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AnnouncementAnnouncement

� Thursday class (9/20) will be held in Jasmine Lab

� New address for course webpage
– http://www.ece.umd.edu/class/enee631/

� Introducing … ENEE631 Class E-Faceboard
– http://www.glue.umd.edu/~gmsu/faceboard/faceboard.htm
– Or click “Students” in class webpage

– Password Required ☺
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Annoucement Annoucement (cont’d)(cont’d)

� Generate two cropped & downsampled face images
– A little extra work for Part-II 7  

� for use in next labs 

– Face image � matrix representation
– Crop facial part by selecting the corresponding part in the matrix
– Matlab function for resizing  “imresize”

� obtain a 128x128 and a 32x32 face image

– Write into a JPEG image with default quality factor
– Put the original and the two new one on webpage
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Review of Last ClassReview of Last Class
� Vector/matrix representation of 1-D & 2-D sampled signal

– Representing an image as a matrix or sometimes as a long vector

� Basis functions/vectors and orthonomal basis
– Used for representing the space via their linear combinations
– Many possible sets of basis and orthonomal basis

� Unitary transform on input x ~  A-1 = A*T

– y = A x � x = A-1 y = A*T y = Σ ai
*T y(i) ~ represented by basis vectors {ai

*T}
– Rows (and columns) of a unitary matrix form an orthonormal basis

� General 2-D transform and separable unitary 2-D transform
– 2-D transform involves O(N4) computation
– Separable:  Y = A X AT = (A X) AT   ~ O(N3) computation

� Apply 1-D transform to all columns, then apply 1-D transform to rows
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WarmWarm--up Exercisesup Exercises
� Unitary or not?

– Find basis for unitary one

� Find basis images and represent image X with basis images
– X = AH Y A*  (separable) =>  x(m,n) =  Σk Σl a*(k,m)a*(l,n)  y(k,l)

� Represent X with NxN basis images weighted by coeff. Y

� Obtain basis image { a*(k0 ,m)a*(l0 ,n) }m,n by setting Y={δ(k-k0, l-l0)} & 
getting X

� In matrix form  A*k,l = a*k al
*T

~ a*k is kth column vector of A*T (ak
T is kth row vector of A)

� Trasnf. coeff. y(k,l) is the inner product of A*k,l with the image

Jain’s e.g.5.1, pp137
A’ [5 –1;-2  0] A :
[1,1]’[1 1]/2, …
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ClarificationsClarifications
� “Dimension”

– Dimension of a signal  ~  # of index variables 
� audio and speech is 1-D signal, image is 2-D, video is 3-D

– Dimension of a vector space  ~  # of vectors in its basis

� Eigenvalues of unitary transform
– All eigenvalues have unit magnitude (could be complex valued)

� By definition of eigenvalues ~ A x = λ x
� By energy perservation of unitary  ~ || A x || = ||x||

– Eigenvalues here are different from the eigenvalues in K-L transform
� K-L concerns the eigen of covariance matrix of random vector

– Eigenvectors ~ we generally consider the orthonormalized ones
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Overview of Today’s LectureOverview of Today’s Lecture

� Examples of unitary transforms
– DFT
– DCT
– K-L transform
– Haar
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11--D DFT with Representation in Unitary Transform D DFT with Representation in Unitary Transform 

� { z(n) } � { Z(k) }
– n, k = 0, 1, …, N-1
– WN = exp{ - j2π / N } 

~  complex conjugate of primitive Nth root of unity

� Basis vectors
– z = Σk Z(k) ak  � what are the {ak}?

– fN
k = [ 1  WN

k WN
2k …  WN

(N-1)k ] / √ N
– z = Σk Z(k) ( fN

-k )T

– Use fN
k as row vectors to construct a matrix F

– Z = F z � z = F*T Z = F* Z 
� F is symmetric and unitary
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22--D DFTD DFT
� 2-D DFT is Separable

– Y = F X F  � X = F* Y F*

– Basis images  Bk,l = ( fN
-k )T( fN

-l )

� Properties of 2-D DFT
– Conjugate symmetry for real image

� recall similar symmetry for 1-D DFT
� N2 independent element from input => same independence in output

– 2-D circular convolution vs. multiplication

� See Jain’s book pp147 for more details.

� In general, DFT is complex valued
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11--D Discrete Cosine Transform (DCT)D Discrete Cosine Transform (DCT)

� Transform matrix C
– c(k,n) = α(0)  for k=0
– c(k,n) = α(k) cos[π(2n+1)/2N]  for k>0

� C is real and orthogonal
– rows of C form orthonormal basis
– C is not symmetric!
– DCT is not the real part of unitary DFT!  

� related to DFT of a symmetrically extended signal
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Example of 1Example of 1--D DCT D DCT 
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From Ken Lam’s DCT talk 2001 (HK Polytech)
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Example of 1Example of 1--D DCT (cont’d)D DCT (cont’d)
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Fast Transform via FFT Fast Transform via FFT 

� Define new sequence
– reorder odd and even elements

� Split DCT sum into odd and even terms

� Other real-value fast algorithms 
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22--D DCTD DCT

� Separable orthogonal transform

� Y = C X CT � X = CT Y C

� DCT basis images
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KK--L Transform (Principal Component Analysis)L Transform (Principal Component Analysis)

� Recall the unanswered question
– what unitary transform gives the best compaction and decorrelation?

