```
cocex
```


Lecture 7
Wavelet Methods (I)

Dr. Supavadee Aramvith
Chulalongkorn University
Supavadee.A@chula.ac.th

- A family of transformations that filters the data into low resolution data plus detail data

Multimedia Compression Technology

Coefficients are normalized between -1 and 1 .

Wavelet coder transmits wavelet transformed image in bit plane order with the most significant bits first.

- Wavelet coefficients are transmitted in bit-plane order
- In the most significant bit planes, many coefficients are zero so they can be coded efficiently.
- Only some of the bit planes are transmitted (this is where quality is lost when doing lossy compression)
- Natural progressive transmission
compressed bit planes

- EZW - Shapiro, 1993
- Embedded Zerotree coding.
- SPIHT - Said and Pearlman, 1996
- Set Partitioning in Hierarchical Trees coding. Also uses "zerotrees"
- ECECOW - Wu, 1997
- Uses arithmetic coding with context.
- EBCOT - Taubman, 2000
- Uses arithmetic coding with different context.
- JPEG 2000 - new standard based largely on EBCOT
- GTW - Hong, Ladner 2000
- Uses group testing which is closely related to Golomb codes.

A wavelet transform decomposes the image into a low resolution version and details. The details are typically very small so they can be coded in very few bits.

How do we represent
two data points at lower resolution?

Note that the low resolution version and the detail together have the same number of values as the original.

Detail

$$
\begin{array}{ll}
B[i]=\frac{1}{2} A[2 i]+\frac{1}{2} A[2 i+1], \quad 0 \leq i<\frac{n}{2} & L=B[0 . n / 2-1] \\
B[n / 2+i]=-\frac{1}{2} A[2 i]+\frac{1}{2} A[2 i+1], \quad 0 \leq i<\frac{n}{2} & H=B[n / 2 \ldots n-1]
\end{array}
$$

- The number of arithmetic operations as a function of the size of the data

$$
\sum_{i=1}^{n} 2^{i}=\left(\sum_{i=0}^{n} 2^{i}\right)-1=\frac{1-2^{n+1}}{1-2}-1=2^{n+1}-2=2\left(2^{n}-1\right)=2(N-1)
$$

4.

$$
\begin{gathered}
\left(\frac{36 / 8}{\sqrt{2^{0}}}, \frac{-16 / 8}{\sqrt{2^{0}}}, \frac{-4 / 4}{\sqrt{2^{1}}}, \frac{-4 / 4}{\sqrt{2^{1}}}, \frac{-1 / 2}{\sqrt{2^{2}}}, \frac{-1 / 2}{\sqrt{2^{2}}}, \frac{-1 / 2}{\sqrt{2^{2}}}, \frac{-1 / 2}{\sqrt{2^{2}}}\right) . \\
\left(\frac{3}{\sqrt{2^{4}}}, \frac{7}{\sqrt{2^{4}}}, \frac{11}{\sqrt{2^{4}}}, \frac{15}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}\right), \\
\left(\frac{10}{\sqrt{2^{5}}}, \frac{26}{\sqrt{2^{5}}}, \frac{-4}{\sqrt{2^{5}}}, \frac{-4}{\sqrt{2^{5}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}\right), \\
\left(\frac{36}{\sqrt{2^{6}}}, \frac{-16}{\sqrt{2^{6}}}, \frac{-4}{\sqrt{2^{5}}}, \frac{-4}{\sqrt{2^{5}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}, \frac{-1}{\sqrt{2^{4}}}\right), \\
\left(\frac{36 / 8}{\sqrt{2^{0}}}, \frac{-16 / 8}{\sqrt{2^{0}}}, \frac{-4 / 4}{\sqrt{2^{1}}}, \frac{-4 / 4}{\sqrt{2^{1}}}, \frac{-1 / 2}{\sqrt{2^{2}}}, \frac{-1 / 2}{\sqrt{2^{2}}}, \frac{-1 / 2}{\sqrt{2^{2}}}, \frac{-1 / 2}{\sqrt{2^{2}}}\right) .
\end{gathered}
$$

