ENEE631 Fall 2001
Lecture-6

Image Transform (2)

Min Wu
Electrical \& Computer Engineering Univ. of Maryland, College Park
http://www.ece.umd.edu/class/enee631/
minwu@eng.umd.edu
M. Wu: ENEE631 Digital Image Processing (Fall'01)

Announcement

- Thursday class (9/20) will be held in Jasmine Lab
- New address for course webpage
- http://www.ece.umd.edu/class/enee631/
- Introducing ... ENEE631 Class E-Faceboard
- http://www.glue.umd.edu/~gmsu/faceboard/faceboard.htm
- Or click "Students" in class webpage
- Password Required ©

Annoucement (cont'd)

- Generate two cropped \& downsampled face images
- A little extra work for Part-II 7
- for use in next labs
- Face image \rightarrow matrix representation
- Crop facial part by selecting the corresponding part in the matrix
- Matlab function for resizing "imresize"
- obtain a 128×128 and a 32×32 face image
- Write into a JPEG image with default quality factor
- Put the original and the two new one on webpage

Review of Last Class

- Vector/matrix representation of 1-D \& 2-D sampled signal - Representing an image as a matrix or sometimes as a long vector
- Basis functions/vectors and orthonomal basis
- Used for representing the space via their linear combinations
- Many possible sets of basis and orthonomal basis
- Unitary transform on input $\underline{X} \sim A^{-1}=A^{* T}$
$-\underline{y}=A \underline{x} \rightarrow \underline{x}=A^{-1} \underline{y}=A^{*} T \underline{y}=\Sigma \underline{a}_{i}{ }^{*} T y(i) \sim$ represented by basis vectors $\left\{\underline{a}_{i}{ }^{*} T\right\}$
- Rows (and columns) of a unitary matrix form an orthonormal basis
- General 2-D transform and separable unitary 2-D transform
- 2-D transform involves $\mathrm{O}\left(\mathrm{N}^{4}\right)$ computation
- Separable: $Y=A X A^{T}=(A X) A^{T} \sim \mathrm{O}\left(\mathrm{N}^{3}\right)$ computation
- Apply 1-D transform to all columns, then apply 1-D transform to rows

Lec6 - Image Transform (2) 9/18/01 [4]

Warm-up Exercises

- Unitary or not?
- Find basis for unitary one

$$
A_{1}=\left[\begin{array}{cc}
\sqrt{2} & j \\
-j & \sqrt{2}
\end{array}\right] \quad A_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & j \\
j & 1
\end{array}\right]
$$

- Find basis images and represent image X with basis images
- $X=A^{H} Y A^{*}($ sepparable $)=>x(m, n)=\Sigma_{k} \Sigma_{l} a^{*}(k, m) a^{*}(l, n) y(k, l)$
- Represent X with NxN basis images weighted by coeff. Y
- Obtain basis image $\left\{a^{*}\left(k_{0}, m\right) a^{*}\left(l_{0}, n\right)\right\}_{m, n}$ by setting $\mathrm{Y}=\left\{\delta\left(\mathrm{k}-\mathrm{k}_{0}, 1-\mathrm{l}_{0}\right)\right\}$ \& getting X
- In matrix form $A^{*}{ }_{k, l}=\underline{a}^{*}{ }_{k} \underline{a}_{l}{ }^{*} T$
$\sim \underline{\underline{a}}^{*}{ }_{k}$ is $k^{h h}$ column vector of $A^{* T}\left(a_{k}{ }^{T}\right.$ is $k^{h h}$ row vector of $\left.A\right)$
- Trasnf. coeff. $y(k, l)$ is the inner product of $A^{*}{ }_{k l}$ with the image

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

Clarifications

- "Dimension"
- Dimension of a signal ~ \# of index variables
- audio and speech is 1-D signal, image is 2-D, video is 3-D
- Dimension of a vector space \sim \# of vectors in its basis
- Eigenvalues of unitary transform
- All eigenvalues have unit magnitude (could be complex valued)
- By definition of eigenvalues $\sim A \underline{x}=\lambda \underline{x}$
- By energy perservation of unitary $\sim\|\underline{x} \underline{x}\|=\|\underline{x}\|$
- Eigenvalues here are different from the eigenvalues in K-L transform
- K-L concerns the eigen of covariance matrix of random vector
- Eigenvectors \sim we generally consider the orthonormalized ones

1-D DFT with Representation in Unitary Transform

- $\{\mathrm{z}(\mathrm{n})\} \Leftrightarrow\{Z(\mathrm{k})\}$

$$
\left\{\begin{array}{l}
Z(k)=\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} z(n) \cdot W_{N}^{n k} \\
z(n)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} Z(k) \cdot W_{N}^{-n k}
\end{array}\right.
$$

