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Application of Sign Haar Transform in a ternary communication .
system

SUSANTO RAHARDJAt and BOGDAN J. FALKOWSKIf

We consider the application of a novel Sign Haar Transform in designing a digital
communication system. The nonlinear transform converts binary/ternary vectors
into digital spectral domain and is invertible. With its unique and isomorphic
properties, the Sign Haar Transform is suitable for security coding in a communi-
cation system. Ternary amplitude frequency shift keying (TAFSK) is proposed for
the implementation of the system. Power spectral density of the resultant signalling
is formulated and analysed. The non-coherent receiver is designed and proposed as
a ternary communication system.

1. Introduction

~ Discrete transformations have been extensively used in the areas of control,
communication, digital logic and digital signal processing with particular appli-
cations in picture processing and pattern recognition (Stojic et al. 1993, Yaroslavsky
1985, Zalmanzon 1989). Most of these transformations are canonical and ortho-
gonal, though there exist some non-orthogonal digital transformations which also
find application in logic design (Stojic et al. 1993). Recently, a new ternary quantized
transform called the Sign Haar Transform was introduced by Falkowski and
Rahardja (1994). The transform exhibits a nonlinear property. Essentially, it
transforms binary/ternary data into a ternary spectrum. Though nonlinear, the
transform is unique and hence invertible. With its intrinsic coding property, the
transform reveals a possible application in a secured digital communication system.
Another important property of the Sign Haar Transform is that the computer
memories required to store both functional and spectral data are exactly the same,
since they operate on ternary values. This is in marked contrast to traditional Haar
spectrum, where signs together with magnitudes need to be stored in spectral domain
(Stojic et al. 1993, Yaroslavsky 1985, Zalmanzon 1989). Hence for the traditional
Haar transform, the storage requirements in the spectral domain versus the
functional domain are significantly increased for binary/ternary data signals
In this paper the use of the Sign Haar Transform in designing a ternary digital
communication system is considered. The incoming binary/ternary data are encoded
by performing the Sign Haar Transform. The resultant ternary signal is modulated
into a high-frequency carrier using ternary amplitude frequency shift keying
(TAFSK) signalling.

2. General definitions of Sign Haar Transform

S-coding is frequently used to represent boolean functions when different spectra
of such functions are calculated. The truth vector for S-coding is represented in the
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following way: the true minterms (minterms for which boolean function has logical
values 1) are denoted by — 1, false minterms (minterms for which boolean function
has logical values 0) by + 1, and ‘don’t care’ minterms (minterms for which boolean
function can have arbitrary logical values 0 or 1) by 0. Hence, binary vectors fotmed
of only {+1, —1} represent logical values of completely specified boolean functions,
and those formed of {+1, 0, —1} represent the values of incompletely specified
boolean functions. In what follows, to shorten the notation, functional and spectral
data will be represented by either {+,—} or {+,0,—}. The data in the functional
domain can be arbitrary binary/ternary vectors or S-coded completely (binary) or
incompletely (ternary) specified boolean functions. The following symbols will be
used: let R, ={+,—}, R, ={+,0,—}, and let R} mean the n-space cartesian product
of a set R;, (I=1,2).

Definition 1
An n variable S-coded completely specified boolean function is the mapping
fi:R1—R;.

Definition 2
An n variable S-coded incompletely specified boolean function is the mapping
f>:R}—R,.

Definition 3

An invertible Sign Haar Transform h and its inverse transform h~! are the
mappings h: R3"—R3j, and h™':R3;,—R}". In the above equations, the symbol
R%;,, represents a set with the elements from R3" permuted by the mapping h of all
the elements of the set R2". When only completely specified boolean functions are
considered, the symbol R2" is replaced with R?" and RZj,, with R{j,, where the latter
represents a proper subset of set R3j, generated by the & mapping of all the elements
of the set R?". In order to obtain the sign Haar spectrum h (an element of the set
R3%,), and its inverse (a corresponding element of the original data set R2"), the
results of each Fast or Inverse Haar butterfly block are quantized first. In the above
equations, the cardinality of the original data set R3" and its transformed spectrum
R3;, is equal to 377,

When some permutation is performed on the elements of the set R2" the same
permutation happens to the elements in R%j,, spectrum of the original set. Fast flow
diagrams for the calculation of forward and the inverse Sign Haar Transform h are
shown for N =8 in Figs 1(a) and (b) accordingly. The number of operations required
to perform the forward Sign Haar Transform h for a single element of set R" and
the inverse Sign Haar Transform h~! for a single element of set R%;, and for a
transform matrix of order N=2" is equal to 4(2" —1).