* $\square 8+\frac{1}{8}$ 为

- 2 approaches
- Standard decomposition
- Pyramid decomposition

\&* * D

transform

1 low resolution subband

6 detail subbands

2 levels of transform gives 7 subbands. k levels of transform gives $3 k+1$ subbands.
\qquad

* * * * *

- Technically wavelet transforms are special kinds of linear transformations. Easiest to think of them as filters
- The filters depend only on a constant number of values (bounded support)
- Preserve energy (norm of pixels $=$ norm of the coefficients)
- Inverse filters also have bounded support
- Well-known wavelet transforms
- Haar transform - like the average but orthogonal to preserve energy. Not used in practice.
- Daubechies $9 / 7$ - biorthogonal (inverse is not the transpose). Most commonly used in practice.

$\begin{array}{llllllllllll}12 & 1212141212\end{array}$	12121312	$\begin{array}{llll}0 & 0 & 2\end{array}$	0	12121312	00	2
1212121214121212	12121312	$\begin{array}{llll}0 & 0 & 2\end{array}$	0	12121312	00	2
	12121312	$\begin{array}{lll}0 & 0 & 2\end{array}$	0	14141414	00	0
$\begin{array}{llll}12 & 12121214121212\end{array}$	12121312	$\begin{array}{llll}0 & 0 & 2\end{array}$	0	12121312	00	2
1212121214121212	12121312	$\begin{array}{llll}0 & 0 & 2\end{array}$	0	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	00	0
	16161516	$\begin{array}{llll}0 & 0 & \underline{2}\end{array}$	0	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	00	0
1212121214121212	12121312	$\begin{array}{lll}0 & 0 & 2\end{array}$	0	$\underline{4} \quad \underline{4} \quad 2 \underline{2} \quad \underline{4}$	0 0	4
1212121214121212	12121312	$\begin{array}{lll}0 & 0 & 2\end{array}$	0	$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	00	0
(a)		b)		(c)		

 sistry1216121212121212 1212161212121212 1212121612121212 1212121216121212 1212121212161212 1212121212121612 1212121212121216 1212121212121212
(a)

14	12	12	12	$\underline{4}$	0	0							
0							$12141212 \quad 0 \quad 4 \quad 0 \quad 0$ 12141212 0 410 $\begin{array}{llllll}12 & 12 & 14 & 12 & 0 & 0 \\ 4 & 4 & 0\end{array}$ $\begin{array}{llllll}12 & 12 & 14 & 12 & 0 & 0\end{array} 4$ $\begin{array}{lllllll}12 & 12 & 12 & 14 & 0 & 0 & 0\end{array}$	12	12	12	14	0	0
:---	:---	:---	:---	:---	:---								
0	4						12121212	0	0	0	0		
:---	:---	:---	:---	:---	:---								

(b)

| 13 | 13 | 12 | 12 | $\underline{2}$ | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0 $12131312 \quad 0 \quad 2 \quad 2$ $\begin{array}{lllllll}12 & 12 & 13 & 13 & 0 & 0 & 2\end{array} 2$ | 12 | 12 | 12 | 13 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}2 & 2 & 0 & 0 & 4 & 4 & 0 & 0\end{array}$ $\begin{array}{llllllll}0 & 2 & \underline{2} & 0 & 0 & \underline{4} & \underline{4} & 0\end{array}$ $\begin{array}{llllllll}0 & 0 & 2 & \underline{2} & 0 & 0 & \overline{4} & 4\end{array}$ $\begin{array}{llllllll}0 & 0 & 0 & 2 & 0 & 0 & 0 & \underline{4}\end{array}$

(c)

