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Almtract-It is well-known that the twiddle fpctor matrix of discrete 
FoPrier b.nsform can be d v d y  factorized into tbe CBSBding of the 
bi& butterfly *e matrices The paper will *ow that the matrix can be 
fvtler pnrtitioned into tbree mptrim Praaieang spccifrhg the input data, 
twiddle factor, aud m t p t  data sequences of the FlT. Moreowr, the 
equivalent nlationsbip of &se matkes is introduced. Thus, the 
equivalent relationship for a WietJ of the FFT algorithms can be obtained 
by equivalent matrix trsmbor". Furthermom, the paper shows that 
the maltidimmsionnl (M-0) FlW can be repreaented by the Same vector- 
matrix form au tbe 1-D FlT. Ia pddjfioo, the addnrSinp sequences of the 
M-D FFT is the subnet of the 1-D FFT. Tbaefore, the signsl flow graph of 
tbe I-DFliT can be used to desribe that of the M-D FlT and the 1-D 
addrcarhrp aequencea c.10 be anployd to impbent the M-D FlT. 
Finally, the t reme" r e s h  of the proPoad FFT approach simulated by 
the LH9WnH9324l are given. 
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I. I"R0DUCrrON 

In recent decades, the fast Fourier transform (pa) algorithm has 
been a driving force to the progress of digital signal processing. With 
the advance of the VLSI technology, the FFT algorithm has been pushed 
further in solving the multidimensional array signal processing in real- 
time. However. there is no efficient addressing method for 1-D to M-D 
FITS. Therefore, the paper will umquer this problem and propose a 
d e d  addressing for 1-D to M-D PPIs. All the M-D indexing can be 
simplified and implemented by 1-D indexing. The proposed approach 
has been implemented by many companies in their high-end systems 
such as radar, medical image recovery, etc. 

It is well-known that the oomputing efficiency of the FFT comes 
from the recursive faaorization of the twiddle factor matrix of the 
discrete Fourier transform @a) [l]. To derive the unified addressing 
for the 1-D to M-D FFT algorithm. we will factorize and represent twid- 
dle factor matrix into a novel maaix form. Then, all the matrices have 
their physical meaning in the practical implementation. Each stage of 
the FFT is represented by three cascaded matrices. The right permuta- 
tion matrix specifies the input interconnection and define the input data 
sequence. "be left permutation macrix specifies the output inmconnec- 
tion and define the output data sequence. The middle diagonal block 
matrix performs the butterfly operation and define the twiddle factor 
SeqUenCe. 

The equivalent relationship of these matrices are introduced in the 
papex. It is seen that one kind of the FPT algorithms can be derived 
from the other kind of the FFT algorithm through the equivalent 
transformation of the matrices. For example, the in-place bit-reverse 
inputs and linear outputs (BIiLO) Pa can be derived from the in-place 
linear inputs and bit-reverse outputs ( W O )  FFT and vice versa For 
definiteness, the paper discusses the decimation-in-time (DIT) FFT only. 
Essentially. all the results extend to the decimation-in-frequency @IF9 
FFT in a straightforward manner. 

From the novel vector-matrix representation, we can also derive the 
equivalent relationship between 1-D and M-D FFTs by employing the 
equivalent transformation of the matrices. Therefore, it can be obtained 
that the signal flow graph (SFG) structure of the I-D FFT can be used to 
represent that of the M-D FFT regardless of the dimension if the total 
number of elements is the same. The paper only discusses the radix-2 
FFT. Amally. the proposed approach can be extended to an arbitrary 
mixed radii FFT f2.31 

The unified indexing for I-D to M-D FFT algorithms has been 
implemented in the array processor chip set LH9124LH9320 developed 
by Sharp Micmelectronics Techuology. It can be seen from the chip set 
implementation that the computing time of the FIT is dependent on the 
total numbex of data in the array and is independent of the dimension of 
the FFT. Thus, both 256 by 256 2-D complex FFT and 64K 1-D com- 
plex FFT can be finished within 6.56 milliseconds. 
C-7803-1254-6/9303.00 8 1993 IEEE 742 

bh(O) 0 0 
0 bh(1) 0 

(6) 

0 0 h t ( N n - 1 )  

JI. 1-D BIT-REVERSE INPUT AND LINaAR OUTPLW FFT 

The DFT of an N - p o i n t  sequence {x(n)} is defined by 
N-l 

X ( k )  - E x ( n )  W,$ for 0 i k < N-1 and Wk - e-znj" (1) 
"4 

and its parallel form can be. represented by the vector-matrix equation as 
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The function I n r ( x )  denotes the integer part of the real number x. P,, 
specifies the interconnection between inputs and butterfly modules and is 
an N by N permutation matrix with its elements defined as 



where Mod(x),  denotes the modulo operation on the number x with 
modulo length y and is defined as 

Mod(x), - x - fnr(.%/y) * y . 
Similarly, pa specifies the interconnection between outputs and butterfly 
modules with its elements defined as 