Besides calculation of both Sign Haar transforms by using fast flow diagrams
similar to those of the Fast Haar transform, Sign Haar spectra can be calculated
directly from recursive definitions that involve data and transform domain variables.

The following symbols are used: Let

X, =[Xp>Xp— 150 - +sXise - X2 5X1]

o, =[w,,,a),,_ 19 .,(1),',‘. .y ,Cl)1]
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be n-tuples over GF(2). The symbol x; stands for a data variable, and w; for a
transform domain variable; i is an integer and 1<i<n. Let

F=[F0,F1,...,Fi,...,an_2,F2n_1] [}

be a ternary vector. For example, it can be the S-coded truth vector of f:R}—R,
where the value of F, (0<u<2""!) is given by F(x,) when

~

Y x2'=u
i=1
Let
HF =[h0 9hl 9o o .,hi,. B .,hln_z ,hzn_ 1]
be the vector corresponding to the Sign Haar Transform of F. The value of h,
0<u<2""1')is given by Hp(w) when

;2 =u

1"

"

i=1

Let O, represent the vector of i zeros, 1<i<n. Let the symbol @, represent cyclic
addition, let the symbol @, represent dyadic addition, and let the symbol A
represent bit-by-bit logical AND. When the above operations are applied to two
vectors A, and B,, 1<I<v, where I and v are two different integer numbers, they
result in the vector C, of the length v. Only / elements of B, and all elements of 4,
are manipulated, the remaining (v—I) elements of the resulting vector C, are not

@ ®

Figure 1. Butterfly diagram for: (a) forward and (b) inverse Sign Haar transform, n=3.
@ sign function, O lack of any operation, solid and dotted lines represent addition
and subtraction, respectively.
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affected by the applied operation and are simply the same as the elements of the
vector B, between positions v and /+1.

Definition 4
An invertible forward Sign Haar Transform h is

KO, @g0,)=sign 3, [sign > [-'-sign > {(—I)X"w*f(xn)}---]] )

xn=0 Xn-1=0 x1=0

1 1 1
hO, D0, 42 )=sign ), [sign Y [---sign Y {(—1)""“
0

Xn—-i= Xn-i-1=0 x1=0

f{[(Ou@dmi)@c("_i):l@dxn—i}}'":H 0))

The inverse Transform is

f(x,)=sign {(" D*h { I:(Ol AX,)D, 1]@‘12"_1} +sign {("‘ 1=
h {[(02 A x,‘)®c2:|@d2"‘2} + -+ +sign {(— 1)’“h{[(0i A x,,)@ci]

@dzn—i}_i_ -+~ +sign {(_l)xn-lh{l:(on_l /\x,,)@c(n—l):l®d2}

+sign[ i (—l)x"w‘h(on@dwx)J} - }}} A3)
w1 =0
In (1)-(3)

—1, z<0
signz= 0, z=0
+1, z>0

In (2) and (3), 1 <i<n. Let us show the mutual relations in the definitions of the
forward and inverse Transforms k for the ith w; and first transform variable w, . For
the forward Transform when i—0, (2) is

hO,®qo; ®d2i)=h(on PO ®d20) =h0,®41)=hO0,D4w,) When v, =1

Hence, for this condition, (1) has been derived. For the inverse Transform, an ith
element

sign {(— D*h{[(O; A x,)D.i]®42" '}, when i—n

approaches
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sign {(— 1)™h{[(O, A x,) D n]Dy2"""} =sign {(— )*h{[(0, D] D41}
=sign {(—1)*h[(0,@41]
=sign(—1)***h(0,@,0,), when o, =1

Hence, the nth element of the recursive definition in (3) has been derived.

