
Optimization of Polynomial Expressions by using
the Extended Dual Polarity

Dragan Janković (a), Radomir S. Stanković (a), Claudio Moraga (b),

(a) Faculty of Electronics, University of Niš, Serbia and Montenegro,
gaga@elfak.ni.ac.yu; rstankovic@bankerinter.net

 (b) European Centre for Soft Computing, Mieres, Spain
Faculty of Computer Science, University of Dortmund, Germany

cm@claudio-moraga.eu

Abstract – A method for optimization of polynomial expressions in terms of fixed polarities for

discrete functions is presented. The method is based on the principle of extended dual polarity, which
provides a simple way of ordering polarities to obtain an effective way of finding the optimal polarity.
The method still implies exhaustive search, but it is an optimized search, which may be expressed in
very simple rules. Experimental results illustrate the effectivity of the proposed method.

Keywords – Switching functions, Multiple-valued functions, Reed-Muller expressions, Polynomial

expressions, Fixed-polarity expressions

1. INTRODUCTION

Polynomial expressions are a form of representations of discrete functions that provides for compact
representations of large functions. Their definition and exploitation is derived from the classical engineering
approach consisting of decomposition of complex systems into combinations of subsystems that are simpler
or whose behavior is well documented. In the case of polynomial expressions, a given function is
decomposed into a linear combination of some suitably selected complete sets of basis functions. In this
case, dealing with function values of a given function f is replaced by dealing with coefficients for f assigned
to the basis functions. Reducing the number of non-zero coefficients, usually denoted as optimization of the
representation for f, reduces complexity of dealing with f, and therefore, it is among the main goals in
theory and practice of discrete functions. In attempting to derive polynomial expressions with minimum
number of coefficients, a variety of different polynomial expressions have been defined in the literature,
most of them for switching functions, i.e., binary valued functions of binary variables, see for example [27]
and references given therein. However, many of these expressions are extended or generalized to multiple-
valued input binary-valued output (MVB) functions [3,9,25,26] and multiple-valued input multiple-valued
output (MV) functions [4,6,8,16,20,21]. A brief review of these extensions is discussed in [19] where related
references are provided.

Polynomial expressions for binary functions and their generalizations to MVB and MV functions are defined
in terms of different expansion rules with respect to their variables [28], which can be alternatively
interpreted as choosing different sets of basis functions [29]. Within some of these classes of expressions, a
further optimization can be performed by using literals of different polarity for variables, which leads to a

variety of fixed- and mixed-polarity expressions [6,7,8]. This way of optimization of polynomial expressions
can be interpreted as reordering and sifting of basis functions in terms of which the representations are
defined. It can be applied, under an appropriate definition of negation, to both bit-level expressions, with
whatever binary or MV digits used in encoding values for variables, and word-level expressions, in which
case variables take integer values. The chief problem in this approach is that given a function f, we do not
know how to select a priori the polarity of variables to get the optimal polynomial expression in the number
of non-zero coefficients count. Solutions are offered through heuristic algorithms [23,25] or brute force
search methods yielding to the so-called polarity matrices [8]. Recall that a polarity matrix is a matrix whose
rows are coefficients in all possible fixed polarity expressions for a given function f.

In the first case, the efficiency of the method is assured by reducing the search space at the price of an
increased number of coefficients. In the second case, advantage is taken of the recursive structure of polarity
matrices, which structure originates in the definition of the polarity for variables.

This observation applies generally, whatever may be the way of representing either binary, MVB or MV
functions and sets of coefficients in their polynomial expressions, as tables or vectors, arrays of cubes, or
relating them to paths in decision diagrams, etc.

In this paper, we present a method to determine the optimal polynomial expressions of discrete functions for
different polarities of variables. In the method discussed, it is assumed that a function is represented by a set
of cubes, which are processed independently of each other. Therefore, the complexity of the method is
determined by the number of cubes rather than the number of variables. This feature was the main
motivation for selecting cubes as data structure to represent functions. However, the presented method can be
easily adapted an performed over other data structures, as vectors or decision diagrams for instance.

The presentation in the paper is given for MV functions as the most general class of considered functions
with most of examples for quaternary functions. However, all the algorithms proposed can be equally applied
to MVB and binary functions after specifying the corresponding parameters, as will be illustrated by the
examples provided, below.