* - - 小r

$\begin{array}{rrrrrrrr}1051 & 34.0 & -44.5 & -0.7 & -1.0 & -62 & 0 & -1.0 \\ 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0.0\end{array}$ $\begin{array}{lllrrrrr}0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0.0 \\ 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0.0\end{array}$ $\begin{array}{llllllll}0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0.0 \\ 0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0.0\end{array}$ $\begin{array}{rrrrrrrr}0 & 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0.0 \\ 48 & 239.5 & 112.8 & 90.2 & 31.5 & 64 & 32 & 31.5\end{array}$ $\begin{array}{llllllll}48 & 239.5 & 112.8 & 90.2 & 31.5 & 64 & 32 & 31.5 \\ 48 & 239.5 & 112.8 & 90.2 & 31.5 & 64 & 32 & 31.5\end{array}$ $\begin{array}{llllllll}48 & 239.5 & 1128 & 90.2 & 31.5 & 64 & 32 & 31.5\end{array}$ $\begin{array}{llllllll}48 & 239.5 & 112.8 & 90.2 & 31.5 & 64 & 32 & 31.5\end{array}$

沙*

clear; \% main program
id=fopen(filename, ' r ')
if fid $==-1$ disp('file not found')
ase img=fread(fid,[dim,dim])'; fclose(fid):
end $\begin{aligned} & \text { thresh=0.0; } \quad \% \text { percent of transform coefficients deleted }\end{aligned}$
figure(1), imagese(img), colormap(gray), axis off, axis square
w=harmatt (dim); \% compute the Haar dim x dim transform matrix
timg=w*img*w'; \% forward Haar transform
tsort=sort(abs(timg(:)));
thresh=tsort(floor(max(thresh*dim*dim,1)));
im=timg.*(abs (timg) > tthresh)
dimg"sparse (i, j, s,dim,dim) ;
$\%$ figure (2) displays the remaining transform coefficients
\%/figure (2), spy(dimg), colormap(gray), axis square
figure(2), image(dimg), colormap(gray), axis square
cimg=full ($w^{\prime} *$ sparse (dimg) *w) ; \% inverse Haar transform
disp([num2str(100*thresh) $\%$ of smallest coefficients deleted.'])

num $2 \operatorname{str}(\mathrm{dim})$ ' x ' num 2 str (dim),$~ '])$
figure (3), imagesc (cimg), colormap(
figure(3), imagesc(cimg), colormap(gray), axis off, axis square

File harmatt.m with two functions
function $x=$ harmatt(dim)
num= $\log 2$ (dim);
$\underset{i=1 ;}{p}=\operatorname{sparse}($ eye $(\mathrm{dim})) ; q=p ;$
$\mathrm{i}=1$;
while
while 1 र-dim/2;
$\mathrm{q}(1: 2 * i, 1: 2 * i)=\operatorname{sparse}(\operatorname{individ}(2 * i))$;
$\mathrm{p}=\mathrm{p} *$
end
$\mathrm{x}=$ sparse (p) ;
function $f=$ individ(n)
$\mathrm{x}=[1,1] / \mathrm{sqrt}(2)$;
$\mathrm{y}=[1,-1] /$ sqrt (2)
while $\min (\operatorname{size}(x))<n / 2$
$x=[x, \operatorname{zeros}(\min (\operatorname{size}(x)), \max (\operatorname{size}(x)))$;.

end
while $\min (\operatorname{size}(\mathrm{y}))<\mathrm{n} / 2$
$y=[y, \operatorname{zeros}(\min (\operatorname{size}(y)), \max (\operatorname{size}(y)))$; zeros $(\min (\operatorname{size}(y)), \max (\operatorname{size}(y))), y]$;
end
$f=[x ; y] ;$

(b)

－Lossy involves the discarding of coefficients
－Sparseness ratio
－The measurement of number of coefficients discarded
－The number of nonzero wavelet coefficients divided by number of coefficients left after some are discarded
－Higher sparseness ratio－＞fewer coefficients left
－Better compression－＞poorly reconstructed image

$$
f(t)=\sum_{k=-\infty}^{\infty} c_{k} \phi(t-k)+\sum_{k=-\infty}^{\infty} \sum_{j=0}^{\infty} d_{j, k} \psi\left(2^{j} t-k\right)
$$