$-n, k=0,1, \ldots, N-1$
$-n, k=0,1, \ldots, N-1$
$-W_{N}=\exp \{-j 2 \pi / N\}$
\sim complex conjugate of primitive $\mathrm{N}^{\text {th }}$ root of unity

- Basis vectors
- $\underline{\mathrm{z}}=\Sigma_{k} Z(k) \underline{a}_{k} \rightarrow$ what are the $\left\{\underline{a}_{k}\right\}$?
$-f_{N}^{k}=\left[\begin{array}{lllll}1 & W_{N}^{k} & W_{N}{ }^{2 k} & \ldots & W_{N}^{(N-1) k}\end{array}\right] / \sqrt{ } N$
$-\underline{z}=\Sigma_{k} Z(k)\left(f_{N}^{-k}\right)^{T}$
- Use f_{N}^{k} as row vectors to construct a matrix F
- $\underline{Z}=F \underline{z} \Leftrightarrow \underline{z}=F^{* T} \underline{Z}=F^{*} \underline{Z}$
- F is symmetric and unitary

2-D DFT

- 2-D DFT is Separable
- $Y=F X F \Leftrightarrow X=F^{*} Y F^{*}$

```
Y(k,l)=\frac{1}{N}\mp@subsup{\sum}{m=0}{N=1}\mp@subsup{\sum}{n=0}{N-1}X(m,n)\cdot\mp@subsup{W}{N}{nl}\cdot\mp@subsup{W}{N}{mk}
X(m,n)=\frac{1}{N}\mp@subsup{\sum}{k=0}{N-1}\mp@subsup{\sum}{l=0}{N-1}Y(k,l)\cdot\mp@subsup{W}{N}{-nl}\cdot\mp@subsup{W}{N}{-mk}
```

- Basis images $B_{k, l}=\left(\mathcal{E}_{N}^{-k}\right)^{T}\left(\mathcal{L}_{N}^{-l}\right)$
- Properties of 2-D DFT
- Conjugate symmetry for real image
- recall similar symmetry for 1-D DFT
- N^{2} independent element from input $=>$ same independence in output
- 2-D circular convolution vs. multiplication
\rightarrow See Jain's book pp147 for more details.
- In general, DFT is complex valued

Example of 1-D DCT

1-D Discrete Cosine Transform (DCT)

$$
\begin{aligned}
& \left\{\begin{array}{l}
Z(k)=\sum_{n=0}^{N-1} z(n) \cdot \alpha(k) \cos \left[\frac{\pi(2 n+1) k}{2 N}\right] \\
Z(n)=\sum_{k=0}^{N-1} Z(k) \cdot \alpha(k) \cos \left[\frac{\pi(2 n+1) k}{2 N}\right] \\
\alpha(0)=\frac{1}{\sqrt{N}}, \alpha(k)=\sqrt{\frac{2}{N}}
\end{array},\right.
\end{aligned}
$$

- Transform matrix C
$-c(k, n)=\alpha(0)$ for $\mathrm{k}=0$
$-c(k, n)=\alpha(k) \cos [\pi(2 n+1) / 2 N]$ for $\mathrm{k}>0$
- C is real and orthogonal
- rows of C form orthonormal basis
- C is not symmetric!
- DCT is not the real part of unitary DFT!
- related to DFT of a symmetrically extended signal
M. Wu: ENEE631 Digital Image Processing (Fall'01)

Fast Transform via FFT

- Define new sequence
reorder odd and even elements

$$
\left\{\begin{array}{l}
\widetilde{z}(n)=z(2 n) \\
\widetilde{z}(N-n-1)=z(2 n+1)
\end{array} \quad \text { for } 0 \leq n \leq \frac{N}{2}-1\right.
$$

- Split DCT sum into odd and even terms

$$
\begin{aligned}
& Z(k)=\alpha(k)\left\{\sum_{n=0}^{N / 2-1} z(2 n) \cdot \cos \left[\frac{\pi(4 n+1) k}{2 N}\right]+\sum_{n=0}^{N / 2-1} z(2 n+1) \cdot \cos \left[\frac{\pi(4 n+3) k}{2 N}\right]\right\} \\
& =\alpha(k)\left\{\sum_{n=0}^{N / 2-1} \tilde{z}(n) \cdot \cos \left[\frac{\pi(4 n+1) k}{2 N}\right]+\sum_{n=0}^{N / 2-1} \tilde{z}(N-n-1) \cdot \cos \left[\frac{\pi(4 n+3) k}{2 N}\right]\right\} \\
& =\alpha(k)\left\{\sum_{n=0}^{N / 2-1} \tilde{z}(n) \cdot \cos \left[\frac{\pi(4 n+1) k}{2 N}\right]+\sum_{n=N / 2}^{N-1} \tilde{z}\left(n^{\prime}\right) \cdot \cos \left[\frac{\pi\left(4 N-4 n^{\prime}-1\right) k}{2 N}\right]\right\} \\
& =\alpha(k) \sum_{n=0}^{N-1} \tilde{z}(n) \cdot \cos \left[\frac{\pi(4 n+1) k}{2 N}\right]=\operatorname{Re}\left[\alpha(k) e^{-j n k t / 2 N} \sum_{n=0}^{N-1} \tilde{z}(n) \cdot e^{-j / 2 \pi k k / N}\right] \\
& =\operatorname{Re}\left[\alpha(k) e^{-j \pi k t 2 N} D F T\left\{\{\tilde{z}(n)\}_{N}\right]\right.
\end{aligned}
$$

