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Abstract 

The fractional Fourier transfotm (FRFT) is one- 
parametric generalization of the classical Fourier trans- 
form. FRFT was introduced in eighties and found a lot 
of applications in signal processing. The time and spec- 
tral domains are both the special cases of the fractional 
Fourier domain. They correspond to the 0th and 1st frac- 
tional Fourier domains, respectively. In this p a p <  we in- 
troduce the classical and quantum fractional Haar-Wavelet 
transforms and develop corresponding fast algorithms. 

1. Introduction 

The singular-value decomposition (SVD) and eigen- 
decomposition (ED) is a tool of both practical and theo- 
retical importance in digital signal processing. The SVD 
an ED transforms are applicable to many image processing 
problems such as image coding and restoration, data com- 
pression, and power spectrum analysis. They are defined 
following way. 

Let M = [Adk(i)]zL& be an arbitrary discrete nonsin- 
gular (N x N)-transform. We form two product M t M  and 
M M t ,  where “t” is the transpose symbol. Last matrices 
are symmetric and hence they have eigen-decompositions: 
M M t  = VAVt, M t M  = WAW+, where A := 
diag(X0, XI,. . . , X N - ~ }  and +- denote the Hermitian con- 
jugate. Then, i t  is well known that we can express M as the 
singular value decomposition M = VDW+, where 

V w 

are matrices of eigen-vectors of M M t  and M t M  trans- 
forms, respectively, and D := 6. If ad, . . . , a ~ - l  are an 
arbitrary real numbers then 

is called the multi-parametric fractional M-transform. If 
ai = a, Vz = 0,1 , .  . . , N - 1 then this transform is called 
fractional M-transform. 

In 1937, Gondon wrote a paper called ”Immersion of 
the Fourier transform in a continuous group of functional 
transformation” [2]. In 1961, Bargmann extended the frac- 
tional Fourier transform in his paper [I], in which he gave 
definition of the fractional Fourier transfonn, one based 
on Hermite polynomials as an integral transformation. If 
H,(&t) is a Hermite polynomial of order 7% then func- 
tions 

2114 

m !P,(t) = - H, (f i t)  exp( - 7 2 )  (2) 

for R. = 0, 1,2, . . . are eigen-functions of the Fourier trans- 
form 

+CO 

~ [ q , ( t ) l  = 1 q n ( t ) e 2 G j t T c i t  = An*n(t) ,  

with A, .= in being the eigen-value corresponding to the 
nth eigen-function. They form an orthogonal set of func- 
tions on the interval (-m, 03) with respect to weight func- 
tion eatZ : 
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According to Bargmann the fractional Fourier transform 
FR is defined through its the eigen-functions by 

where Fa (U, t )  is the kernel of the fractional Fourier trans- 
form. Obviously, a functions 9,(t) are eigen-functions 
of the fractional Fourier transform Fa[qn(t)] = X;Qn(t) 
corresponding to the nth eigen-values A:, n = 0,1 ,2 ,  ... 
Of course for a = 1 P(u, t )  = elwt .  

In 1980, Namias reinvented the fractional Fourier trans- 
form again in his paper [17]. This approach was ex- 
tended by McBride and Kerr [16]. The fractional Fourier 
transform was restricted to pure mathematical purposes. 
Very few publications appeared. Then Mendlovic and 
Ozaktas introduced the fractional Fourier transform into 
the field of optics [IS] in 1993: Afterwards, Lohmann 
[ 151 reinvented the fractional Fourier transform based on 
the Wigner-distribution function and opened the fractional 
Fourier transform to bulk-optics applications. In the series 
of papers [10],[19]-[22] authors developed the fast algo- 
rithms for a wide class of classical fractional transforms, 

In this paper, we introduce the classical and quan- 
tum fractional Haar-Wavelet transforms and develop cor- 
responding fast classical and quantum algorithms. 