(9) 
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The bit-revme matrix is also an N by N permutation matrix with its ele 
m a t  defined as 

(1 1) 

where br(m), denotes the bit-reverse operation on the index m with the 
number of bits s as follows: 

1 f o r n  -br (m) .  
P , ( n m ) -  {o M&m& 

br(m), - br(m,-lm,-z . . . mlm& - mdnl . . . m,-2m.-l . (12) 

b1,(0) 0 . . 0 
0 b1,(1) . . 0 
. . (16) 
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IV. EQUIVALENCE. OF F'FT ALGOIUTHMS BY MATRIX 'TRANSFORMATION 

The previcus two sections have discussed that each stage of BVLO 
and LI/BO FFT algorithm can be represented by three cascaded 
matrices. In software or hardware realization of the ET. these manices 
can represent input, output, and twiddle factor addressing sequences. In 
this section, we will show some equivalent relationship of these 
matrices. Through these equivalent algorithms, it can be seen that one 
kind of the FFT structure can be derived from the other kind of the FFT 
structure. After transformation, the new three cascaded matrices also 
denote the three addressing sequences for the stage of the WI'. Section 
VI and W employ these equivalent relationship to the M-D FPT. Some 
salient results can be obtained such as the unified 1-D WI' addressing 
sequences to implement the M-D FlT. 

The following will list the theorems that describe the equivalent 
relationship of the input data, output data, bit-revene, and twiddle factor 
marrices. The detailed proof can be found in [4]. 
Theorem 1 : (input Interconnection Operation) 

f,,,,,+,+, -f,, * P,, for 1 i i i s  and 1 i j Ls (18) 
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where nv, and mc denote the twiddle factor matrices for the row DFT 
and d u m u  DFT, respectively. r, is the i-th row of the input array and 
X, is the j-th column of the output array. set the row length N,-2'1. 
column length N p Z a 2 ,  and total elements N-N1*NZ. The transpose matrix 
P, is employed to transform the 2-D array from row-major order to 
columnmajor order and is also a permutation matrix expressed as 

Pr Pr,l+i) and PF1 Pi(rl+i) . (31) 

VI. 2-D LINEAR INPUT AND BIT-REVERSE OUTPUT FFT 

The veuor-matrix form for the 2-D LIB0 FFT implementation of 
(30) can be represented by 

where X, is the i-th column of the 2-D bit-reverse output array. rfft 
and cffr can be represented by (13) with length NI and N 2 .  respectively. 
It can be derived that the N2 r f f r s  can be implemented by the first s1 

stages of the N-point 1-D m and the NI cffts by the first s2 stages of 
the N-point 1-D FFT. Thus, (32) yields 

(ybc FGl(BL(s3) * FGz(BL(sr1)) * . ' .  * FG.JBL(1)) * PI 

* FGl(BL(sl)) * FGz(BL(s1-1)) * . . . * FGs1(BL(1)) * gT (33) 

where & is the N-point output vector and G~ is the N-point input vector 
shown in (32). Combining the transpose matrix pT with the row FFTs 
and using Theorems 1, 2. and 3. (33) can be transformed into a new 
fonn of the 2-D FIT structure 

& -FGl(BL(s2)) * FGZ(BL(s2-1)) * . . . * FG,JBL(l)) 

* FGz2+~(BLbJ) * FG.2+2(8L(~1-1)) * . ' ' * FGS1+,,1(BL(1)) * L (3) 

where is an N-point vector in the linear column-major order of the 
input array. 

Comparing (34) with (13) and setting s-sI+s2. we can see that the 
NI by N2 2-D PPT has the same interconnection structure as the N-point 
1-D FIT. It implies they can have the same SFG structure. Fig. 1 
shows the SFG structure of the traditional rowalumn 4 by 4 2-D 
LI/BO FFT implementation Fig. 2 shows the LIE30 SFG structure of 
the 4 by 4 mapped 2-D FFT and Idpoint 1-D FFT. The inputs, out- 
puts, and twiddle factors are indicated upper for the 2-D case and lower 
for the 1-D case. The index "i" shown in the figure denotes the twiddle 
factor w\6. It can be seen that the twiddle factor matrices are the same 
for the k-th stage of the row FFT, column FPT, and 1-D FIT. The 
twiddle factor addressing sequence can be obtained from (17). The input 
and output interconneCtions are the same for the 1-D and 2-D FFTs with 
the same number of points and the addressing sequences can be obtained 
from (8) and (10). 

