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Review of Last TimeReview of Last Time
� 1-D transform of a vector

– Represent an N-sample sequence as a vector in N-dimension vector space
– Transform

� Different representation of this vector in the space via different basis
� e.g., 1-D DFT  from time domain to frequency domain

– Forward transform
� In the form of inner product 
� Project a vector onto a new set of basis to obtain N “coefficients”

– Inverse transform
� Use linear combination of basis vectors weighted by transform coeff. 

to represent the original signal

� 2-D transform of a matrix
– Rewrite the matrix into a vector and apply 1-D transform
– Separable transform allows applying transform to rows then columns
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Review of Last Time (cont’d)Review of Last Time (cont’d)
� Representation with orthonormal basis � Unitary transform

– Preserve energy, decorrelation, etc.

� Common unitary transforms
– DFT, DCT, KLT

� Which transform to choose?
– Depend on need in particular task/application
– DFT ~ reflect physical meaning of frequency or spatial frequency
– KLT ~ optimal in energy compaction
– DCT ~ real-to-real, and close to KLT’s energy compactability

– Today’s addition:  Haar Transform
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Construction ofConstruction of HaarHaar functionsfunctions

� Unique decomposition of integer  k � (p, q)
– k = 0, …, N-1 with N = 2n, 0 <= p <= n-1
– q = 0, 1 (for p=0); 1 <= q <= 2p (for p>0)

– e.g., k=0 � (0,0), k=1 � (0,1); k=2 � (1,1), k=3 �(1,2)

� hk(x) = h p,q(x) for x ∈ [0,1]

k = 2p + q – 1
“reminder”

power of 2
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Haar Haar TransformTransform

� Haar transform H
– Sample hk(x) at {m/N}

� m = 0, …, N-1

– Real and orthogonal
– Transition at each scale p is 

localized according to q

� Basis images of 2-D 
(separable) Haar transform
– One example of wavelets and

and multiresolution concepts
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Compare Basis Images of DCT and Compare Basis Images of DCT and HaarHaar

� NxN DCT basis images reflect transitions throughout the NxN image
– Ordered by frequency

� Haar basis images can reflect local transitions
– Ordered both by frequency and by spatial location index
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Image CompressionImage Compression

PartPart--1.  Basics1.  Basics

M. Wu:  ENEE631 Digital Image Processing (Fall'01) Lec7 – Image Compression 9/20/01 [8]

Why Need Compression?Why Need Compression?

� Savings in storage and transmission
– multimedia data (esp. image and video) have large data volume
– difficult to send real-time uncompressed video over current network

� Accommodate relatively slow storage devices 
– they do not allow playing back uncompressed multimedia data in real 

time
� 1x CD-ROM transfer rate ~ 150 kB/s
� 320 x 240 x 24 fps  color video bit rate ~ 5.5MB/s
=> 36 seconds needed to transfer 1-sec uncompressed video from CD
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Example: Storing An EncyclopediaExample: Storing An Encyclopedia

– 500,000 pages of text (2kB/page) ~ 1GB =>  2:1 compress

– 3,000 color pictures (640×480×24bits) ~ 3GB =>  15:1

– 500 maps (640×480×16bits=0.6MB/map) ~ 0.3GB => 10:1

– 60 minutes of stereo sound (176kB/s) ~ 0.6GB =>  6:1

– 30 animations with average 2 minutes long 
(640×320×16bits×16frames/s=6.5MB/s) ~ 23.4GB => 50:1

– 50 digitized movies with average 1 minute long 
(640×480×24bits×30frames/s = 27.6MB/s) ~ 82.8GB => 50:1

� Require a total of 111.1GB storage capacity if without compression
� Reduce to 2.96GB if with compression 

From Ken Lam’s DCT talk 2001 (HK Polytech)
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PCM codingPCM coding
� How to encode a digital image into bits?

– Sampling and perform uniform quantization
� “Pulse Coded Modulation” (PCM)
� 8 bits per pixel ~ good for grayscale image/video
� 10-12 bpp ~ needed for medical images

� Reduce # of bpp for reasonable quality via quantization
– Quantization reduces # of possible levels to encode
– Visual quantization: companding, contrast quantization, dithering, etc.

� Halftone use 1bpp but usually upsampling ~ saving less than 2:1

I(x,y) 

Input image
Sampler Quantizer Encoder transmit

image capturing device
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Discussion on Improving PCMDiscussion on Improving PCM
� Quantized PCM values may not be equally likely

– Can we do better than encode each value using same # bits?

� Example
– P(“0” ) = 0.5,  P(“1”) = 0.25, P(“2”) = 0.125, P(“3”) = 0.125

– If use same # bits for all values 
� Need 2 bits to represent the four possibilities if treat

– If use less bits for likely values “0” ~ Variable Length Codes (VLC)
� “0” => [0],  “1” => [10], “2” => [110], “3” => [111]
� Use 1.75 bits on average ~ saves 0.25 bpp!

