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Abstract— The generalization of multi-polarity arithmetic-
Haar transform in the form of layered Kronecker matrices is
proposed in this article. The new recursive relations are given
in the form of layered Kronecker matrices and hence they have
fast transforms and are computationally advantageous.

I. INTRODUCTION

Both the Haar wavelet transform (non-normalized version of
the transform where only signs are entered into the transform
matrix) and arithmetic transform have been used in many ap-
plications of logic design [1]–[3]. As each of these transforms
has same advantages and disadvantages, it is also beneficial
to calculate the spectrum of a logic function by means of
some other known spectrum of the same function without
needing to regain the original function. Such a conversion for
arithmetic and Haar spectra for arbitrary n were shown in
[4]. In [5] an idea of a combined arithmetic-Haar transform
was proposed. Such a transform was defined for the first eight
functions and experimental results shown in [5] proved that
arithmetic-Haar transform is more efficient than other used
transforms in logic design such as Walsh, Haar and arithmetic
for some benchmark functions. Therefore it is interesting not
only theoretically but also practically, to extend this arithmetic-
Haar transform for higher matrix dimensions. In our previous
article [6], we showed arithmetic-Haar transform for arbitrary
matrices in zero polarity, while in this article for the first
time the multi-polarity arithmetic-Haar transform is introduced
and this is our main contribution. In addition, we propose
the generalization of multi-polarity arithmetic-Haar transform
with fast algorithms.

II. BASIC DEFINITIONS

Logical expansions are useful to represent logic functions,
which usually use AND and EXOR (⊕) operators. There are
types of expansion including Shannon expansion [2], [7] and
Davio expansion [2], [7] which are widely used in logic design
. For an n-variable function f(x1, x2,· · ·, xi,· · ·, xn−1, xn),
f|xi=b = f(x1, x2, · · · , xi−1, b, xi+1, · · · , xn−1, xn) where
1 ≤ i ≤ n and b = 0 or 1.

Definition 1: Shannon expansion for the n-variable func-
tion can be represented as:

f = xif|xi=1 ⊕ xif|xi=0. (1)

Definition 2: There are two types of Davio expansions,
including positive Davio expansion and negative Davio ex-
pansion. For the n-variable function, the positive and negative
Davio expansions are represented by (2) and (3), respectively.

f = f|xi=0 ⊕ xi

(
f|xi=0 ⊕ f|xi=1

)
(2)

f = f|xi=1 ⊕ xi

(
f|xi=0 ⊕ f|xi=1

)
(3)

Let the symbol ’⊗’ represent Kronecker product [2], [7] of
two matrices.

Definition 3: Let the symbol �αn = {α1, α2, · · · , αi, · · · ,
αn−1, αn} represent the polarity of the multi-polarity Walsh
transform. The forward multi-polarity Walsh transform matrix
of order 2n is defined as [8]:

MW �αn(n) =
n⊗

i=1
MWαi(1) (4)

where MWαi(1) =




[
1 1
1 −1

]
if αi = 0,

[
1 1

−1 1

]
if αi = 1.

Definition 4: Let the symbol �βn = {β1, β2, · · · , βi, · · · ,
βn−1, βn} represent the polarity of the multi-polarity arith-
metic transform. The forward multi-polarity arithmetic trans-
form matrix of order 2n is defined as [9]:

MA
�βn(n) =

n⊗
i=1

MAβi(1) (5)

where MAβi(1) =




[
1 0

−1 1

]
if βi = 0,

[
0 1
1 −1

]
if βi = 1.

Definition 5: Let the symbol �γn = {γ1, γ2, · · · , γi, · · · ,
γn−1, γn} represent the polarity of the multi-polarity Haar
transform. The forward multi-polarity Haar transform matrix
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of order 2n is defined as [10]:

MH�γn(n) =




MH�γn−1(n − 1) ⊗ [
1 1

]
−−−−−−−−−−−(

n−1⊗
i=1

[
1 0
0 1

])
⊗ Rγn


 (6)

where MHγi(1) =




[
1 1
1 −1

]
if γi = 0,

[
1 1

−1 1

]
if γi = 1,

and Rγi(1) =




[
1 −1

]
if γi = 0,[

−1 1
]

if γi = 1.

