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Abstract – A method for optimization of polynomial expressions in terms of fixed polarities for 

discrete functions is presented. The method is based on the principle of extended dual polarity, which 
provides a simple way of ordering polarities to obtain an effective way of finding the optimal polarity. 
The method still implies exhaustive search, but it is an optimized search, which may be expressed in 
very simple rules. Experimental results illustrate the effectivity of the proposed method. 
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1. INTRODUCTION 
 
Polynomial expressions are a form of representations of discrete functions that provides for compact 
representations of large functions. Their definition and exploitation is derived from the classical engineering 
approach consisting of decomposition of complex systems into combinations of subsystems that are simpler 
or whose behavior is well documented. In the case of polynomial expressions, a given function is 
decomposed into a linear combination of some suitably selected complete sets of basis functions. In this 
case, dealing with function values of a given function f is replaced by dealing with coefficients for f assigned 
to the basis functions. Reducing the number of non-zero coefficients, usually denoted as optimization of the 
representation for  f,  reduces complexity of dealing with  f, and therefore, it is among the main goals in 
theory and practice of discrete functions. In attempting to derive polynomial expressions with minimum 
number of coefficients, a variety of different polynomial expressions have been defined in the literature, 
most of them for switching functions, i.e., binary valued functions of binary variables, see for example [27] 
and references given therein. However, many of these expressions are extended or generalized to multiple-
valued input binary-valued output (MVB) functions [3,9,25,26] and multiple-valued input multiple-valued 
output (MV) functions [4,6,8,16,20,21]. A brief review of these extensions is discussed in [19] where related 
references are provided. 
 
Polynomial expressions for binary functions and their generalizations to MVB and MV functions are defined 
in terms of different expansion rules with respect to their variables [28], which can be alternatively 
interpreted as choosing different sets of basis functions [29]. Within some of these classes of expressions, a 
further optimization can be performed by using literals of different polarity for variables, which leads to a 



variety of fixed- and mixed-polarity expressions [6,7,8]. This way of optimization of polynomial expressions 
can be interpreted as reordering and sifting of basis functions in terms of which the representations are 
defined. It can be applied, under an appropriate definition of negation, to both bit-level expressions, with 
whatever binary or MV digits  used in encoding values for variables, and word-level expressions, in which 
case variables take integer values. The chief problem in this approach is that given a function f, we do not 
know how to select a priori the polarity of variables to get the optimal polynomial expression in the number 
of non-zero coefficients count. Solutions are offered through heuristic algorithms [23,25] or brute force 
search methods yielding to the so-called polarity matrices [8]. Recall that a polarity matrix is a matrix whose 
rows are coefficients in all possible fixed polarity expressions for a given function f. 
 
In the first case, the efficiency of the method is assured by reducing the search space at the price of an 
increased number of coefficients. In the second case, advantage is taken of the recursive structure of polarity 
matrices, which structure originates in the definition of the polarity for variables. 
 
This observation applies generally, whatever may be the way of representing either binary, MVB or MV 
functions and sets of coefficients in their polynomial expressions, as tables or vectors, arrays of cubes, or 
relating them to paths in decision diagrams, etc.  
 
In this paper, we present a method to determine the optimal polynomial expressions of discrete functions for 
different polarities of variables. In the method discussed, it is assumed that a function is represented by a set 
of cubes, which are processed independently of each other. Therefore, the complexity of the method is 
determined by the number of cubes rather than the number of variables. This feature was the main 
motivation for selecting cubes as data structure to represent functions. However, the presented method can be 
easily adapted an performed over other data structures, as vectors or decision diagrams for instance.  
 
The presentation in the paper is given for MV functions as the most general class of considered functions 
with most of examples for quaternary functions. However, all the algorithms proposed can be equally applied 
to MVB and binary functions after specifying the corresponding parameters, as will be illustrated by the 
examples provided, below.  
 
1.1 Background work and Motivation  
 
Besides seeking for generality (up to  some extent), and the fact that there are phenomena naturally described 
by MVB and MV functions, another reason to study the optimization of polynomial expressions for MV 
functions is that these functions can be efficiently exploited in solving optimization problems for binary 
switching functions that are prevalent in nowadays practice.  Some of these applications are briefly discussed 
in [9]. For example, a well-known approach to represent a multiple-output Boolean function is to treat its 
output part as a single multiple-valued variable and convert it to a single-output characteristic function. Such 
an approach is used in ESPRESSO-MV [22] and in MVSIS [10]. Other applications of multiple-valued logic 
include design of PLAs with input decoders [24], optimization of finite state machines [1], [28], testing [11] 
and verification [5]. Different representations for multiple-valued input two-valued output functions are 
defined including a generalization of disjunctive normal form or Sum-of-product (SOP) expressions and 
Kronecker and Pseudo-Kronecker expressions for binary input binary output switching functions [26,27]. 
These expressions can be uniformly considered as linear combinations of basis functions over GF(2). The 
basis functions used in these expressions are expressible as products of multiple-valued (MV) literals. 
Minimization of these expressions is crucial in practical applications [25]. 
 



