively. For each color c ∈ C in
quantum parallel, we search recursively among the vertices in Vc, hereby determining
the root vc ∈ Vc of the subtree containing the leaf `f(x). Since |Vc| ≤ N ′, this requires
at most F (N ′ + 1) queries to oracle x and produces the superposition

1√
2s

∑
c∈C

|vc〉|c〉.

Since every vertex vc in the above sum is on the path P , we can rewrite the sum as

1√
2s

∑
v∈P

|v〉
∑

c∈C:vc=v

|c〉.

3. We then apply the un-coloring operator U−1
1 , producing the superposition

1√
2s

∑
v∈P
√
pv |v〉|0〉. Ignoring the second register which always holds a zero, this is

1√
2s

∑
v∈P

√
pv |v〉.

That is, we have (recursively) obtained a superposition over the vertices on the path
P from the root of T to the parent of the leaf `f(x) labeled by f(x).

4. We then apply the operator U2O′x, producing the final state

U2O′x
1√
2s

∑
v∈P

√
pv |v〉 =

1√
2s

∑
v∈P

√
pv U2O′x |v〉.

The amplitude of the state |`f(x)〉 we are searching for, is

1√
2s

∑
v∈P

√
pv 〈`f(x)|U2O′x|v〉,

which by Equation 28 is equal to

1√
2s

∑
v∈P

√
pv

√
pv
2s

=
1

2s

∑
v∈P

pv = 1.

Hence, the final state obtained after applying operator U2O′x is precisely |`f(x)〉.

The total number of queries to the oracle x is at most F (N ′ + 1) + 1, and thus, by
Lemma 12, the algorithm uses at most log3(N) +O(1) queries. Theorem 13 follows.

17

Theorem 13 The above described quantum algorithm for searching an ordered list of N
elements is exact and uses at most log3(N) +O(1) queries.

A few remarks on the operator U2, as defined in Equation 27, are worthy mentioning.
Firstly, it is possible to define generalizations of operator U2 that can be applied to any
rooted tree. Such a generalization might be of use in other search problems. Secondly, the
operator U2 is related to the Haar wavelet transform [13]. Applying operator U2 is equivalent
to applying the inverse of the Haar transform on each of the perfect subtrees rooted at the
boundary vertices. Operator U2 as applied in the fourth and final step of our algorithm can
thus be implemented by applying the inverse of the quantum Haar transform. Since the
Haar transform can be efficiently implemented [16, 20], so can U2. The quantum version of
the Haar transform was first considered and defined in [20], motivated by the successes of the
quantum Fourier transforms. Possible relationships between the quantum Haar transform
and ordered searching has previously been considered by Röhrig [22] and others.

8 Concluding remarks and open problems

The inner product of two quantum states is a measure for their distinguishability. For
instance, two states can be distinguished with certainty if and only if their inner product
is 0. In this paper, we have proposed a weighted all-pairs inner product argument as a tool
for proving lower bounds in the quantum black box model. We have used this argument to
give better and simpler lower bounds for quantum ordered searching, sorting, and element
distinctness. It seems to us that the possibility of using non-uniform weights is particular
suitable when proving lower bounds for non-symmetric (possibly partial) functions.

We have chosen here to use inner products which is only one of the many studied measures
for distinguishability of states. A striking example of the limitations of using this measure
is given by Jozsa and Schlienz in [21]. In [25], Zalka uses a non-linear measure to prove the
optimality of Grover’s algorithm [18]. Similarly, it might well be that utilizing some other
(possibly non-linear) measure of distinguishability could be used to prove new, and improve
old, lower bounds.

Even if only considering inner products, it is possible to improve our lower bounds (stated
in Section 1) in terms of the error tolerance ε by generalizing Lemma 4 to more than two
states. Suppose that we are given one of three states, {|Φ1〉, |Φ2〉, |Φ3〉}, and that there
exists some measurement that correctly determines which of the three states we are given
with error probability at most ε. Then the sum of the absolute values of the pairwise inner
products, |〈Φ1|Φ2〉|+|〈Φ1|Φ3〉|+|〈Φ2|Φ3〉|, can be at most three times

√
2
√

1− ε
√
ε+ ε

2
. More

generally, if given one of N states, the sum of the absolute values of the inner products is at
most

(
N
2

)
times 2√

N−1

√
1− ε

√
ε+ εN−2

N−1
, which is in ε+ o(1) for fixed ε. After the acceptance

of publication of this paper, Ambainis [3] has informed us that a bound of ε+ o(1) also holds
for sums of weighted inner products. An anonymous referee has pointed out to us that in the
lower bound of 1

12
log2(N) + O(1) for ordered searching by Ambainis [2], the dependence of

the error tolerance ε is only in the additive O(1) term. This implies that if ε is at least 0.622
then 1

12
log2(N) > (1− ε)0.220 log2(N), in which case the lower bound of 1

12
log2(N) +O(1)

is stronger.

18

The result of Grigoriev, Karpinski, Meyer auf der Heide, and Smolensky [17] implies
that if only comparisons are allowed, the randomized decision tree complexity of Element
Distinctness has the same Ω(N logN) lower bound as sorting. Interestingly, their quan-
tum complexities differ dramatically: the quantum algorithm for Element Distinctness by
Buhrman et al. [10] uses only O(N3/4 logN) comparisons.