� Bring probability into the picture
– Previously use prob. distr. to reduce MSE of quantization
– Now use prob. distr. to reduce average # bits per quantized sample
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Entropy codingEntropy coding
� Idea:  use less bits for commonly seen values

� How many # bits needed?
– Limit of compression => “Entropy”

� Measures the uncertainty or amount of avg. information of a source

� Definition:  H =  Σi pi log2 (1 / pi)  bits
� e.g., entropy of previous example is 1.75

� Can’t represent a source perfectly with less than avg. H bits per sample
� Can represent a source perfectly with avg. H+ε bits per sample

( Shannon Lossless Coding Theorem)

– “Compressability” depends on the sources

� Important to decode coded stream efficiently without 
ambiguity 

� See info. theory course for more theoretical details
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E.g. of Entropy Coding:  Huffman CodingE.g. of Entropy Coding:  Huffman Coding

� Variable length code 
– assigning about log2 (1 / pi) bits for the ith value

� has to be integer# of bits per symbol

� Step-1
– Arrange pi in decreasing order and consider them as tree leaves

� Step-2
– Merge two nodes with smallest prob. to a new node and sum up prob.
– Arbitrarily assign 1 and 0 to each pair of merging branch

� Step-3
– Repeat until no more than one node left.
– Read out codeword sequentially from root to leaf
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Huffman Coding (cont’d)Huffman Coding (cont’d)
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Huffman Coding: Pros & ConsHuffman Coding: Pros & Cons

� Pro
– Simplicity in implementation (table lookup)
– For a given block size Huffman coding gives the best coding efficiency

� Con
– Need to obtain source statistics

� Improvement
– Code a group of symbols as a whole to allow fractional # bit per symbol
– Arithmetic coding
– Lempel-Ziv coding or LZW algorithm

� “universal”, no need to estimate source statistics
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Discussion: Coding a Binary ImageDiscussion: Coding a Binary Image

� How to efficiently encode it?
– “ 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 …”

� Run-length coding (RLC)
– Code length of runs of “0” between successive “1”

� run-length of “0” ~ # of “0” between “1”
� good if often getting frequent large runs of “0” and sparse “1”

– E.g., => (4) (0) (3) (1) (6) (0) (0) … …

– Assign fixed-length codeword to run-length
– Or use variable-length code like Huffman to further improve

� RLC Also applicable to general binary data sequence with 
sparse “1” (or “0”)
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Probability Model of RunProbability Model of Run--Length CodingLength Coding
� Assume successive “0” occur independently w.p. p

� Prob. of getting an L runs of “0”  (L=0,1, …, M)
– P( L ) = pL (1-p) for 0 <= l <= M-1 (geometric distribution)
– P( L ) = pM for L=M

� Avg. # binary symbols per run

– Savg = ΣL (L+1) pL (1-p) + M pM = (1 – pM ) / ( 1 – p )

– Compression ratio C = Savg / log2 (M+1) = (1 – pM ) / [( 1–p ) log2(M+1)]

� Example
– P = 0.9, M=15  � Savg = 7.94, C = 1.985, H = 0.469 bpp
– Avg. run-length coding rate Bavg = 4 bit / 7.94 ~ 0.516 bpp
– Coding efficiency = H / Bavg ~ 91%
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How to Encode Correlated Sequence?How to Encode Correlated Sequence?
� Consider: high correlation between successive samples

� Predictive coding
– Basic principle:  Remove redundancy between successive pixels and only 

encode residual between actual and predicted 
– Residue usually has much smaller dynamic range

� Allow fewer quantization levels for the same MSE => get compression
– Compression efficiency depends on  intersample redundancy

� First try u(n)

Predictor

Quantizer
_

e(n) eq(n)

EncoderEncoder

uq (n)

Predictor
+

eq(n)

uq
~(n)

DecoderDecoder
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Predictive Coding (cont’d)Predictive Coding (cont’d)
� Problem with 1st try

– Input to predictor are different at 
encoder and decoder
� decoder doesn’t know u(n)!

– Mismatch error could propagate to 
future reconstructed samples

� Solution: Differential PCM (DPCM)
– Use quantized sequence uq(n) for 

prediction at both encoder and decoder
� uq

~(n)= f( uq(n-1), uq(n-2), …, uq(n-m) )

– Prediction error e(n)
– Quantized prediction error eq(n)
– Distortion d(n) = e(n) – eq(n) 

uq (n)

Predictor
+

eq(n)

uq
~(n)

DecoderDecoder

EncoderEncoder

u(n)

Predictor

Quantizer
_

e(n) eq(n)

+

+
uq

~(n)
uq(n)

What predictor to use?What predictor to use?
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SummarySummary

� Finish image transform

� Begin basics on image coding/compression
– PCM coding
– Entropy coding 

� Huffman
� Run-length

– Predictive coding 

� Next time: transform coding
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AssignmentAssignment

� Readings
– Jain’s 11.1-11.3

� Reference
– Bovik’s Handbook Sec.5.1

� “Food for thoughts”
– What predictors to use for image predictive coding?

� pros and cons

� Announcement
– 1st in-class exam will be given after “Image Compression”

M. Wu:  ENEE631 Digital Image Processing (Fall'01) Lec7 – Image Compression 9/20/01 [24]

ENE631 Course Project:  IntroductionENE631 Course Project:  Introduction
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Topic:  Video Coding and ProcessingTopic:  Video Coding and Processing

� Team project
– 2 students per team
– A few 3-person teams are allowed by instructor’s permission

� What to turn in finally?
– A video codec (encoder-decoder)
– Self-proposed part on video processing/analysis
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StepStep--byby--Step ApproachStep Approach

� [9-10/01] 3 Building Blocks (BB) ~ similar to “assignment”
– individual work
– should keep a big picture of the project in mind 

� [11/2001] Team-up and submit project proposal

� [12/2001] Project demo, presentation, and report
– peer review

� Details will be announced soon

� First BB on image transform will be posted this weekend