It is documented in the recent literature that AND-EXOR realizations may have some advantages over AND-
OR expressions, such as easy  testability [2,23], low cost for arithmetic and symmetric functions in the 
number of product terms, simple algorithms for detection of symmetric variables [32], Boolean matching 
[33], etc. Fixed Polarity Reed-Muller expressions (FPRMs) are an important class of AND-EXOR 
expressions. For an n-variable Boolean function there are n2  FPRMs. The FPRM with the minimal number 
of products is taken as the optimal FPRM. For some classes of functions used in practice, the optimal 
FPRMs require fewer products than sum-of-product expressions [28].  
 
 Compared to binary switching functions, multiple-valued functions (MV) offer more compact 
representation of the same amount of information at the price of more complex manipulations with such 
expressions and the complexity of their hardware realizations. Galois field (GF) expressions may be 
considered as a generalization of Reed-Muller (RM) expressions to the MV case [19]. Optimization of GF-
expressions can be studied and solved in a way similar to that used for RM-expressions. As in FPRM, 
different polarity GF-expressions of MV functions can be distinguished due to possibility to select different 
polarities for MV variables. We denote these expressions as Fixed polarity GF-expressions (FPGF). As in the 
binary case, the selection of polarity of variables corresponds to particular permutations of the values of the 
variables (see discussions below and Table 4). 
  
The relationship between two FPRMs for the polarities that are dual (see Definition 5 below) in the sense of 
binary logic complements is used in [31] for construction of a method for FPRM optimization. In [13], the 
notion of extended dual polarity has been introduced, and a method for optimization of Kronecker 
expressions was constructed based on that. 

 
In this paper, the notion of dual polarity is extended to discrete functions defined as mappings 
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 where iG  and iL  are non-empty sets. In this case, unary functions on Gi will play the role 

of generalized complements. The choice { }1,0== ii LG and { }1,...,1,0 −== qLG ii  cover the case of the 
binary and MV logic functions discussed in detail and used as examples in this paper. 

 
We derive relationships between two fixed polarity polynomial expressions for extended dual polarities. 

Based on these relationships, a new method for optimization of polynomial expressions is proposed. The 
algorithm starts from a given, not necessarily zero, polarity polynomial expression of the given function and 
calculates all FPPEs using a route in which each two neighbors polarities are extended dual polarities. This 
route is called the extended dual polarity route.  

It should be recalled, that the problem of finding the optimal polarity for a polynomial expression is NP-
complete, i.e. all algorithms that solve the problem have an exponential complexity with respect to the 
number of variables. The algorithm proposed in this paper is an exhaustive-search algorithm, but conversion 
from one FPPE into another one is carried out by using one–digit checking. Due to that, and the simplicity of 
the related processing of cubes, this algorithm is rather effective as confirmed by experimental results. It is 
important to notice that the algorithm proposed expresses high possibilities for parallelization since cubes 
defining a function are processed separately from each other. In this case, it is suitable for hardware 
realizations. 

  
The proposed method is general in the sense that all existing algorithms exploiting duality property in 

optimization (of any kind) of polynomial expressions like fixed polarity Reed-Muller expressions of Boolean 
functions [31], Kronecker expressions [13], polynomial expressions defined on GF(4) [14], arithmetic 
expressions [15, 17] can be derived from the general method presented here.  



2. BASIC DEFINITIONS 
 
As indicated above, the presentation will be given for multiple-valued functions. This section gives some 
basic definitions and notions from the theory of fixed polarity representation of MV functions used as 
examples in the paper. 
 
2.1 Polynomial expressions 
 
Definition 1: (Polynomial expressions (PE)) 
Each n-variable q-valued function { } { }1,...,1,01,...,1,0: −→− qqf n  given by the truth-vector 

T
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where ⊗  denotes the Kronecker product, and the basic transform matrix T(1) is defined as the inverse of 
X(1), assuming that the symbolic notation for columns of X(1) is replaced by the corresponding truth-
vectors. Addition and multiplication (and, hence, exponentiation) are defined in the used algebraic structure. 
Mostly, this is the structure of vector spaces over GF(2) or GF(q), however, it is possible to use also other 
algebraic structures, as for instance these considered in [4], [34], permitting definition of polarity of 
variables.  
 
 As examples of polynomial expressions, Reed-Muller expressions, Kronecker expressions, Galois field 
expressions over GF(4) and arithmetic expressions are defined in the Appendix. Here, we give a numeric 
example for functions in GF(4).  

 

Example 1: The GF(4) expression of a two-variable four-valued function f, (given) defined by the truth-
vector [ ]T1,0,0,1,2,2,2,2,1,1,0,3,1,1,3,0=F  is given by 
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The coefficients are elements of the corresponding FPGF spectrum, which is therefore given by 

]0,0,1,0,3,3,0,3,3,0,2,0,3,2,2,0[=S . The zero elements in the spectrum correspond to the missing terms  

in the expansion. Notice that there are 12 non-zero elements in the truth-vector and 9 in the above 

polynomial expansion for f.  

Recall that the operations (addition (+) and multiplication (• )) are in GF(4), defined as follows: 



Addition in GF(4) 
+ 0 1 2 3 
0 0 1 2 3 
1 1 0 3 2 
2 2 3 0 1 
3 3 2 1 0 

 
Multiplication in GF(4) 

•  0 1 2 3 
0 0 0 0 0 
1 0 1 2 3 
2 0 2 3 1 
3 0 3 1 2 

 
The polarity of variables )4(GFxi ∈ ,  2,1=i , is defined as 1+= xx . 
 
