2102427 Multimedia Compression Technology

Dr. Supavadee Aramvith Chulalongkorn University Supavadee.A@chula.ac.th

Lecture 7 Wavelet Methods (I) **Outline**

Low

- Averaging and Differencing
- The Haar Transform
- Subband Transforms

Multimedia Compression Technology

Wavelet Transform

A family of transformations that filters the data into low resolution data plus detail data

Wavelet Transform – Example (Enhanced)

Detail subbands

4

2

Multimedia Compression Technology

Wavelet Transform – Example (Actual)

most of the details are small so they are very dark.

Multimedia Compression Technology

5

Bit planes of Coefficients

Wavelet Transform Compression

Wavelet coder transmits wavelet transformed image in bit plane order with the most significant bits first.

Multimedia Compression Technology

Why Wavelet Compression works

- Wavelet coefficients are transmitted in bit-plane order
 - In the most significant bit planes, many coefficients are zero so they can be coded efficiently.
 - Only some of the bit planes are transmitted (this is where quality is lost when doing lossy compression)
- Natural progressive transmission

Wavelet Coding Methods

- EZW Shapiro, 1993
 - Embedded Zerotree coding.
- SPIHT Said and Pearlman, 1996
 - Set Partitioning in Hierarchical Trees coding. Also uses "zerotrees".
- ECECOW Wu, 1997
 - Uses arithmetic coding with context.
- EBCOT Taubman, 2000
 - Uses arithmetic coding with different context.
- JPEG 2000 new standard based largely on EBCOT
- GTW Hong, Ladner 2000
 - Uses group testing which is closely related to Golomb codes.

Multimedia Compression Technology

Wavelet Transform Compression

A wavelet transform decomposes the image into a low resolution version and details. The details are typically very small so they can be coded in very few bits.

Multimedia Compression Technology

One Dimensional Average Transform (I)

How do we represent two data points at lower resolution?

One Dimensional Average Transform (II)

Multimedia Compression Technology

11

9

One Dimensional Average Transform (IV)

One Dimensional Average Inverse Transform

Complexity of the transform

 The number of arithmetic operations as a function of the size of the data

$$\sum_{i=1}^{n} 2^{i} = \left(\sum_{i=0}^{n} 2^{i}\right) - 1 = \frac{1 - 2^{n+1}}{1 - 2} - 1 = 2^{n+1} - 2 = 2(2^{n} - 1) = 2(N - 1)$$

Example

Multimedia Compression Technology

Two Dimensional Transform (I)

2 approaches Standard decomposition

Pyramid decomposition

Multimedia Compression Technology

Standard Image Wavelet Transform and Decomposition (I)

Standard Image Wavelet Transform and Decomposition (II)

Multimedia Compression Technology

19

17

Pyramid Image Wavelet Transform

Two Dimensional Transform

Wavelet Transformed Image

2 levels of wavelet transform

1 low resolution subband

6 detail subbands

Wavelet Transforms

- Technically wavelet transforms are special kinds of linear transformations. Easiest to think of them as filters
 - The filters depend only on a constant number of values (bounded support)
 - Preserve energy (norm of pixels = norm of the coefficients)
 - Inverse filters also have bounded support
- Well-known wavelet transforms
 - Haar transform like the average but orthogonal to preserve energy. Not used in practice.
 - Daubechies 9/7 biorthogonal (inverse is not the transpose). Most commonly used in practice.

Multimedia Compression Technology

An 8x8 Image and Its Subband Decompositon

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Multimedia Compression Technology	25		Multimedia Compression Technology	26

Subbands and Levels in Wavelet

An Example of the Pyramid Image Wavelet Transform (I)

The Subband Decomposition of a

Diagonal Line

An Example of the Pyramid Image Wavelet Transform (II)

Multimedia Compression Technology

29

Highly Correlated Image (I)

Multimedia Compression Technology

Its Haar Transform (II)

-	-	1051	34.0	-44.5	-0.7	-1.0	-62	0	-1.0
		0	0.0	0.0	0.0	0.0	0	0	0.0
F		0	0.0	0.0	0.0	0.0	0	0	0.0
		0	0.0	0.0	0.0	0.0	0	0	0.0
-		48	239.5	112.8	90.2	31.5	64	32	31.5
		48	239.5	112.8	90.2	31.5	64	32	31.5
		48	239.5	112.8	90.2	31.5	64	32	31.5
		48	239.5	112.8	90.2	31.5	64	32	31.5