Basic scale function

Basic Haar wavelet－step function

$$
\phi(t)=\left\{\begin{array}{ll}
1 & , 0 \leq t<1 \\
0 & \text {,otherwise }
\end{array} \quad \psi(t)=\left\{\begin{array}{cc}
1 & , 0 \leq t<0.5 \\
-1 & , 0.5 \leq t<1
\end{array}\right.\right.
$$

以籸显

$A_{1}=\left(\begin{array}{cccccccc}\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2}\end{array}\right), \quad A_{1}\left(\begin{array}{c}255 \\ 224 \\ 192 \\ 159 \\ 127 \\ 95 \\ 63 \\ 32\end{array}\right)=\left(\begin{array}{c}239.5 \\ 175.5 \\ 111.0 \\ 47.5 \\ 15.5 \\ 16.5 \\ 16.0 \\ 15.5\end{array}\right)$,

$$
A_{2}\left(\begin{array}{c}
239.5 \\
175.5 \\
111.0 \\
47.5 \\
15.5 \\
16.5 \\
16.0 \\
15.5
\end{array}\right)=\left(\begin{array}{c}
207.5 \\
79.25 \\
32.0 \\
31.75 \\
15.5 \\
16.5 \\
16.0 \\
15.5
\end{array}\right), \quad A_{3}\left(\begin{array}{c}
207.5 \\
79.25 \\
32.0 \\
31.75 \\
15.5 \\
16.5 \\
16.0 \\
15.5
\end{array}\right)=\left(\begin{array}{c}
143.375 \\
64.125 \\
32 . \\
31.75 \\
15.5 \\
16.5 \\
16 . \\
15.5
\end{array}\right)
$$

a1=[1/2 $1 / 200000000 ; 001 / 21 / 200000 ;$
$00001 / 21 / 200 ; 000001 / 21 / 2$;
$1 / 2-1 / 2000000 ; 001 / 2-1 / 20000$;
$00001 / 2-1 / 200 ; 00000001 / 2-1 / 2]$.
$\%$ a1*[255; 224; 192; 159; 127; 95; 63; 32];
a2=[1/2 $1 / 200000000 ; 001 / 21 / 20000$;
1/2-1/2 $000000 ; 001 / 2-1 / 20000$;
$000001000 ; 00000100$;
$00000010 ; 00000001] ;$
$a 3=\left[\begin{array}{llllllllllllll}1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 ; & 1 / 2 & -1 / 2 & 0 & 0 & 0 & 0\end{array} 0\right.$
$00100000 ; 00010000$;
$0000010000 ; 00000011000$;
$00000010 ; 00000001]$;
w=a3*a2*a1;
dim=8; fid=fopen('8x8','r');
img=fread(fid,[dim,dim])'; fclose(fid);
w*img*W' \% Result of the transform

- 小

131.375	4.250	-7.875	-0.125	-0.25	-15.5	0	-0.25
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
12.000	59.875	39.875	31.875	15.75	32.0	16	15.75
12.000	59.875	39.875	31.875	15.75	32.0	16	15.75
12.000	59.875	39.875	31.875	15.75	32.0	16	15.75
12.000	59.875	39.875	31.875	15.75	32.0	16	15.75

- Orthogonal transform
- Inner product of the data with a set of basis functions
- Output is set of transform coefficients
- Discrete inner product of the two vectors

$$
\langle f, g\rangle=\sum_{i} f_{i} g_{i}
$$

- Wavelet transform = subband transform
- Compute a convolution of the data items with a set of bandpass filters
- Each resulting subband encodes a particular portion of the frequency content of the data

- Discrete convolution of two vectors

$$
h(i)=f(i) * g(i)=\sum_{i} f(j) g(i-j)
$$

- Wavelet transform = subband transform
- Compute a convolution of the data items with a set of bandpass filters
- Each resulting subband encodes a particular portion of the frequency content of the data
:

product of functions

$$
g(t)=\left\{\begin{array}{c}
1,-a / 2<t<a / 2 \\
\frac{1}{2}, t= \pm a / 2 \\
0, \text { elsewhere }
\end{array}\right.
$$

input function