 
2.2 Optimization of polynomial expressions 
 
Optimization of polynomial expression, viewed as the determination of an expression with the minimum 
number of non-zero coefficients (i.e. the number of terms), can be done by introducing different polarities for 
the variables. The representations thus produced are so-called fixed polarity polynomial expressions (FPPE) 
where each variable ix  appears as either the positive or the negative literal. i.e., as uncomplemented or 
complemented, but not both at the same time.  
 
Definition 2: (Complement) 
For a q-valued variable x, there are q-1 complements xc  given as  

1,...,1  , −=⊕= qccxxc . 
xc  is usually denoted as a variable x with a polarity c. (With this notation, the complement used in Example 

1 corresponds to 1=c , and can be written as x1  ) 
 

Polarity vector P is introduced to denote the polarity of variables and correspondingly the polarity of a 
representation [35]. 
 
Definition 3: (Polarity vector) 
For an n-variable q-valued function f, the polarity vector ( ) { }1,,1,0  ,,...,1 −∈= qppp in LP  is a vector of 
length n, whose elements specify the polarity of variables in FPPE for an n-variable function f, i.e., jpi =  

shows that to the i-th variable the j-th complement is assigned and written as i
j x . 

 
Fixed polarity polynomial expressions (FPPEs) are uniquely characterized by specifying decomposition rules 
assigned to variables i.e. by specifying the polarity vectors. 
 
Definition 4: (Fixed polarity expressions) 
Each n-variable q-valued function f given by the truth-vector T

qnff ],,[ 10 −
= KF  can be represented by the 

following FPPE if the polarity is ),,( 1 nppp L= , 
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Therefore, FPPEs can be given by the vector of coefficients, usually denoted as spectrum, >< pS  defined as 

FTS )(npp ><>< = . 

Example 2: The fixed polarity GF(4) (FPGF) expression of a two-variable four-valued function f, discussed 
in Example 1, for a polarity )3,2(=p  is given by 
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The corresponding FPGF spectrum is given by ]0,0,1,3,3,1,3,0,3,2,0,0,0,0,0,2[3,2 =><S . Notice that >< 3,2S  

has 8 zero-coefficients, meanwhile >< 1,2S  has only 6. 

 
 
3. EXTENDED DUAL POLARITY 
 
In minimization of FPPE with respect to the number of non-zero coefficients count, it appears convenient to 
exploit the notion of the dual polarity [13], the extended dual polarity, and the related dual polarity and the 
extended dual polarity vectors. The term dual polarity is used in the Boolean domain to denote two polarity 
vectors which differ in only one bit. 

Definition 5: (Dual polarity) 
In the case of binary functions, for a given polarity ),,,,,,( 111 niii pppppp KK +−= , { })1,0( ∈ip  the 
polarity ),,,,,,(' 111 niii pppppp KK +−=  is the dual polarity. 

Example 3: Dual polarities for the polarity )0,1(=p  are the polarities (0,0) and  (1,1). 

In the multiple-valued domain, the term dual polarity will be called the extended dual polarity [13].  

Definition 6: (Extended dual polarity) 
For a given polarity ),,,,,,( 111 niii pppppp KK +−= , { })1,...,1,0( −∈ qpi  the 
polarity )',,',',',,'(' 111 niii pppppp KK +−=  is the extended dual polarity iff ijpp jj ≠=   ,'  and 

ii pp ≠' . 

 



Example 4: For four-valued functions the extended dual polarities for the polarity )0,1(=p  are the 
polarities (0,0), (2,0), (3,0) , (1,1), (1,2), and (1,3). 
 
 
3.1 Dual polarity route 

 
The number of polarity vectors characterizing all possible FPPEs for an n-variable q-valued function is nq . 
It is possible to order these nq polarities such that each two successive polarities are the extended dual 
polarities. We denote this order as the extended dual polarity route. Traversing of a q-valued n-dimensional 
hypercube can generate one of many possible extended dual polarity routes. Table 1 gives the number of 
dual polarity routes for different values of q and n. 
 

Table 1: Number of dual polarity routes 
q n No polarities No routes 
2 
2 
2 
2 

1 
2 
3 
4 

2 
4 
8 
16 

2 
8 

144 
91392

3 
3 

1 
2 

3 
9 

6 
1512

4 
4 

1 
2 

4 
16 

24 
22394880

 
Example 5: Two different dual polarity routes for q=4 and n=2 are given by the sequences of polarity 
vectors (00)-(01)-(02)-(03)-(13)-(12)-(11)-(10)-(20)-(21)-(22)-(23)-(33)-(32)-(31)-(30) and  
(00)-(01)-(11)-(10)-(20)-(21)-(22)-(12)-(02)-(03)-(13)-(23)-(33)-(32)-(31)-(30). 
These routes are shown in Figure 1. 
 
Example 6: An extended dual polarity route generated by using traversal of a four-valued three-dimensional 
hypercube is given by 

(000)—(001)—(002)—(003)—(013)—(012)—(011)—(010)—(020)—(021)—(022)—(023)—(033)—
(032)—(031)—(030)—(130)—(131)—(132)—(133)—(123)—(122)—(121)—(120)—(110)—(111)—
(112)—(113)—(103)—(102)—(101)—(100)—(200)—(201)—(202)—(203)—(213)—(212)—(211)—
(210)—(220)—(221)—(222)—(223)—(233)—(232)—(231)—(230)—(330)—(331)—(332)—(333)—
(323)—(322)—(321)—(320)—(310)—(311)—(312)—(313)—(303)—(302)—(301)—(300). 
 
