

Announcement

- Thursday class (9/20) will be held in Jasmine Lab
- New address for course webpage
 - http://www.ece.umd.edu/class/enee631/
- Introducing ... ENEE631 Class E-Faceboard
 - http://www.glue.umd.edu/~gmsu/faceboard/faceboard.htm
 - Or click "Students" in class webpage

M. Wu: ENEE631 Digital Image Processing (Fall'01)

- Password Required ©

Annoucement (cont'd)

- Generate two cropped & downsampled face images
 - A little extra work for Part-II 7
 - for use in next labs
 - Face image \rightarrow matrix representation
 - Crop facial part by selecting the corresponding part in the matrix
 - Matlab function for resizing "imresize"
 - ◆ obtain a 128x128 and a 32x32 face image
 - Write into a JPEG image with default quality factor
 - Put the original and the two new one on webpage

Lec6 - Image Transform (2) 9/18/01 [3]

Lec6 - Image Transform (2) 9/18/01 [2]

Clarifications "Dimension" - Dimension of a signal $\sim \#$ of index variables • audio and speech is 1-D signal, image is 2-D, video is 3-D - Dimension of a vector space $\sim \#$ of vectors in its basis Eigenvalues of unitary transform - All eigenvalues have unit magnitude (could be complex valued) • By definition of eigenvalues $\sim A x = \lambda x$ • By energy perservation of unitary $\sim ||A \underline{x}|| = ||\underline{x}||$ - Eigenvalues here are different from the eigenvalues in K-L transform • K-L concerns the eigen of covariance matrix of random vector - Eigenvectors ~ we generally consider the orthonormalized ones M. Wu: ENEE631 Digital Image Processing (Fall'01) Lec6 - Image Transform (2) 9/18/01 [6]

Lec6 - Image Transform (2) 9/18/01 [8]

<section-header><equation-block><list-item><list-item><list-item>

Properties of K-L Transform

Decorrelation

- $E[\underline{y}\underline{y}^H] = E[(U^H x) (U^H x)^H] = U^H E[x x^H] U = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_N\}$
- Other matrices (unitary or nonunitary) may also decorrelate the transformed sequence (Jain's e.g.5.7 pp166).

• Minimum MSE

- If only allow to keep K coefficients for any $1 \le K \le N$, what's the best way?
- Answer in MMSE sense \rightarrow Keep the coefficients w.r.t. the eigenvectors of the first K largest eigenvalues
 - Proof: Theorem5.1 in Jain's (pp166)

M. Wu: ENEE631 Digital Image Processing (Fall'01)

Lec6 – Image Transform (2) 9/18/01 [16]

Pros and Cons of K-L Transform

- Optimality
 - Decorrelation and MMSE for the same# of partial coeff.
- Data dependent
 - Have to estimate the 2nd-order statistics to determine the transform
 - Can we get data-independent transf. with similar performance?
 - ▶ DCT
- Applications
 - (non-universal) compression
 - pattern recognition: e.g., eigen faces
 - analyze the principal ("dominating") components

M. Wu: ENEE631 Digital Image Processing (Fall'01)

Lec6 – Image Transform (2) 9/18/01 [18]