A 128x128 Image with Activity on the Right and Its Transform

Three Lossy Reconstruction of an 8x8 Image (I)

Multimedia Compression Technology

Three Lossy Reconstruction of an 8x8 Image (II)

Multimedia Compression Technology

34

Three Lossy Reconstruction of an 8x8 Image (III)

Reconstructing a 128x128 Simple Image from 4% of its Coefficients

Multimedia Compression Technology

35

Matlab Code for the Haar Transform of an Image (I)

clear; % main program filename='lena128'; dim=128; fid=fopen(filename,'r'); if fid==-1 disp('file not found') else img=fread(fid,[dim,dim])'; fclose(fid); end thresh=0.0; % percent of transform coefficients deleted figure(1), imagesc(img), colormap(gray), axis off, axis square w=harmatt(dim); % compute the Haar dim x dim transform matrix timg=w*img*w'; % forward Haar transform tsort=sort(abs(timg(:))); tthresh=tsort(floor(max(thresh*dim*dim,1))); cim=timg.*(abs(timg) > tthresh); [i,j,s]=find(cim); dimg=sparse(i,j,s,dim,dim); % figure(2) displays the remaining transform coefficients %figure(2), spy(dimg), colormap(gray), axis square figure(2), image(dimg), colormap(gray), axis square cimg=full(w'*sparse(dimg)*w); % inverse Haar transform density = nnz(dimg); disp([num2str(100*thresh) '% of smallest coefficients deleted.']) disp([num2str(density) ' coefficients remain out of ' ... num2str(dim) 'x' num2str(dim) '.']) figure(3), imagesc(cimg), colormap(gray), axis off, axis square

Multimedia Compression Technology

37

Matlab Code for the Haar Transform of an

Image (II)

File harmatt.m with two functions

```
function x = harmatt(dim)
num=log2(dim);
p = sparse(eye(dim)); q = p;
i=1;
while i<=dim/2;
q(1:2*i,1:2*i) = sparse(individ(2*i));
p=p*q; i=2*i;
end
x=sparse(p);
function f=individ(n)
```

initiality initia

Multimedia Compression Technology

Three Lossy Reconstruction of the 128x128 Lena Image (I)

Three Lossy Reconstruction of the 128x128 Lena Image (II)

Multimedia Compression Technology

Three Lossy Reconstruction of the 128x128 Lena Image (III)

Lossy Wavelet Image Compression

- Lossy involves the discarding of coefficients
- Sparseness ratio
 - The measurement of number of coefficients discarded
 - The number of nonzero wavelet coefficients divided by number of coefficients left after some are discarded
 - Higher sparseness ratio -> fewer coefficients left
 - Better compression -> poorly reconstructed image

Multimedia Compression Technology

The Haar Transform

$$f(t) = \sum_{k=-\infty}^{\infty} c_k \phi(t-k) + \sum_{k=-\infty}^{\infty} \sum_{j=0}^{\infty} d_{j,k} \psi(2^j t - k)$$

Multimedia Compression Technology

Basic scale function

Basic Haar wavelet - step function

 $0 \le t < 0.5$, $0.5 \le t < 1$

$$\phi(t) = \begin{cases} 1 & ,0 \le t < 1 \\ 0 & ,otherwise \end{cases} \qquad \psi(t) = \begin{cases} 1 \\ -1 \end{cases}$$

The Haar Basis Scale and Wavelet Functions

43

41

Haar Matrix Representation (I)

$$A_{1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}, \quad A_{1} \begin{pmatrix} 255 \\ 224 \\ 192 \\ 159 \\ 127 \\ 95 \\ 63 \\ 32 \end{pmatrix} = \begin{pmatrix} 239.5 \\ 175.5 \\ 111.0 \\ 47.5 \\ 15.5 \\ 16.5 \\ 16.0 \\ 15.5 \end{pmatrix},$$

Multimedia Compression Technology

Haar Matrix Representation (II)