- Other real-value fast algorithms

2-D DCT

- Separable orthogonal transform
- $Y=C X C^{T} \Leftrightarrow X=C^{T} Y C$
- DCT basis images

Properties of K-L Transform

- Decorrelation
- $E\left[\underline{v^{H}}\right]=E\left[\left(U^{H} x\right)\left(U^{H} x\right)^{H}\right]=U^{H} E\left[x x^{H}\right] U=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\}^{\prime}$
- Other matrices (unitary or nonunitary) may also decorrelate the transformed sequence (Jain's e.g.5.7 ppl66).
- Minimum MSE
- If only allow to keep K coefficients for any $1 \leq K \leq N$, what's the best way?
- Answer in MMSE sense \rightarrow Keep the coefficients w.r.t. the eigenvectors of the first K largest eigenvalues
- Proof: Theorem5.1 in Jain's (pp166)
M. Wu: ENEE631 Digital Image Processing (Fall'01)

Lec6 - Image Transform (2) 9/18/01 [16]

K-L Transform for Images

- Work with 2-D autocorrelation function
$-R\left(m, n ; m^{\prime}, n^{\prime}\right)=E\left[x(m, n) x\left(m^{\prime}, n^{\prime}\right)\right]$ for all $0 \leq m, m^{\prime}, n, n^{\prime} \leq N-1$
- K-L Basis images is the orthonormalized eigenfunctions of R
- Rewrite images into vector form $\left(N^{2} \times 1\right)$
- Need solve the eigen problem for $N^{2} x N^{2}$ matrix! $\sim \mathrm{O}\left(N^{6}\right)$
- Reduced computation for separable R
- $R\left(m, n ; m^{\prime}, n^{\prime}\right)=r_{1}(m, n) r_{2}\left(m^{\prime}, n^{\prime}\right)$
- Only need solve the eigen problem for two $N x N$ matrices - $\sim\left({ }^{3}{ }^{3}\right)$

Pros and Cons of K-L Transform

- Optimality
- Decorrelation and MMSE for the same\# of partial coeff.
- Data dependent
- Have to estimate the $2^{\text {nd }}$-order statistics to determine the transform
- Can we get data-independent transf. with similar performance?
- DCT
- Applications
- (non-universal) compression
- pattern recognition: e.g., eigen faces
- analyze the principal ("dominating") components

Energy Compaction of DCT vs. K-L Transform

- Excellent energy compaction of DCT
- for highly correlated data
- DCT is close to K-L transf. of 1 st-order stationary Markov
- DCT basis vectors are eigenvectors of a symmetric tridiagonal matrix Q_{c}
- Covariance matrix R of $1^{\text {stt}}$-order stationary Markov sequence has an inverse in the form of symmetric tridiagonal matrix
- For highly correlated sequence, the scaled version of R^{-1} approx. Q_{c}
\rightarrow See Jain's pp183 for details.
- DCT is a good replacement for K-L
- Close to optimal for highly correlated data
- Not depend on specific data like K-L does
- Fast algorithm available

Haar Transform

- Haar transform H
- Sample $h_{k}(x)$ at $\{m / N\}$
- $m=0, \ldots, N-1$
- Real and orthogonal
- Transition at each scale p is localized according to q
- Basis images of 2-D (separable) Haar transform

[^0]
Summary

- Common unitary transforms
- 1-D transform and basis vectors
- 2-D separable and basis images
- DFT
- DCT
- Real valued
- good energy compaction for highly correlated data
- K-L
- Best energy compaction but data dependent
- Haar
- Localize transitions

Assignment

- Readings
- Jain's book 5.4-5.6, 5.9, 5.11
- Reminder
- Assignment-1 Due Wed. 9/19 11:59pm
- New addition to Part-II 7
- Hand-in writeup
- Put images and computer codes online
- Thurs. class will be in Jasmine.

[^0]: M. Wu: ENEE631 Digital Image Processing (Fall'01)