VII. 2-D BIT-REVWSE INPUT AND UNEiAR OUTPIJT m 
The vector-matrix form of the BI/LO 2-D FFT can be derived in 

the similar way as that of the LyBO 2-D FFT. If the TW sub r and TW 
sub c of (30) are implemented by (4), then (30) can be transfonned into 
the following form 

& FG,2(Bf(SJ) * FG,2-l(BI(~z-l)) * ' ' . * FGl(BI(1)) * PT 

* FG,I(Bf(sJ) * FGsl-~(B/(~~-l)) * . . * FGI(Bf(1)) * d, (35) 

where & is an N-point vector in the column-major order of the linear 
output array and & is an N-point vector in the row-major order of the 
bit-reverse input array. Combining the transpose matrix P, with the 
column FFTs and using 'Iheorem 1. 2. and 3. (35) can become 

&r-FGr lCrJBI(~z ) )  * FG,l+,2-i(Bl(srl)) * . . . * FGJI+tW(1)) 

* FG,,(Bl(sJ) * FG,l-l(Bf(sl-l)) * . . . * FGl(BI(1)) * 2, (36) 

where &.. is an N -point vector in the row-major order of the linear output 
array. As the U/BO case by comparing (36) with (4). the NI by N 2  2-D 
m has the same interconnection structure as the N-point 1-D FFT. 
Moreover, the buaerfly operation matrices are the same for the k-th stage 
of the row Pa, column Pa, and I-D €FT. Fig. 3 shows the SPG 
Structure of the traditional row-column 4 by 4 2-D BVLO FFT imple- 
mentation. Fig. 4 shows the LIB0 SFG structure of the 4 by 4 mapped 
2-D FFT and 16-point 1-D FFT. 

VIE &GORlTHMS SIMULATED BY LH9124U9320 

The proposed FFT algorithms with unified indexing have been 
implemented in the SMT's array processing chip set [2]. The LH9124 
[51 is an execution unit with radix-2, radix-4, and radix-16 butterfiies 
built in the highly pipelined data path. The radix-2, radix-4. and radix- 
16 butterllies can be implemented within 2, 4, and 16 cycles, respec- 
tively. The LH9320 [6] is a programmable address generator to provide 
the address patterns required by the LH9124. The unified indexing 
equations (71, (8). (IO), (111, and (17) for the input/output data, twiddle 
factor, and bit-reverse sequences are built in the instruction set of the 
LH9320. The total number of machine cydes for an FPT implementa- 
tion is calculated as 

cycles - C (N, + PO,) (37) 

where N, and PO, denote the data block size and the pipelined overhead 
of the i-th instruction, respectively. s is the number of instructions or 
butterfly stages. 

TABLE I compares the performance of the 64K-point I-D FTT 
with that of the 256 by 256 2-D FFT. It can be seen that both have the 
same performance because the data block size, the number of instruc- 
tions, and the instruction overhead are all the same. It should be noted 
by the radix-2 bunerAy instruction for the 2-D FPT operations that only 
16 instructions are required for the proposed new 2-D m implementa- 
tion instead of 40% instructions required by the traditional 2-D FTT 
implementation. Therefore, the instruction pipelined overhead can be 
greatly reduced. With 25 nanoseconds machine cycle time, the 256 by 
256 2-D complex FPT can be finished within 6.56 milliseconds. 

8-1 

IX. CONCLUSIONS 

From the novel veaor-matrix representation of the FFT algorithms, 
the paper derives the unified addressing for the 1-D and 2-D FFTs. 
Essentially, all the results extend to more general multidimensional FITS 
in a suaightfoward manner. Table 2 shows the addressing equations 
implemented by FFT algorithms. (8) can be used as the input data 
addressing for 1-D to M-D F a s  and for both BULO and W O  ms. 
From the equivalent relationship of Theorem 3, the output data address- 
ing can also be implemented by (8). It can be found in [7] that the M-D 
bit-reverse addressing can be implemented by the 1-D bit-reverse 
addressing described by (11). The twiddle factor sequences for the 
BWO FFTs are addrased by (7) and those for the LIDO FITS are 
addressed by (17). 

There are several advantages for the proposed M-D FpT 
approaches. First, the program d i n g  is simplified and the instruction 
overhead is reduced as discussed in Section VIII. Second, no data 
matrix uansposition operations are required because the operations are 
combined with the input and output data transfer of the b u W y  stage. 
Third. the chip architecture for the FFT addressing with arbitrary dmen- 
sion is easy to define because the required addressing patterns are 
reduced and only 1-D indexing is necessary. The fourth advantage is 
especially for the block floating-point arithmetic., There is no scaling 
problem by the proposed approach because the whole block data instead 
of subblock data are calculated in each b u W y  stage [2]. 

The proposed unified indexing can also be applied to an arbitrary 
mixed radix algorithm l3.41. The unified indexing concept for the 
M-D FTT implementation automatically solves the scaling problem for 
the block floating-point arithmetic. The concept can be extended to 
derive the efficient general DSP algorithms for block floating-point arith- 
metic such as IIR filtering, adaptive filtering, polyphase lilter bank, and 
multi-channel DSP [81. 
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Fig. 3. Signal flow graph of Uaditional BYLO 4 by 4 2-D FPT 
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