� Consider an Nx1 zero-mean random vector x
– Covariance (autocorrelation) matrix R = E[ x xH ]

� give ideas of correlation between elements

� Eigen decomposition of R
– eigen vectors   R u1 = λ1 u1

� K-L transform  y = UH x with U = [ u1, … uN] � x = U y
– Basis vectors of K-L transf. is the orthonormalized eigenvectors of R
– Note UH R U = diag{λ1, λ2, … , λN} 
– For convenience, reorder {ui} so that λ1 ≥ λ2 ≥ … ≥ λN
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Properties of KProperties of K--L TransformL Transform

� Decorrelation
– E[ y yH ]= E[ (UH x) (UH x)H ]= UH E[ x xH ] U = diag{λ1, λ2, … , λN}

– Other matrices (unitary or nonunitary) may also decorrelate the 
transformed sequence (Jain’s e.g.5.7 pp166).

� Minimum MSE 
– If only allow to keep K coefficients for any 1≤ K ≤N, what’s the 

best way?
– Answer in MMSE sense � Keep the coefficients w.r.t. the 

eigenvectors of the first K largest eigenvalues
� Proof:   Theorem5.1 in Jain’s (pp166)
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KK--L Transform for ImagesL Transform for Images

� Work with 2-D autocorrelation function
– R(m,n; m’,n’)= E[ x(m, n) x(m’, n’) ] for all 0≤ m, m’, n, n’ ≤ N-1

– K-L Basis images is the orthonormalized eigenfunctions of R

� Rewrite images into vector form (N2x1)
– Need solve the eigen problem for N2xN2 matrix! ~ O(N 6)

� Reduced computation for separable R
– R(m,n; m’,n’)= r1(m,n) r2(m’,n’)
– Only need solve the eigen problem for two NxN matrices

� ~ O(N3)

Jain’s pp164

M. Wu:  ENEE631 Digital Image Processing (Fall'01) Lec6 – Image Transform (2) 9/18/01 [18]

Pros and Cons of KPros and Cons of K--L TransformL Transform

� Optimality
– Decorrelation and MMSE for the same# of partial coeff.

� Data dependent
– Have to estimate the 2nd-order statistics to determine the transform
– Can we get data-independent transf. with similar performance?

� DCT

� Applications
– (non-universal) compression
– pattern recognition: e.g., eigen faces
– analyze the principal (“dominating”) components

M. Wu:  ENEE631 Digital Image Processing (Fall'01) Lec6 – Image Transform (2) 9/18/01 [19]

Energy Compaction of DCT vs. KEnergy Compaction of DCT vs. K--L TransformL Transform

� Excellent energy compaction of DCT
– for highly correlated data

� DCT is close to K-L transf. of 1st-order stationary Markov
– DCT basis vectors are eigenvectors of a symmetric tridiagonal matrix Qc

– Covariance matrix R of 1st-order stationary Markov sequence has an 
inverse in the form of symmetric tridiagonal matrix

– For highly correlated sequence, the scaled version of R-1 approx. Qc

� See Jain’s pp183 for details.

� DCT is a good replacement for K-L
– Close to optimal for highly correlated data
– Not depend on specific data like K-L does
– Fast algorithm available
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Construction ofConstruction of HaarHaar functionsfunctions

� Unique decomposition of integer  k � (p, q)
– k = 0, …, N-1 with N = 2n, 0 <= p <= n-1
– q = 0, 1 (for p=0); 1 <= q <= 2p (for p>0)

– e.g., k=0 � (0,0), k=1 � (0,1); k=2 � (1,1), k=3 �(1,2)

� hk(x) = h p,q(x) for x ∈ [0,1]

k = 2p + q – 1
“reminder”

power of 2
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Haar Haar TransformTransform

� Haar transform H
– Sample hk(x) at {m/N}

� m = 0, …, N-1

– Real and orthogonal
– Transition at each scale p is 

localized according to q

� Basis images of 2-D 
(separable) Haar transform
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SummarySummary

� Common unitary transforms
– 1-D transform and basis vectors
– 2-D separable and basis images

� DFT

� DCT
– Real valued
– good energy compaction for highly correlated data

� K-L
– Best energy compaction but data dependent

� Haar
– Localize transitions
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Preview of Next TimePreview of Next Time

� Use as few bits as possible to encode an image
� Image compression

� Basic tools
– Lossless tools
– Lossy tools

� Which domain to work with?
– Directly with pixels?
– Will some smart transforms help?
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AssignmentAssignment

� Readings
– Jain’s book 5.4-5.6, 5.9, 5.11

� Reminder
– Assignment-1 Due Wed. 9/19 11:59pm

� New addition to Part-II 7

� Hand-in writeup
� Put images and computer codes online

– Thurs. class will be in Jasmine.