 An extended dual polarity route can be constructed by using the recursive procedure route(level, 
direction) given in Figure 2 for the particular case q = 4. Extension to an arbitrary q is straightforward. 
Extended dual polarity route will be produced if the procedure is called with arguments equal 0, i.e., as 
route(0,0). 

 
4. RELATIONSHIPS BETWEEN DUAL POLARITY EXPRESSIONS 
 

Denote by S , ><gS , and ><hS the vectors of coefficients in FPPEs for the polarities zero, g, and h, 
respectively, assuming that g and h are  two distinct extended dual polarities. 



Therefore, the spectrum for zero polarity is  
  FTS )(n= , 
 and spectra for two different polarities g and h are 
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Figure 1: Dual polarity routes. 



Due to the Kronecker structure of the transform matrix )(nh><T   and the features of the Kronecker product 

(assuming consistent dimensions), the inverse transform matrix ( ) 1)( −>< nhT  is given as 
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where kI  is the identity matrix of order qk. 
 
  

void route(int level, int direction) 
{  
   if( direction == 0) 
   {  if(level == no_variable) 

    {  --  out new polarity vector h } 
    else 
    {  h[level] = 0; 
      route(level+1, 0); 
      h[level] = 1;  
      route(level+1, 1); 
      h[level] = 2; 
      route(level+1, 0);  
      h[level] = 3; 
      route(level+1, 1); 
    } 

   } 
   else 
   {  if(level == no_variable) 

    { -- out new polarity vector h } 
       else 
       {   h[level] = 3;  
          route(level+1, 0); 

        h[level] = 2;  
          route(level+1, 1); 
          h[level] = 1;  
          route(level+1, 0); 
          h[level] = 0;  
          route(level+1, 1);  
      } 
   } 
} 

 

Figure 2: Procedure route(). 



The matrix ><gS  is a nicely structured sparse matrix which expresses a property that we will exploit for the 
generation of a processing rule for transforming the coefficients of one polarity polynomial expression into 
the coefficients of another extended dual polarity polynomial expression for the given function, i.e. 
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The following example illustrates conversion of coefficients in the polynomial expansion for a given polarity 
into a required dual polarity for the most familiar binary case. In the case of MV functions that would be the 
extended dual polarity coefficients as it will be seen in further examples below. For simplicity of matrix 
notation, the example is given for binary valued functions. 
 
Example 7: Let a Boolean function f be given by the truth-vector [ ]T0110011101111100=F . The fixed 
polarity Reed-Muller (FPRM) expression of f for the polarity p=(0110) is given by the spectrum 

[ ]T10110010001111110110 =><S  while the FPRM expresion of f for the polarity p'=(0010) is given by the 

spectrum [ ]T10110001111111000010 =><S . Polarities p and p' are dual polarities, since they differ only in 
the second bit, and, therefore, 
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where 1I  and 2I  are the identity matrices of order 2 and 4, respectively. 
Therefore,  
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5. PROCESSING RULES 
 
A relationship between two extended dual FPPEs given by (2) will be the starting point for the derivation of 
a processing rule which should be applied to all the terms in FPPE for a given polarity to determine the FPPE 
for another extended dual polarity.  

Let n
ii

i mmmm 1
1

1 +
−=  be a term in the FPPE of a function f for the polarity 

),,,,( 111 niii ppppph LL +−= . The value of the coefficient in the FPPE for  f  for the term m is )(mh><S . 
 
The process assumes that non-zero terms of f are processed separately in determining FPPEs. Since 

processing means multiplication with the rows of the transform matrices, and a row may have several non-
zero entries, a given term m for a specified polarity p may produce few new terms in the FPPE of the 
function f for the extended dual polarity ),,',,( 111 niii pppppg LL +−=  depending on the values of ip  

and ip' . Thus, m generates new terms in ><gS representing coefficients in FPPE for f for the polarity g. 

The value of the extended dual FPPE on a newly generated term is given by )(mv h><S  where ν  strongly 
depends on the considered extended dual polarities g and h, which dependency can be conveniently 
expressed in matrix notation by a matrix ( )( ) 1' )1()1(

−><><= ii pp TTL . The rules to process terms in FPPE for 
the polarity h to determine new terms in the FPPE for the polarity g can be derived from the matrix L as 
stated in the following theorem formulated for the general case of q-valued functions. 

 
Theorem 1: Let a matrix L relating product terms in FPPEs for the polarities h and g be given as  
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The processing rules to generate new terms in FPPE for the polarity g from terms in FPPE for the polarity h 
are determined as follows: 
Recall that n
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1
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and use ktlv ,=  as the scaling factor in )(mv h><S  

Proof: Rewrite the equation (2) in the form 
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u, w ∈ {0, 1, … q-1} 
Consider contribution of a term ),,,,,,( 111 nii mmkmmm LL +−=  in ><hS  to ><gS . The non-zero 
coefficients in the m-th column of the matrix R are the elements with the decimal index  

1,,0    ),,,,,,,( 111 −== +− qtmmtmmd nii LLL . 