The Sign Haar Transform presents a mapping of the set R, or R, onto R,.
Owing to its unique mapping property, the new transform space of similar ternary
values could be easily developed by simply applying the Sign Haar Transform yx
times onto the ternary truth column vector F such that each time a new transform
space is developed. The overall transform is named the Sign Haar-y Transform. In
general, if n is the number of variables of binary/ternary function, there are
altogether a maximum of 32" different Sign Haar Transform spaces, denoted as a
Sign Haar-y Transform with 1<y < 32" where with y=1 the transform yields the
original Sign Haar Transform (Falkowski and Rahardja 1994). This property does
not show an error-correcting capability, but it allows the transform to be used
conveniently in secured communication system. Application of the Sign Haar
Transform to streams of binary/ternary messages will cause the transmitted signal to
be isolated from all receivers other than the one with the inverse Sign Haar
Transform.

3. Calculation of Sign Haar Transform by matrix approach

The Sign Haar Transform may be evaluated using a matrix approach. It is also
possible to evaluate a single spectral coeflicient of the Sign Haar Transform without
the need to calculate the whole spectrum.

Definition 5
Let T, and S, be 2" x 2" forward and inverse Haar Transform matrices (Stojic
et al. 1993, Yaroslavsky 1985, Zalmanzon 1989). Then

7;=[t0’t1a"'ati,"',tzn—l,]T=S,,—l
=[[50,S1, " 81> "S2n=1]T1 7", where0<i<2'—1 (4)

Definition 6

Let A=[ay,a,, " ",a;n_1] be a 1 x2" row vector and let B=[by,b,, " ",ban_1]1 be
a 2" x 1 column vector. The vector product A * B is a 1x2" row vector with the
elements derived from component-wise multiplication:

A*B=[aobo,a1b1,"',azn—1b2n—1] ®

Definition 7
Let A be a 1 x2" row vector whose entries are [4;]. The sign modulo function

[ A7 =ais a scalar where the elements in 4 are summed in pairs in the form of a
binary tree summation, and the tree is evaluated from the bottom up.



556 S. Rahardja and B. J. Falkowski

Property 1
Let

[}

F=[FO’F1""9Fi""’F2"~1] HF=[hOah1a”"hi"”’hZ"—ll

define the ternary vector and its Sign Haar spectra coefficients. Then, h;= [t,* F
and Fi= rsi*HF-l' N

Example 1
Let n=2, and the ternary vector F=[—,—,+,—]. From Definition 5

T, =[(+ + + +),(+ + — =),(+ —00),(00+ —)] "

By Property 1
ho=T(++++)(——+)"T=[(——+-)1=[(-07 =-
b= (++=) =+ =[(-—=H]=[(-0] =-
hy=[(+-00%(=~+-)T] =[(=+0007 =[(00)] =0
hy=TO0+—)(——+-)"T] =T@©00++)] =T0+)] =+

4. TAFSK modulation technique

The digital modulation technique responsible for carrying information in Sign
Haar spectra is ternary amplitude frequency shift keying. In this signalling a ternary
+ 1 s transmitted by a radio frequency (RF) pulse of carrier cos w, ¢, a ternary —1 is
transmitted by an RF pulse of carrier cos w,t, and a 0 corresponds to no RF pulse.
The technique combines binary amplitude shift keying and binary frequency shift
keying for the ternary case. The power spectral density (PSD) of the resultant
signalling is given by

S(w)=3[4,(w+w;)+ A4 (0—0,)+ 4, (0+0,)+ A4, (0—0,)] (6)
where
. T @ 2
A, (0)=3T, smcz(wzno>|:1+%)m=z_:00 6(0)——%—’"):'
Proof

Let the Sign Haar Transform of binary/ternary data streams be represented by

Q0

A= )Y apt—kTy)=A4,(0+A4,(t)

k=—o0

where p(¢) represents a full rectangular pulse which repeats every T, seconds, and it
is assumed that g, is equally likely to be +1, 0 or —1, i.e. P(a, =1)=P(a,=—1)
= P(a, =0)=}. Furthermore

A(0= Y aVp(t—kTy)and 4,()= ) & Vpt—kTy)

k=— o k=—-w



Sign Haar Transform in a ternary communication system 557

with P(a$? =1)=P(a§ "V = —1)=14 and P(a"’ =0)=P(af~ "> =0)= 4. The PSD of
ON-OFF signalling (Filippov and Zinoviev 1966) is

Ao('w)_lP(w)Iz[ $ R, _,Mo] '

0 m=— oo

where R,, is the coefficient of the time-autocorrelation function of the signalling and
=/ —1. Therefore the PSD of 4,(t) is 4, (w)=A4,(w), with