III. MULTI-POLARITY ARITHMETIC-HAAR TRANSFORM

Let �ωn = {ω1, ω2, · · · , ωi, · · · , ωn−1, ωn} be n-tuple over
GF(2). This vector represents the polarity of multi-polarity
arithmetic-Haar transform, n, i are integers and 1 ≤ i ≤ n.
For an n-variable function f(x1, x2, · · ·xr, · · ·xn−1, xn), the
basic functions for the multi-polarity arithmetic-Haar expan-
sions can be combined from two sets of basic functions. The
first 2n−1 basic functions are generated from the positive
Davio expansion for variables ẋ1 to ẋn, excluding ẋr where
1 ≤ r ≤ n:

[1 ẋ1] ⊗ [1 ẋ2] ⊗ · · · ⊗ [1 ẋr−1] ⊗ [1 ẋr+1] ⊗
· · · ⊗ [1 ẋn−1] ⊗ [1 ẋn]. (7)

For the other 2n−1 basic functions, the functions can be gen-
erated from multiplying the Shannon expansion for variables
x1 to xn, excluding xr:

[x1 x1] ⊗ [x2 x2] ⊗ · · · ⊗ [xr−1 xr−1] ⊗
[xr+1 xr+1] ⊗ · · · ⊗ [xn−1 xn−1] ⊗ [xn xn]

by (1 − 2ẋr). (8)

In (7) and (8), ẋi =

{
xi, if ωi = 0,

xi, if ωi = 1,
where 1 ≤ i ≤ n.

Such an approach allows us to generalize the multi-polarity
arithmetic-Haar matrices and corresponding expansions in
many ways by selecting the polarity �ωn and the order r, so
this is a general method that can provide compact spectral rep-
resentation with many zeros for any n-variable logic function.

Definition 6: From the multi-polarity arithmetic-Haar ex-
pansions, the rth-order multi-polarity arithmetic-Haar trans-
form matrix AHr(n) and its inverse AH−1

r (n) can be defined
as:

AHr(n)=




(
r−1⊗
i=1

Aωi

)
⊗

[
1
1

]
⊗

(
n−r⊗
i=1

Aωi+r

)
...

(
r−1⊗
i=1

[
1 0
0 1

])
⊗Bωr

⊗
(
n−r⊗
i=1

[
1 0
0 1

])


 (9)

AH−1
r (n)=

1
2




(
r−1⊗
i=1

A−1
ωi

)
⊗[

1 1
]⊗

(
n−r⊗
i=1

A−1
ωi+r

)

−−−−−−−−−−−−(
r−1⊗
i=1

[
1 0
0 1

])
⊗BT

ωr
⊗

(
n−r⊗
i=1

[
1 0
0 1

])




(10)

Aωk
=




[
1 0
1 1

]
if ωk=0,

[
1 1
1 0

]
if ωk=1,

A−1
ωk

=




[
1 0

−1 1

]
if ωk=0,

[
0 1
1 −1

]
if ωk=1,

Bωk
=




[
1

−1

]
if ωk=0,

[
−1

1

]
if ωk=1,

and BT
ωk

=




[
1 −1

]
if ωk=0,

[
−1 1

]
if ωk=1,

where n = 2, 3, 4 · · · , 1 ≤ r ≤ n and 1 ≤ k ≤ n.

In the above equations, the symbol ’
j⊗

i=1
’ represents the

Kronecker product of j matrices. When the Kronecker product
of j matrices is carried out for the above equations for j = 0,

then the term ’
j⊗

i=1
’ disappears from the above equations. The

vertical dotted lines denote the layered vertical Kronecker
matrices, and the horizontal dashed lines denote the layered
horizontal Kronecker matrices, respectively. The layered hor-
izontal Kronecker matrix is defined as the horizontal sum of
Kronecker matrices, and the layered vertical Kronecker matrix
is defined as the vertical sum of Kronecker matrices [4].

Example 1: For n = 3, r = 2 and �ω3 = {ω1, ω2, ω3} =
{0, 1, 1}, the arithmetic-Haar forward transform matrix
AH2(3) is:

AH2(3) =




[
1 0
1 1

]
⊗

[
1
1

]
⊗

[
1 1
1 0

]
...