This means that the term m from ><hS contributes to terms in ><gS with the decimal index d. The value of 
contribution to these terms ><hvS , according to (4), is given as 

><><>< ⋅=⋅=⋅ h
kt

h
md

h lrv SSS ,, .   
End of the Proof. 
 

Example 8: The contribution of the term m=(0,3) in >< 2,1S , for the (1,2) polarity FPRM of function f given 
in Example 1 (the truth vector is F=[0,3,1,1,3,0,1,1,2,2,2,2,1,0,0,1]), to >< 1,1S , for the (1,1) polarity FPRM, is 
given by (3,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0) (see Figure 3). 
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Figure 3: Term contribution 
 
Above contributions of the term m are calculated by the following:  
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Therefore, the term m = (0 3) with value 3, contribute to the terms (0 0), (0 1) and (0 2) with values given as 
3 times the corresponding value from the fourth column in matrix L i.e.  3*1= 3,  3*2 = 1 and 3*3=2, 
respectively.  

Using the above theorem, it is possible to derive all the existing methods for optimization of polynomial 
expressions which exploit the dual polarity property as well as to produce new methods for determination of 
some new polynomial expressions.  
 
 
6. DUAL POLARITY BASED OPTIMIZATION ALGORITHM 
 
Since for an n-variable q-valued function f, there are qn possible FPPEs, in an exhaustive-search optimization 
algorithms all of nq  fixed polarity polynomial expressions should be calculated. Usually, the starting point 
in determination of each of nq  FPPEs is the truth-vector for f. In a class of algorithms which exploit dual 

polarity feature [2], [3], [4], again these nq  FPPEs are calculated, but the truth-vector is the starting point 
only for the first FPPE. Any other FPPE is calculated starting from an arbitrary FPPE. Figure 4 illustrates the 
way of traversing from one to another polarity in the classical approach and by exploiting the extended dual 
polarity. In classical approach all of nq  FPPEs are calculated from the truth vector (Figure 4-a). In dual-
polarity based approach only first FPPE is calculated from the truth vector while other FPPEs are calculated 
from the previously calculated dual-polarity FPPE (Figure 4-b) which reduce the computational complexity 
due to the features of the dual poarity route.  

a)

. . .

. . .

f

p=(0,0,...,0) p=(0,0,...,1) p=(0,0,...,0) p q q q=( -1, -1, ... , -1)

b)

f

p=(0,0,...,0) p=(0,0,...,1) p=(0,0,...,0) p q q q=( -1, -1, ... , -1)

 
Figure 4: Optimization algorithms: a) classic  b) dual-polarity based 



 
In Section 3 is explained how to construct an extended dual polarity route. The main idea of the proposed 
algorithm is that all nq  FPPE are constructed along the extended dual polarity route, i.e., each FPPE is 
calculated starting from an initial extended dual polarity FPPE. An open question is the determination of a 
processing rule for processing of terms from one FPPE to produce terms in another extended dual polarity 
FPPE. Theorem 1 gives the processing rule for arbitrary FPPEs. From this theorem, it follows that it is 
possible to calculate all FPPEs by using the method for transforming a given FPPE into the extended dual 
polarity FPPE along the route without repetitive calculations. Therefore, we can perform the optimization of 
FPPE, i.e., construction of all FPPEs and subsequent selection of the FPPE with the minimum number of 
non-zero coefficients, by using an effective exhaustive-search algorithm consisting of the following steps. 

 

1. Initialization: 
- Set the polarity vector p to )0,,0,0( L=p  
- Calculate the spectrum >< pS  
- Set minC  = the number of non-zero coefficients in >< pS  

2. Determine the next extended dual polarity p’, according to the recursive route. 

3. List all the terms for >< pS . 

4. For each term calculate the contribution to the spectrum >< 'pS by using the processing rule derived 
from Theorem 1.  

5. Delete terms whose value is equal to zero after summation of contributions of the processed terms.  
6. Calculate the total number of non-zero coefficients min'C .  

If  minmin' CC <   then  minmin 'CC = . 

7. Stop if all polarities have been treated. Otherwise go to Step 2. 
 

The algorithm, as formulated above, starts from the zero polarity FPPE, but it can start from any other 
polarity. The initial FPPE representing the input in the algorithm should be calculated from any specification 
of the given function (for instance, truth-vector, cubes, decision diagrams) by using any of the existing 
methods. Then, the terms in this initial FPPE should be specified by cubes which are the input in the 
algorithm.    

 
For instance, we may want to start from the FPPE for the zero polarity for a given function f , which may  

be calculated from the truth vector for f. For this task we can also use some known methods, for example, the 
tabular technique [5]. 
 It is interesting to notice that the algorithm proposed has high possibilities for parallelization. Each 
processor performs the method along a piece of the extended dual polarity route. The extended dual polarity 
route can be divided into z subroutes if the number of parallel processors is z. 
 
In what follows, the theory presented in this section will be illustrated by examples of Galois field GF(4) 
expressions. 
 
 



7. FIXED POLARITY GF(4) EXPRESSIONS 
 
In this section, we consider optimization of fixed polarity polynomial expressions of functions defined on 
GF(4) by using the extended dual polarity method. 
 