1
Ry= lim — Z (@) =
NTk 1

Nt -+ ©

1
and R, = lim N Y, aiaih, =5, ifm#0
Nr—+ o T k=1
Since
. (0T,
P(w)= —_—
(w) Tosmc( . )
and using
@ @ 21tm
e moTo - — 6((0————)
m=z;ao ’I;)m;‘w TO
then

_27 sinc?( 2T NS _2zm
A, (w)=3T, sinc ( o )[H—To m;—wé(a} T, )]

Since (a{)*=(a{"v)* and a{Pa{i, =ai Vaiiy’, therefore A,(w)=A4,(w).
Using the frequency shifting property and since

s(t)=A,(t)cosw,t+ A,(t)cosw,t
the proof of (6) is complete. O

For w,>w,, if @, —w;=2w, then the transmission bandwidth of TAFSK
signalling is 4/, (where fo =1/ T, is the clock frequency).

5. System overview

Figure 2 shows the block diagram of a TAFSK transmitter. The continuous
streams of binary/tenary data are converted to parallel words of length N by means
of a serial-parallel converter. The Sign Haar-y Transform is applied to each word
before converting back to the format of serial data. The output signal V of the
parallel-serial converter controls the output frequency of the voltage-controlled
oscillator, and both outputs are fed together into the mixer. The output of the mixer
is TAFSK signalling. The output of the oscillator is mathematically given by

VCO = ¥, cos [2n(f. + V f)i] @)
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Binary/ Bandpass
Ternary| Serial Parallel | : Filter s(1)
—! Parallel Serial X —>
Data | Converter Converter ce;tres at
c [}
N N
vCo R
Sign Haar-x,
Transform
% -control

Figure 2. Block diagram of TAFSK transmitter.

where Ve{—1, 0, 1} and V, is an arbitrary amplitude. If f,,= f;, then the resultant
transmission bandwidth will be 4/, and . + fo, = f5,f. — fo = /1 -

Figure 3 shows a block diagram of a TAFSK receiver. The incoming noisy RF
signal is bandpass filtered centred at frequency f, . The bandpass filters centred at f,
and f; are matched to the two RF pulses corresponding to ternary logic of —1 and
+ 1 accordingly. The outputs of the two matched filters are detected by two envelope
detectors. The envelope detector is sampled at t= T, to make the ternary decision of
—1 or 0 and 1 or 0 by negative and positive threshold devices, respectively. The
output of summer is ternary, which is fed to a serial-parallel converter, the inverse
Sign Haar-y Transform block and parallel-serial converter to extract the original
message. :

The proposed non-coherent system is the simplest implementation of a ternary
communication system. Other possibilities include the complicated M-ARY commu-
nication systems. It is obvious that the Sign Haar Transform provides security to

Bax_xdpass = Negative
Filter Envelope —?C—- Threshold[—
centres at ctector Device
. Bandpass f2
notsy N Filter
s(6) centres at (T
Je B;x}gpass | Eavet ~0 Positive
ilter avelope ——?g Threshold
centres at Detector Device
S
Parallel | : Inverse | : Serial
4— Senal : N SignHaar-x | ¢ N Parallel
Converter | : Transform | _ : Converter
recovered
message T
% ~control

Figure 3. Block diagram of TAFSK receiver.
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information data. If y is varied for each word transformed in a manner transparent
to a friendly receiver, the level of security in the communication system will be
further enhanced.

L}

6. Conclusion

The application of the Sign Haar Transform in ternary communication system is
considered. A non-coherent system to implement the ternary system is proposed and
analysed. The addition of the Sign Haar Transform provides security in the digital
communication system. The level of security is easily adjustable by controlling yx,
which corresponds to the Sign Haar-y Transform. Another possibility to increase the
security of the digital communication system is the usage of the Sign Haar-y Walsh-y
Transform (Falkowski and Rahardja 1995). Though the latter transform is more
computationally expensive, it provides better cryptographic properties obtained by
its design.

Among all the existing digital quantized transforms, the Sign Haar Transform is
the most computationally effective, in terms of both processing time and memory
requirements. When a fast flow diagram is directly implemented in software, there is
no need to keep the original data, and each consecutive butterfly requires a
geometrically smaller number of operations on the transformed data. Each time, 2°
binary/ternary data need to be stored in the memory. The Sign Haar-y Transform
block may also be implemented as a parallel dedicated processor.
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