	$1^{\frac{1}{2}}$	1	0	0	0	0	0	0\			$\left(\frac{1}{2}\right)$	$\frac{1}{2}$	0	0	0	0	0	0)	
	$\begin{pmatrix} 2\\ 0 \end{pmatrix}$	2	1	1	0	0	0	0			1	$-\frac{1}{2}$	0	0	0	0	0	0	
	1	$-\frac{1}{2}$	$\tilde{0}$	õ	0	0	0	0		4	Ő	0	1	0	0	0	0	0	
	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	0	1	$-\frac{1}{2}$	0	0	0	0			0	0	0	1	0	0	0	0	
$A_2 =$	0	0	Ő	0	1	0	0	0	?	$A_3 =$	0	0	0	0	1	0	0	0	1
	0	0	0	0	0	1	0	0			0	0	0	0	0	1	0	0	
	0	0	0	0	0	0	1	0			0	0	0	0	0	0	1	0	
	$\int 0$	0	0	0	0	0	0	1/	/		(0	0	0	0	0	0	0	1/	

Multimedia Compression Technology

46

Haar Matrix Representation (III)

Haar Matrix Representation (IV)

47

Example of Matrix Wavelet Transform

 $a1 = [1/2 \ 1/2 \ 0 \ 0 \ 0 \ 0 \ 0; \ 0 \ 0 \ 1/2 \ 1/2 \ 0 \ 0 \ 0;$ 0 0 0 0 1/2 1/2 0 0; 0 0 0 0 0 0 0 1/2 1/2; 1/2 - 1/2 0 0 0 0 0; 0 0 1/2 - 1/2 0 0 0; $0\ 0\ 0\ 0\ 1/2\ -1/2\ 0\ 0;\ 0\ 0\ 0\ 0\ 0\ 1/2\ -1/2];$ % a1*[255; 224; 192; 159; 127; 95; 63; 32]; $a2=[1/2 \ 1/2 \ 0 \ 0 \ 0 \ 0 \ 0; \ 0 \ 0 \ 1/2 \ 1/2 \ 0 \ 0 \ 0;$ 1/2 -1/2 0 0 0 0 0 0; 0 0 1/2 -1/2 0 0 0 0; 0 0 0 0 1 0 0 0; 0 0 0 0 0 1 0 0; 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 1]; $a3=[1/2 \ 1/2 \ 0 \ 0 \ 0 \ 0 \ 0; \ 1/2 \ -1/2 \ 0 \ 0 \ 0 \ 0;$ 0010000;0001000; 00001000;00000100; 00000010; 0000001];w=a3*a2*a1; dim=8; fid=fopen('8x8','r'); img=fread(fid,[dim,dim])'; fclose(fid); w*img*w' % Result of the transform

Multimedia Compression Technology

Example of Matrix Wavelet Transform

131.375	4.250	-7.875	-0.125	-0.25	-15.5	0	-0.25
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
12.000	59.875	39.875	31.875	15.75	32.0	16	15.75
12.000	59.875	39.875	31.875	15.75	32.0	16	15.75
12.000	59.875	39.875	31.875	15.75	32.0	16	15.75
12.000	59.875	39.875	31.875	15.75	32.0	16	15.75

Multimedia Compression Technology

50

Subband Transforms

- Orthogonal transform
 - Inner product of the data with a set of basis functions
 - Output is set of transform coefficients
- Discrete inner product of the two vectors

$$\langle f,g\rangle = \sum_{i} f_{i}g_{i}$$

- Wavelet transform = subband transform
 - Compute a convolution of the data items with a set of bandpass filters
 - Each resulting subband encodes a particular portion of the frequency content of the data

Subband Transforms

Discrete convolution of two vectors

$$h(i) = f(i) * g(i) = \sum_{i} f(j) g(i-j)$$

- Wavelet transform = subband transform
 - Compute a convolution of the data items with a set of bandpass filters
 - Each resulting subband encodes a particular portion of the frequency content of the data

51

Example of Convolution

Applying Convolution to Denoising a Function

 $g(t) = \begin{cases} 1, -a / 2 < t < a / 2 \\ \frac{1}{2}, t = \pm a / 2 \\ 0, elsewhere \end{cases}$