 The optimization of a GF(4) expression is possible by using different complements. There are three 
complements for a variable in GF(4) denoted by 3,2,1  , =ixi  and defined as 3,2,1  , =+= iixxi . In 
FPGFs, the use of complements for a variable requires permutation of columns in the basic GF(4) transform 
matrix corresponding to that variable. Table 2 shows complements and the corresponding basic transform 
matrices as well as their inverses that are used to define the operators for calculating coefficients in GF-
expressions. 
 

Table 2: Complements in GF(4) and basic transform matrices. 
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The following example illustrates GF(4) fixed polarity polynomial expressions. 

Example 9: The fixed polarity GF (FPGF) expression of a two-variable four-valued function f in Example 1 
for the polarity )1,2(=p  is given by 
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The coefficients are elements of the corresponding FPGF spectrum, which is therefore is given by 

]0,0,1,1,3,0,1,1,3,3,2,2,0,0,0,2[1,2 =><S . 

The FPGF of a four-valued function f can be represented by a set of four-valued (n+1)-tuples, consisting of 
terms and the corresponding function values on these terms. For simplicity, literals for variables in terms are 
replaced by their indices. A variable that is present in a product term in the i-th complemented form is 
replaced by i, and 0 replaces an absent variable. Therefore, the FPGF for the function f and the assumed 



polarity )1,2(=p  is represented by the following set of tuples where "–" separates the function value from 
the literals of variables 
 

{ }1-31  1;-30  ;3-23  ;121  1;-20  ;313  ;312  ;211  ;210  ;200 −−−−−− . 
 

Now by the example 10 we will show how method for optimization of GF(4) expressions [14] can be derived 
from our general method described in Section 6.  
 
Table 3 gives all possible matrices L for GF(4) expressions as shown in [3], while Table 4 shows the 
corresponding processing rules derived from these matrices. It is obvious that these processing rules are 
simple and, due to that, efficient in terms of time and space.  
 

Table 3: Matrix L for GF(4). 
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Example 10: Consider a two-variable four-valued function f given in Example 1. Let the GF(4) fixed 
polarity expression of f, for the polarity )1,2(=p  be represented by the spectrum 

[ ]T0,0,1,1,3,0,1,1,3,3,2,2,0,0,0,21,2 =><S . 
 
The extended dual polarities and the corresponding FPGFs are given in Table 5. 
Calculation procedures for determination of these extended dual polarity FPGF expressions are shown in 

Tables 6, and 7.  
 

 



Table 4: Processing rule for GF(4) expressions. 
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Table 5: Extended dual polarity GF(4) expressions. 

polarity spectrum 
20 
22 
23 
01 
11 
31 

(2000010332330100) 
(2000131310232100) 
(2000002303133100) 
(3113113333031100) 
(0223003322031100) 
(0230333300031100) 

 

Table 6: Polarity (21) to (20). 
polarity (21) terms New terms polarity (20) terms 

00 – 2 
10 – 2 
11 – 2 
12 – 3 
13 – 3 
20 – 1 
21 – 1 
23 – 3 
30 – 1 
31 – 1 

 

 
 

10 – 2 
10 – 3 

10 – 3; 11 – 3; 12 – 3 
 

20 – 1 
20 – 3; 21 – 3; 22 – 3 

 
30– 1  

00 – 2 
11 – 1 
13 – 3 
20 – 3 
21 – 2 
22 – 3 
23 – 3 
31 – 1 

 



 
Table 7: Polarity (21) to (22). 

polarity (21) terms new terms polarity (22) terms 
00 – 2 
10 – 2 
11 – 2 
12 – 3 
13 – 3 
20 – 1 
21 – 1 
23 – 3 
30 – 1 
31 – 1 

 
 

10 – 1 
10 – 1 

10 – 3; 11– 1; 12 – 2 
 

20 – 3 
20 – 3; 21 – 1; 22 – 2 

 
30 – 3 

 

00 –2 
10 – 1 
11 – 3 
12 – 1 
13 – 3 
20 – 1 
22 – 2 
23 – 3 
30 – 2 
31 – 1 

 
 
 
7.1 Efficiency of the method  
 
Features of the proposed method and its efficiency have been examined by a series of experiments the 
sample of which is presented in the Section 9. Experimental results confirmed the efficiency of the method 
compared to the related methods. For calculation of all FPRMs based on the truth vector, the inverse 
transform matrix and its complemented forms are used. The number of zero coefficients in these matrices for 
GF(4) is 3 (see Table 2). On the other side, for the method proposed in this paper, all FPRMS are calculated 
but calculations are performed by using L matrices (for GF(4) see Table 3). The number of zero coefficients 
in these matrices is 7. Increasing of number of zero coefficients in processing matrices leads to the reduction 
in the number of operations required for calculation of FPRMs.  
 
 
8. PARTICULAR CASES 
 
In this section, in the manner used in the previous section, we will show that methods for generation fixed-
polarity Kronecker expressions [13], fixed polarity Reed-Muller expressions [31] as well as fixed polarity 
arithmetic expressions [15] can be derived as particular cases of the extended dual polarity based 
optimization algorithm described in Section 6. 
 
 
8.1 Kronecker expressions for binary valued functions 

In [13] is proposed a method for optimization of Kronecker expressions. This method can be considered as a 
particular case of the present method as can be seen from Table 8 shows processing rules for all possible 
cases for Kronecker expressions of Boolean functions [2] derived by the specification of parameters in the 
general method discussed above. Note that polarity 2 denotes Shannon expansion while polarity 0 and 1 
denote positive Davio and negative Davio expansions, respectively. Also, for all cases 1=v . 
 