1.1 Background work and Motivation

Besides seeking for generality (up to some extent), and the fact that there are phenomena naturally described
by MVB and MV functions, another reason to study the optimization of polynomial expressions for MV
functions is that these functions can be efficiently exploited in solving optimization problems for binary
switching functions that are prevalent in nowadays practice. Some of these applications are briefly discussed
in [9]. For example, a well-known approach to represent a multiple-output Boolean function is to treat its
output part as a single multiple-valued variable and convert it to a single-output characteristic function. Such
an approach is used in ESPRESSO-MV [22] and in MVSIS [10]. Other applications of multiple-valued logic
include design of PLAs with input decoders [24], optimization of finite state machines [1], [28], testing [11]
and verification [5]. Different representations for multiple-valued input two-valued output functions are
defined including a generalization of disjunctive normal form or Sum-of-product (SOP) expressions and
Kronecker and Pseudo-Kronecker expressions for binary input binary output switching functions [26,27].
These expressions can be uniformly considered as linear combinations of basis functions over GF(2). The
basis functions used in these expressions are expressible as products of multiple-valued (MV) literals.
Minimization of these expressions is crucial in practical applications [25].

It is documented in the recent literature that AND-EXOR realizations may have some advantages over AND-
OR expressions, such as easy testability [2,23], low cost for arithmetic and symmetric functions in the
number of product terms, simple algorithms for detection of symmetric variables [32], Boolean matching
[33], etc. Fixed Polarity Reed-Muller expressions (FPRMs) are an important class of AND-EXOR
expressions. For an n-variable Boolean function there are n2 FPRMs. The FPRM with the minimal number
of products is taken as the optimal FPRM. For some classes of functions used in practice, the optimal
FPRMs require fewer products than sum-of-product expressions [28].

 Compared to binary switching functions, multiple-valued functions (MV) offer more compact
representation of the same amount of information at the price of more complex manipulations with such
expressions and the complexity of their hardware realizations. Galois field (GF) expressions may be
considered as a generalization of Reed-Muller (RM) expressions to the MV case [19]. Optimization of GF-
expressions can be studied and solved in a way similar to that used for RM-expressions. As in FPRM,
different polarity GF-expressions of MV functions can be distinguished due to possibility to select different
polarities for MV variables. We denote these expressions as Fixed polarity GF-expressions (FPGF). As in the
binary case, the selection of polarity of variables corresponds to particular permutations of the values of the
variables (see discussions below and Table 4).

The relationship between two FPRMs for the polarities that are dual (see Definition 5 below) in the sense of
binary logic complements is used in [31] for construction of a method for FPRM optimization. In [13], the
notion of extended dual polarity has been introduced, and a method for optimization of Kronecker
expressions was constructed based on that.

In this paper, the notion of dual polarity is extended to discrete functions defined as mappings

,:
1 ii

n

i
LGf →×

=
 where iG and iL are non-empty sets. In this case, unary functions on Gi will play the role

of generalized complements. The choice { }1,0== ii LG and { }1,...,1,0 −== qLG ii cover the case of the
binary and MV logic functions discussed in detail and used as examples in this paper.

We derive relationships between two fixed polarity polynomial expressions for extended dual polarities.

Based on these relationships, a new method for optimization of polynomial expressions is proposed. The
algorithm starts from a given, not necessarily zero, polarity polynomial expression of the given function and
calculates all FPPEs using a route in which each two neighbors polarities are extended dual polarities. This
route is called the extended dual polarity route.

It should be recalled, that the problem of finding the optimal polarity for a polynomial expression is NP-
complete, i.e. all algorithms that solve the problem have an exponential complexity with respect to the
number of variables. The algorithm proposed in this paper is an exhaustive-search algorithm, but conversion
from one FPPE into another one is carried out by using one–digit checking. Due to that, and the simplicity of
the related processing of cubes, this algorithm is rather effective as confirmed by experimental results. It is
important to notice that the algorithm proposed expresses high possibilities for parallelization since cubes
defining a function are processed separately from each other. In this case, it is suitable for hardware
realizations.

The proposed method is general in the sense that all existing algorithms exploiting duality property in

optimization (of any kind) of polynomial expressions like fixed polarity Reed-Muller expressions of Boolean
functions [31], Kronecker expressions [13], polynomial expressions defined on GF(4) [14], arithmetic
expressions [15, 17] can be derived from the general method presented here.

2. BASIC DEFINITIONS

As indicated above, the presentation will be given for multiple-valued functions. This section gives some
basic definitions and notions from the theory of fixed polarity representation of MV functions used as
examples in the paper.

2.1 Polynomial expressions

Definition 1: (Polynomial expressions (PE))
Each n-variable q-valued function { } { }1,...,1,01,...,1,0: −→− qqf n given by the truth-vector

T
qnff],,[

10 −
= KF can be represented by a polynomial expression defined in matrix notation as

FTX)()(),,(1 nnxxf n =K (1)
where

[]12

1
1)(−

=
⊗= q

iii

n

i
xxxn LX ,

and

)1()(
1
TT

n

i
n

=
⊗= , () 1)1()1(−= XT ,

where ⊗ denotes the Kronecker product, and the basic transform matrix T(1) is defined as the inverse of
X(1), assuming that the symbolic notation for columns of X(1) is replaced by the corresponding truth-
vectors. Addition and multiplication (and, hence, exponentiation) are defined in the used algebraic structure.
Mostly, this is the structure of vector spaces over GF(2) or GF(q), however, it is possible to use also other
algebraic structures, as for instance these considered in [4], [34], permitting definition of polarity of
variables.