2. Classical Haar-Wavelet transforms 

The Haar-Wavelet transform can be defined from the 
Haar functions and has the following factorization [9] :  

where 32 = a [ -: ] is the Walsh (2 x 2)- 

transform, where IT2n is the perfect shuffle permutation 
matrix [5].  Classical description of IT2n can be given 
by describing its effect on a given vector. If v = 
(vo, V I ,  . . . , U Z ~  - 2 ,  ~ 2 %  - 1 )  is a 2"D vector, then the vector 
w = ITznv is obtained by splitting v in half and the shuf- 
fling the top and bottom halves of the deck. Altematively, a 
description of the matrix IT2n , in terms of its elements IT,, 

for i ,  j = 0 ,1 , .  . . , 2n - 1,. can be given as 

ITij = { and i is odd, 

The short description of IT2n  can be given by the 

1, 

0, otherwise. 

if j = i / 2  and iis even, or if j = + 2n-' 

(4) 

left cyclic bit-shift of i-indexes u(in-l ,in -*,..., l l , z o  . .  

IIp(in-l,i,-z , . . . ,  il,io) = (i0,in-l,in-2 , . . . ,  i l ) .  
Note, that Hin performs the right cyclic bit-shift operation, 
i.e. E j n ( i n - l , i n - 2 , .  . . , i l , i o )  = . . , i l , i o , i , - l ) .  

The perfect shuffle permutation matrix IT,= has the fol- 
lowing factorization [5]: 

n 

1 ~ 2 n  = I ' I ( I ~ = - <  ~4 8 12i-21, 
i=2  

where IT4 is the "bit swap" operator, i.e., IT4(il,io) := 

There are two families of generalized Haar transforms 
[7]-[14]. The first family (discrete controlled) has the fol- 
lowing form: 

(io, id. 

HW;? x b  x , ,  ., kn ) _- . - 

where the set of numbers ( I C l ,  I C 2 ,  . . . , IC,) marks (and con- 
trols) the generalized Haar transforms, moreover, 0 < k 1 < 
0 ,  0 5 IC2 5 1, . . .  , 0 5 IC, 5 n - 1. In particu- 
lar, H$?o'..'xo) = H p  is the standard Haar transform and 

= W2n is the Walsh transform. 
The second family (discrete and continuous controlled) 

contains the multi-parametric Haar-Wavelet transforms of 
the following form: 

*;g I,. . , 2 1 2 -  1 ) 

. Obviously, I cosp sincp 
s i n p  -cosp where CS2 (vi) := 

For CS2 (9) we have the following eigen-decomposition: 

cos 5 sin 

-sin: cos: 

[ s i n p  -cosp sincp 1 = 

1 cos$ - s i n $  

-11 [sin: cos: j = 
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2. The 2n-parametric fractional Walsh transform with a 
non-separable diagonal matrix 

, a 2 n - - I )  := 

(1 8) 
where Dzn (ao, a l ,  . . . Q p n - 1 )  is a diagonal (2n  x 2")- 
matrix. 

4 Quantum fractional Haar-Wavelet trans- 
form 

. All operations in quantum computation are realized by 
means of transformations on the QU-BIT'S contained in a 
quantum register. The possible transformations a quantum 
computer can carry out are the elements of unitary group 
u(c~") .  A quantum logic gate is an elementary quantum 
computing device which performs a fixed unitary transfor- 
mation on selected QU-BIT'S in a fixed period of time. A 
transformation gate takes an input quantum state and pro- 
duces a modified output quantum state. The gates have the 
same number of inputs as outputs, and a gate of n inputs 
carries a unitary transformation of the group U ( C  '*), i.e., a 
generalized rotation in the Hilbert space C 2 " .  To study the 
complexity of performing unitary transformations on QU- 
2"REG, we introduce two types of quantum logic gates 141- 
[61,[231: 

Local unitary operations on k-th QU-BIT are matrices 
of the form := I,,-, I53 U2 @3 I,,-,, where U2 is an 
element of the unitary group U ( C 2 )  of (2  x 2)matrices. 
For these operations we have 

= 141) @ . . . @ [U~IY,)] Q9 I . . . QD Is,). (19) 

For any unitary [2n-k x 2n-k]-transformation - U z n - k  

we define the n-BIT transformation by 
- 

1 2 n - z n - k  @ U 2 n - k .  (20) 