Space-time tradeoffs for sorting and related problems have been studied for the classical
case. A Time · Space lower bound of Ω(N2) is proved for comparison-based sorting by
Borodin et al. [8], and for the R-way branching program by Beame [5]. Formulations and
results on the quantum time-space tradeoffs for sorting and other problems such as Element
Distinctness would be interesting.

Our algorithm for searching an ordered list with complexity log3(N) + O(1) is based on
the classical binary search algorithm. The quantum algorithm initiates several independent
walks/searches at the root of the binary search tree. These searches traverse down the tree
faster than classically by cooperating, and they eventually all reach the leaf we are searching
for in roughly log3(N) steps. We believe it is an interesting question whether similar ideas
can be used to speed up other classical algorithms. We also think it would be interesting to
consider other applications of operators like U2 acting on rooted trees and graphs.

Wavelet transforms is a very rich and powerful area. We have here used only the most
basic wavelet, the Haar transform. This transform might also be applicable in other problems
where the input function is promised to be piecewise constant. For more smooth input
functions, other wavelets, like Daubechies’ D4 wavelet transform [13], would probably do
better. We believe it is a very interesting question to study the applicabilities of other bases
than the Fourier bases for quantum computation.

Acknowledgments

We are grateful to Andris Ambainis, Harry Buhrman, Mark Ettinger, Gudmund S. Frandsen,
Dieter van Melkebeek, Hein Röhrig, Daniel Wang, Ronald de Wolf, Andy Yao, and especially
Sanjeev Arora, for their precious comments and suggestions. We thank the anonymous
referees for helpful comments.

References

[1] A. Ambainis, A better lower bound for quantum algorithms searching an ordered
list, Proc. of 40th Ann. IEEE Symp. on Foundations of Computer Science, 1999,
pp. 352–357.

[2] A. Ambainis, Quantum lower bounds by quantum arguments, Proc. of 32nd Ann. ACM
Symp. on Theory of Computing, 2000, pp. 636–643.

[3] A. Ambainis, Personal communication, July 2001.

19

[4] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Quantum lower
bounds by polynomials, Proc. of 39th Ann. IEEE Symp. on Foundations of Computer
Science, 1998, pp. 352–361.

[5] P. Beame, A general sequential time-space tradeoff for finding unique elements, SIAM
J. Comput., 20(1991) 270–277.

[6] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weak-
nesses of quantum computation, SIAM J. Comput., 26(1997) 1510–1523.

[7] A. Berthiaume, Quantum computation, in Complexity Theory Retrospective II
(L. Hemaspaandra and A. L. Selman, eds.), chap. 2, Springer-Verlag, 1997, pp. 23–50.

[8] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N A. Lynch, and M. Tompa,
A time-space tradeoff for sorting on nonoblivious machines, J. Comput. Sys. Sci.,
22(1981) 351–364.

[9] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum amplitude amplification
and estimation, in Quantum Computation and Quantum Information: A Millennium
Volume (Samuel J. Lomonaco, Jr., ed.), AMS Contemp. Math. Series, 2001. To appear.

[10] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and
R. de Wolf, Quantum algorithms for finding claws, collisions and triangles. Proc. of
16th IEEE Conf. on Computational Complexity, 2001, pp. 131–137.

[11] H. Buhrman and R. de Wolf, A lower bound for quantum search of an ordered list,
Inform. Proc. Lett., 70(1999) 205–209.

[12] M.-D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly, 90(1983)
301–312.

[13] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure
Appl. Math., XLI(1988) 909–996.

[14] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, A limit on the speed of
quantum computation for insertion into an ordered list. quant-ph/9812057, December
1998.

[15] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Invariant quantum algorithms
for insertion into an ordered list. quant-ph/9901059, January 1999.

[16] A. Fijany and C. P. Williams, Quantum wavelet transforms: Fast algorithms and
complete circuits. quant-ph/9809004, September 1998.

[17] D. Grigoriev, M. Karpinski, F. Meyer auf der Heide, and R. Smolen-

sky, A lower bound for randomized algebraic decision trees, Comput. Complexity,
6(1996/1997) 357–375.

20

[18] L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys.
Rev. Lett., 79(1997) 325–328.

[19] A. Haar, Zur theorie der orthogonalen funktionensysteme (Erste mitteilung), Math.
Ann., LXIX(1910) 331–371.

[20] P. Høyer, Efficient quantum algorithms. quant-ph/9702028, February 1997.

[21] R. Jozsa and J. Schlienz, Distinguishability of states and von Neumann entropy,
Phys. Rev. A, 62(2000) 012301.

[22] H. Röhrig, Personal communication, 2000–2001.

[23] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer, SIAM J. Comput., 26(1997) 1484–1509.

[24] U. Vazirani, On the power of quantum computation, Philos. Trans. Roy. Soc. London
Ser. A, 356(1998) 1759–1768.

[25] Ch. Zalka, Grover’s quantum searching algorithm is optimal, Phys. Rev. A, 60(1999)
2746–2751.

Many of the above references can be found at the Los Alamos National Laboratory e-print
archive (http://arXiv.org/archive/quant-ph).

21