 As examples of polynomial expressions, Reed-Muller expressions, Kronecker expressions, Galois field
expressions over GF(4) and arithmetic expressions are defined in the Appendix. Here, we give a numeric
example for functions in GF(4).

Example 1: The GF(4) expression of a two-variable four-valued function f, (given) defined by the truth-
vector []T1,0,0,1,2,2,2,2,1,1,0,3,1,1,3,0=F is given by

() () ()
() () () () () () 2

3
1

3
2

2
1

2
2

2
1

2
1

3
2121

3
2

2
2221

333

32322),(

xxxxxxx

xxxxxxxxxf

⋅+⋅⋅+⋅⋅+⋅

+⋅⋅+⋅⋅+⋅+⋅+⋅=

The coefficients are elements of the corresponding FPGF spectrum, which is therefore given by

]0,0,1,0,3,3,0,3,3,0,2,0,3,2,2,0[=S . The zero elements in the spectrum correspond to the missing terms

in the expansion. Notice that there are 12 non-zero elements in the truth-vector and 9 in the above

polynomial expansion for f.

Recall that the operations (addition (+) and multiplication (•)) are in GF(4), defined as follows:

Addition in GF(4)
+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Multiplication in GF(4)

• 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

The polarity of variables)4(GFxi ∈ , 2,1=i , is defined as 1+= xx .

2.2 Optimization of polynomial expressions

Optimization of polynomial expression, viewed as the determination of an expression with the minimum
number of non-zero coefficients (i.e. the number of terms), can be done by introducing different polarities for
the variables. The representations thus produced are so-called fixed polarity polynomial expressions (FPPE)
where each variable ix appears as either the positive or the negative literal. i.e., as uncomplemented or
complemented, but not both at the same time.

Definition 2: (Complement)
For a q-valued variable x, there are q-1 complements xc given as

1,...,1 , −=⊕= qccxxc .
xc is usually denoted as a variable x with a polarity c. (With this notation, the complement used in Example

1 corresponds to 1=c , and can be written as x1)

Polarity vector P is introduced to denote the polarity of variables and correspondingly the polarity of a
representation [35].

Definition 3: (Polarity vector)
For an n-variable q-valued function f, the polarity vector () { }1,,1,0 ,,...,1 −∈= qppp in LP is a vector of
length n, whose elements specify the polarity of variables in FPPE for an n-variable function f, i.e., jpi =

shows that to the i-th variable the j-th complement is assigned and written as i
j x .

Fixed polarity polynomial expressions (FPPEs) are uniquely characterized by specifying decomposition rules
assigned to variables i.e. by specifying the polarity vectors.

Definition 4: (Fixed polarity expressions)
Each n-variable q-valued function f given by the truth-vector T

qnff],,[10 −
= KF can be represented by the

following FPPE if the polarity is),,(1 nppp L= ,

FTX)()(),,(1 nnxxf pp
n

><><=K
where

() ()[]12

1
1)(

−

=

>< ⊗=
q

i
p

i
p

i
p

n

i

p xxxn iii LX ,

)1()(
1

><

=

>< ⊗= ip
n

i

p n TT .

Therefore, FPPEs can be given by the vector of coefficients, usually denoted as spectrum, >< pS defined as

FTS)(npp ><>< = .

Example 2: The fixed polarity GF(4) (FPGF) expression of a two-variable four-valued function f, discussed
in Example 1, for a polarity)3,2(=p is given by

() ()
() () ()
() () () () 2

33
1

23
1

23
2

32
1

2

2
2

32
1

2
2

32
1

2

3
2

3
1

22
2

3
1

2
21

33

3

322),(

xxxxx

xxxx

xxxxxxf

⋅+⋅+⋅⋅

+⋅+⋅⋅

+⋅⋅+⋅⋅+=

The corresponding FPGF spectrum is given by]0,0,1,3,3,1,3,0,3,2,0,0,0,0,0,2[3,2 =><S . Notice that >< 3,2S

has 8 zero-coefficients, meanwhile >< 1,2S has only 6.