This operator - is called the (n ) - con t ro l l ed  U2n -operator, 

where acts as identity transforms in the subspace 
and as Uzn-k in the second subspace C 2 k ,  if -2" - k 

ql1 q 2 , .  . . q k  = 1 and y k f l , .  . . , yn # 0. Here C2" = 
tB C 2 k .  In particular, if U 2 , , - k  is the tensor prod- - 2 n - k  

uct of n-k (2~2)-matrices I j 2 n - k  := U2,k+l @ U2,k+2 @ 
. . . @  Uz,,,, then 

- 
I,k 

[ ~ 2 , k + l  H . . .  ~9 ~ 2 > n  12- x 

x [ I Y ~ )  @ . . ,153 I q k )  QD ~ q k - t l )  @ . I .  @ ~ q n ) ]  = 
- 

141)@. ' .@IYk)@ [u;:;+llqk+l)] 63.. .@ [ U 2 l q n ) ] .  (21) 

If U p - k  := u,:!, = Iz j -1  @ U2 @ I 2 n - k - j ,  then 
- 
l h  

.Nlqk+j)B.. .@lqn)] = 
- 

= ~ q i )  153.. . ~9 [~;~~lqt+j)] 69.. . Iqn)- (22) 

For any diagonal unitary (2 x 2)-transformation 
Df1 I .  I . x t " -  1 20) we define the (2n x 2n)-transformation by 

Df: ,.'-,t"-l,o)- Dan e z j r r a ( t l ,  . . , t , - 1 , 0 ~  ejTa(tl*...%tn-l,ly = - (  
(tl .... >t" -1 ,O) 

This operator is called the (tl , . . . , tn-l ,  O)-controlled op- 
erator. Obviously, 

= I ( t l  (...( t n - l , O )  CB D2 @ I(& ,..., L - 1 , O )  (23) 

(JD(t; >..I, tn-1,O) - - 

I 1  

= n... [I( t l  ,..,, tn-l ,O) @DF2"~~'tn-1xo) @I6 ,..., ,O)] 
t1=0 tn - l=O 

We shall use a standard graphical notation for quantum 
circuits. [4]-[6],[23] In this notation the tensor structure of 
the Hilbert space C2" = C2 @ C2 @3 . . . I53 C2 is reflected 
by drawing 72 parallel lines (=quantum wires) each of which 
represents one tensor component C2. A box sitting just on 
one wire denotes a local transformation U$? whereas the 

(-)-controlled U,';kk-gate occupies all n wires: k for the 
control and 72 - k for the transformation (see Fig. I ) .  

The quantum nelwork (gate array)is a quantum comput- 
ing device consisting of quantum logic gates whose compu- 
tational steps are synchronised in time. The quantum net- 
work is the natural quantum generalization of the acyclic 
combinatorial logic circuits studied in conventional compu- 
tational complexity theory. The output of some of the gates 
are connected by wires to the input of others and they inter- 
connected without fanout or feedback by quantum wires. A 
quantum computer will be viewed here as a quantum net- 
work (or a family of quantum networks). Quantum conpi- 
tation is defined as unitary evoiution of the network which 
takes its initial state "input" into some final state "output". 

In order to realize quantum fast fractional Haar-Wavelet 
transforms, we introduce 

(24) 

- 
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input “time” quantum register 

output “jrequency ” quantum register 

According to (19), (20) we can introduce quantum counter- 
parts of transforms (12), (14), (1  5 )  and (1 8) 

In the language of quantum circuits, these transforms are 
presented in Fig. 2 and Fig. 3, respectively. 
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Figure 1. Quantum gates for a) U:!), b) (-)-controlled Ui;‘i,,-operator, c) [U:,’:+,, €3 . . ’ € 3  U q  and 

d) QD!:’’’’ ”“’, respectively 

- 
Figure 3. Quantum fast 2n-parametric Haar-Wavelet transform e R W t n ,  - if [ U Z ] ~ ” ’  

or left QVz. (right Q)/Yzn ) eigen-transforms, if [U2]g”’ = [Rot2 (f) ]. 

Figure 3. Quantum fast 2n-parametric Haar-Wavelet transform &RW$?’ff‘’ , n = 4  
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