[
1 0
0 1

]
⊗

[−1
1

]
⊗

[
1 0
0 1

]




=




1 1 0 0 −1 0 0 0
1 0 0 0 0 −1 0 0
1 1 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 1 1 1 0 0 −1 0
1 0 1 0 0 0 0 −1
1 1 1 1 0 0 1 0
1 0 1 0 0 0 0 1




,
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and its inverse AH−1
2 (3) is:

AH−1
2 (3) =

1
2




[
1 0

−1 1

]
⊗ [

1 1
] ⊗

[
0 1
1 −1

]

−−−−−−−−−−−−−[
1 0
0 1

]
⊗ [−1 1

] ⊗
[
1 0
0 1

]




=
1
2




0 1 0 1 0 0 0 0
1 −1 1 −1 0 0 0 0
0 −1 0 −1 0 1 0 1

−1 1 − 1 1 1 −1 1 −1
−1 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1




.

Comparatively, the most known transform which has been
applied to many areas including logic synthesis and opti-
mization is Walsh transform. Similarly, the proposed multi-
polarity arithmetic-Haar transform can also be used for the
logic design. The following example shows the applications of
Walsh and arithmetic-Haar transforms to the same function.

Example 2: Consider a 3-variable function f1(x1, x2, x3)
=

∑
(0, 2, 4, 5, 7). Using the multi-polarity arithmetic-Haar

transform in Example 1 and corresponding 8-point Walsh
transform for f1, the corresponding arithmetic-Haar coeffi-
cients and Walsh coefficients can be calculated respectively
as follow:

AH−1
2 (3) ×




1
0
1
0
1
1
0
1




=
1
2




0
2
2

−3
0
0

−1
0




,

(
3⊗

i=1

[
1 1
1 −1

])−1

×




1
0
1
0
1
1
0
1




=
1
8




5
1
1
1

−1
3

−1
−1




.

Using (7) and (8) the corresponding arithmetic-Haar expan-
sion for the function f1 is:

f1 =
1
2
[2x3 + 2x1 − 3x1x3 − x1x3(1 − 2x2)]. (11)

From the Walsh coefficients calculated above, the corre-
sponding Walsh polynomial expansion for the function f1 is:

f1 =
1
8
[5+(1−2x3)+(1−2x2)+(1−2x2)(1−2x3)

−(1−2x1)+3(1−2x1)(1−2x3)−(1−2x1)(1−2x2)
−(1−2x1)(1−2x2)(1−2x3). (12)

It is clearly shown that the arithmetic-Haar expansion is
much shorter than the corresponding Walsh expansion for this
function.

Since the multi-polarity arithmetic-Haar transform has the
recursive relations given in the form of layered Kronecker
matrices, it is possible to derive fast algorithm for the calcula-
tion of the multi-polarity arithmetic-Haar transform matrices.
Similar to the fast Walsh transform and other known fast
transforms, the multi-polarity arithmetic-Haar transform ma-
trix can be calculated by the products of the factored matrices.
The fast algorithms give us a way to calculate the transform
more efficiently. Furthermore, the butterfly diagrams can be
developed based on the factorized matrices, which can be used
for the hardware implementation of the transform.

Example 3: The multi-polarity arithmetic-Haar transform
AH2(3) and AH−1

2 (3) in Example 1 can be factorized to the
products of three matrices by fast algorithms as follows:

AH2(3)=




1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1




×




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




×




1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




,

and AH−1
2 (3)=

1
2




0 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




×
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Fig. 1. Fast butterfly diagrams for forward arithmetic-Haar transforms, �ω3 =
{0, 1, 1}, r = 2 and n = 3.




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




×




1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1




.

The inverse multi-polarity arithmetic-Haar transform
AH−1

2 (3) can be also factorized in a similar way using
the fast algorithms. From the representations of AH2(3)
and AH−1

2 (3) by products of the factored matrices, the
corresponding fast flow diagrams for the calculation of
forward and inverse multi-polarity arithmetic-Haar transforms
are shown in Fig. 1 and Fig. 2, accordingly. In all the figures
in this article, the solid lines and dotted lines represent
addition and subtraction, respectively.

IV. CONCLUSION

The generalizations of multi-polarity arithmetic-Haar trans-
form are presented in this article. By selecting the polarity and
r of the multi-polarity arithmetic-Haar transform, we can find
the optimal expression for a given logic function. The new
transform shows both the computational advantage and better

Fig. 2. Fast butterfly diagrams for inverse arithmetic-Haar transforms, �ω3 =
{0, 1, 1}, r = 2 and n = 3.

experimental results over Walsh and arithmetic transforms.
There are different Decision Diagrams (DDs) that have been
used for spectral transforms [2], [7]. Hence, the calculation of
this transform through DDs can also be developed, which is
more suitable for large discrete functions.
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