 
8.2 Fixed polarity Reed-Muller expressions 

Fixed polarity Reed-Muller (FPRM) expressions can be optimized by using the dual polarity property as 
given in [31] which can be viewed as a particular case of the general method discussed above.  



Table 9 shows processing rules for the FPRM of Boolean functions. As for the Kronecker expressions, in this 
case it is also 1=v . 
 

Table 8: Processing rule for Kronecker expressions. 

ip  ip'  new terms 
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Table 9: Processing rule for FPRM expressions of Boolean functions. 

ip  ip'  new terms 

0 1 
1 0 

if im =0 then  generate  n
i
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1
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−  

 
 
8.3 Fixed polarity arithmetic expressions 

Dual polarity is used in [15] for optimization of fixed polarity arithmetic expressions (FPAE). This method 
can be also derived as a particular case of the general method.  

Table 10 shows processing rules for fixed polarity arithmetic expressions FPAE [4]. 
 

Table 10: Processing rule for arithmetic expressions. 
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and set   1=v . 
                       b) generate  n

i
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1
1 1 +
−  

and set   1−=v . 
 

 
 
9. EXPERIMENTAL RESULTS 
 
In this section, we present some experimental results estimating features and efficiency of the proposed 
algorithm for minimization of FPPEs. As example we give results for FPGF expressions for functions 
defined on GF(4), FPAE of Boolean functions, and Kronecker expressions.  
 



9.1 FPGFs 
 
We developed a program in C for determination of optimal FPGF expression for an arbitrary four-valued 
function represented by minterms. The experiments were carried out on a 1GHz PC Celeron with 128Mb of 
main memory and all runtimes are given in CPU seconds. Table 11 compares the runtimes for optimization 
of FPGF expressions by the CTT method introduced in [5] (columns CTT) with the extended dual polarity 
based algorithm proposed in [3] that, as shown above, can be derived from the method given in this paper 
(columns Dual). We consider randomly generated four-valued functions with 25% and 75% of non-zero 
minterms (columns 25% and 75%, respectively) where the number of four-valued variables n ranges from 4 
to 7. Columns %d show the ratio (CTT – Dual)/ Dual where CTT and Dual refer to the methods in [5] and 
[3], respectively. CPU time reduction given in columns %d are shown in Figure 5. 
 The extended dual polarity based algorithm is faster than CTT due to the simplified processing by using 
the extended dual polarity property. This ratio increases with increasing number of variables. Furthermore, 
the number of non-zero minterms has smaller influence upon the runtime of the proposed algorithm as 
compared to CTT.  

 

Table 11: CPU times for calculation of FPGF by Dual polarity and CTT . 
25%  75%   

N Dual   CTT %d Dual CTT %d 
4 
5 
6 
7 

0.04 
0.54 
10.34 
251.32 

0.06 
2.17 
89.75 
3922.05 

-33.33 
-75.11 
-88.48 
-93.59 

0.4 
0.56 
12.69 
299.28 

0.16 
6.33 
266.54 
12429.99 

-75.0 
-91.15 
-95.24 
-97.59 
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Figure 5: Reduction of CPU times for calculation of FPGF by Dual polarity method compared with CTT 

method 



 
9.2 Kronecker expressions 
 
In this subsection, we present some experimental results estimating features and efficiency of the extended 
dual polarity based method for optimization of Kronecker expressions. Table 12 and Figure 6 give the 
runtimes (in milliseconds) for the Kronecker expression optimization for the same functions as for the 
FPAEs optimization. The new column denoted as (012) represents the functions taking the value 1 at the first 
three minterms and the value 0 at other minterms. The conclusion is the same as in the case of FPAEs, i.e., 
the number of minterms strongly influences the runtime of this algorithm. 
 

Table 12: CPU times for calculation of Kronecker expressions, q=2. 

n (012) 25% 75% 
5 
6 
7 
8 
9 
10 
11 

<0.01 
<0.01 
0.04 
0.25 
1.41 
8.19 
47.93 

0.01 
0.04 
0.52 
6.24 
73.27 

890.00 
10831.21 

0.01 
0.05 
0.56 
5.93 
75.19 
917.09 

11199.35 
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Figure 6: CPU times (in milliseconds) for calculation of Kronecker expressions, q=2 

 
 We expect that dual polarity based methods for optimization of other classes of polynomial expressions, 
which can be derived from the proposed method will express the same or similar features. 



9.3 FPAEs 
 
In this subsection, we present the same experimental results as in previous subsections, however, this time 
estimating features and efficiency of the extended dual polarity based method for the minimization of fixed 
polarity arithmetic expressions. Table 13 compares the runtimes for optimization of arithmetic expressions 
by the Tabular technique in [12] (columns ATT) with the algorithm that is derived from the method proposed 
in this paper (columns Dual). We consider the simple functions taking the value 1 at the first three minterms 
(0,1,2), randomly generated functions with 25% of all possible minterms, and randomly generated functions 
with 75% of all possible minterms, where the number of variables n ranges from 7 to 12. Columns %d show 
the ratio (Dual – ATT)/ATT where ATT and Dual refer to the method in [12] and the proposed algorithm, 
respectively. These columns are shown in Figure 7, too. 

It can be concluded that the number of minterms strongly influences the runtime of the extended dual 
polarity based algorithm, but it is faster than ATT. 
 

Table 13: CPU times for calculation of arithmetic expressions, q=2. 

(012) 25% 75% n ATT Dual %d ATT Dual %d ATT Dual %d 
7 
8 
9 
10 
11 
12 

<0,01 
0,02 
0,08 
0,3 
1,14 
4,62 

<0,01 
<0,01 
<0,01 
0,01 
0,04 
0,16 

- 
-50 
-87,5 
-96,67 
-96,49 
-96,53 

0,03 
0,16 
1,04 
6,12 

36,66 
222,22

<0,01 
<0,01 
<0,01 
0,03 
0,07 
0,30 

-66,67 
-93,75 
-99,04 
-99,51 
-99,81 
-99,86 

0,09 
0,52 
3,01 
17,91 
108,29 
222,41

<0,01 
0,01 
0,01 
0,03 
0,11 
0,35 

-88,89 
-98,08 
-99,67 
-99,83 
-99,90 
-99,84 
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Figure 7: Reduction of CPU times for calculation of arithmetic expressions, q=2 by Dual polarity method 

compared with ATT method 



 
10. CONCLUDING REMARKS 
 
In this paper we have proposed a general method for optimization of polynomial expressions by using the 
extended dual polarity property. We have introduced the notion of extended dual polarities as a extension of 
the very well known term, dual polarity, in Boolean algebra. Based on the extended dual polarity, we have 
shown dependencies between two extended dual polarity polynomial expressions. This dependency is used 
as a base for deriving the method. All existing methods which exploit the dual polarity property in 
optimization [13], [14], [15], [31] can be derived from our method as an particular cases. By using the 
proposed method it is possible to derive similar methods for optimization of other polynomial expressions. 
For all given cases the processing rules are simple and efficient. Due to that, although being an exhaustive-
search method, the proposed method is effective. Experimental results are given to show the performance of 
the extended dual polarity methods.  

The proposed optimization method works with minterms. An extension to work with disjoint cubes can 
be a promising direction, since a cube based tabular technique, which starts from disjoint cubes [18], is more 
efficient than similar techniques starting from minterms [30]. 
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Appendix 
 
Examples of polynomial expressions for binary and multiple-value functions. 
 
 
A.1 Reed-Muller expressions 
Polynomial expression (1) defined over Galois field GF(2) is very well known as Reed-Muller expression of 
Boolean functions. All calculations are done in GF(2) i.e. operations addition and multiplication are  addition 
modulo 2 and multiplication modulo 2, respectively. Reed-Muller expressions have the form 
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where F is the truth vector of Boolean function f. 

Example 11: Reed-Muller expression of a 2-variable Boolean function f, given by the truth-vector 
[ ]T1,1,1,0=F , is given by 
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A.2 Kronecker expressions 

Kronecker expression of Boolean function f given by the truth vector F is given as 

FTX ⎟
⎠
⎞

⎜
⎝
⎛⊗⎟
⎠
⎞

⎜
⎝
⎛⊗=

==

ii p
n

i

p
n

inxxf
111 ),,( K  

where 
[ ]
[ ]
[ ]⎪
⎩

⎪
⎨

⎧

=
=
=

=
,2,
,1,1
,0,1

iii

ii

ii
p

pxx
px
px

iX  

and 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

=

,2,
10
01

,1,
11
10

,0,
11
01

i

i

i

p

p

p

p

iT  

The vector [ ] { }2,1,0  ,,,1 ∈= i
T

n ppp KP  determines the kind of expansions used for each variable where 
0=ip  denotes positive Davio expansion, 1=ip  denotes negative Davio expansion and 2=ip  denotes 

Shannon expansion. Used operations are modulo 2 operations. 



Example 12: Kronecker expression of a 2-variable Boolean function f, given by the truth-vector 
[ ]T0,1,1,0=F , for a vector [ ]T1,2=P  is given by 
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A.3 GF(4) expressions 
If q=4 and addition and multiplication are carried out in GF(4) (as specified in Example 1) then (1) 
represents GF-expressions for a 4-variable function. Exponentiation in GF(4) is defined in Table 14. Notice 
that if the Table 16 is viewed as a matrix whose rows correspond to the rows in the table, then this matrix is 
the inverse matrix for the basic GF(4) transform matrix. 

 
Table 14: Exponentiation in GF(4). 

 0(.) 0 1(.)  2(.)  3(.)  
0 1 0 0 0 
1 1 1 1 1 
2 1 2 3 1 
3 1 3 2 1 

 
 
Example 13: The basic GF(4) transform matrix is given as 
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The GF(4) spectrum and the corresponding polynomial expression for a two-variable four-valued function f, 
given by the truth-vector [ ]T1,0,0,1,2,2,2,2,1,1,0,3,1,1,3,0=F  are given as 
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respectively. 
 
 
A.4 Arithmetic expressions 
Arithmetic expressions are closely related to Reed-Muller expressions since they are defined in terms of the 
same basis, however, with variables and function values interpreted as integers 0 and 1 instead of logic 
values. In this way, arithmetic expressions can be considered as integer counterparts of Reed-Muller 
expressions. 
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and addition and multiplication are arithmetic operations. )(nA  represents the arithmetic transform matrix 
of order n. 