3. EXTENDED DUAL POLARITY

In minimization of FPPE with respect to the number of non-zero coefficients count, it appears convenient to
exploit the notion of the dual polarity [13], the extended dual polarity, and the related dual polarity and the
extended dual polarity vectors. The term dual polarity is used in the Boolean domain to denote two polarity
vectors which differ in only one bit.

Definition 5: (Dual polarity)
In the case of binary functions, for a given polarity),,,,,,(111 niii pppppp KK +−= , { })1,0(∈ip the
polarity),,,,,,(' 111 niii pppppp KK +−= is the dual polarity.

Example 3: Dual polarities for the polarity)0,1(=p are the polarities (0,0) and (1,1).

In the multiple-valued domain, the term dual polarity will be called the extended dual polarity [13].

Definition 6: (Extended dual polarity)
For a given polarity),,,,,,(111 niii pppppp KK +−= , { })1,...,1,0(−∈ qpi the
polarity)',,',',',,'(' 111 niii pppppp KK +−= is the extended dual polarity iff ijpp jj ≠= ,' and

ii pp ≠' .

Example 4: For four-valued functions the extended dual polarities for the polarity)0,1(=p are the
polarities (0,0), (2,0), (3,0) , (1,1), (1,2), and (1,3).

3.1 Dual polarity route

The number of polarity vectors characterizing all possible FPPEs for an n-variable q-valued function is nq .
It is possible to order these nq polarities such that each two successive polarities are the extended dual
polarities. We denote this order as the extended dual polarity route. Traversing of a q-valued n-dimensional
hypercube can generate one of many possible extended dual polarity routes. Table 1 gives the number of
dual polarity routes for different values of q and n.

Table 1: Number of dual polarity routes
q n No polarities No routes
2
2
2
2

1
2
3
4

2
4
8
16

2
8

144
91392

3
3

1
2

3
9

6
1512

4
4

1
2

4
16

24
22394880

Example 5: Two different dual polarity routes for q=4 and n=2 are given by the sequences of polarity
vectors (00)-(01)-(02)-(03)-(13)-(12)-(11)-(10)-(20)-(21)-(22)-(23)-(33)-(32)-(31)-(30) and
(00)-(01)-(11)-(10)-(20)-(21)-(22)-(12)-(02)-(03)-(13)-(23)-(33)-(32)-(31)-(30).
These routes are shown in Figure 1.

Example 6: An extended dual polarity route generated by using traversal of a four-valued three-dimensional
hypercube is given by

(000)—(001)—(002)—(003)—(013)—(012)—(011)—(010)—(020)—(021)—(022)—(023)—(033)—
(032)—(031)—(030)—(130)—(131)—(132)—(133)—(123)—(122)—(121)—(120)—(110)—(111)—
(112)—(113)—(103)—(102)—(101)—(100)—(200)—(201)—(202)—(203)—(213)—(212)—(211)—
(210)—(220)—(221)—(222)—(223)—(233)—(232)—(231)—(230)—(330)—(331)—(332)—(333)—
(323)—(322)—(321)—(320)—(310)—(311)—(312)—(313)—(303)—(302)—(301)—(300).

 An extended dual polarity route can be constructed by using the recursive procedure route(level,
direction) given in Figure 2 for the particular case q = 4. Extension to an arbitrary q is straightforward.
Extended dual polarity route will be produced if the procedure is called with arguments equal 0, i.e., as
route(0,0).

4. RELATIONSHIPS BETWEEN DUAL POLARITY EXPRESSIONS

Denote by S , ><gS , and ><hS the vectors of coefficients in FPPEs for the polarities zero, g, and h,
respectively, assuming that g and h are two distinct extended dual polarities.

Therefore, the spectrum for zero polarity is
 FTS)(n= ,
 and spectra for two different polarities g and h are

FTS)(ngg ><>< = ,
FTS)(nhh ><>< = ,

where g and h differ in the i-th coordinate
()niii ppppppg LL ,,,,, 1121 +−= ,
()niii pppppph LL ,,',,, 1121 +−= .

Since () ><−><= hh n STF
1

)(, the relationship between ><gS and ><hS is given by

())()()()()(1 nnnnn hhggg ><−><><><>< ⋅⋅== STTFTS .
Further,

BTA

TTT

TT

⊗⊗=

⎟
⎠
⎞

⎜
⎝
⎛ ⊗⊗⊗⎟

⎠
⎞

⎜
⎝
⎛⊗=

⊗=

><

><

+=

><><
−

=

><

=

><

)1(

)1()1()1(

)1()(

1

1

1

1

i

jij

j

p

pn

ij

ppi

j

pn

j

g n

where ⎟
⎠
⎞

⎜
⎝
⎛⊗= ><

−

=
)1(

1

1

jpi

j
TA and ⎟

⎠
⎞

⎜
⎝
⎛ ⊗= ><

+=
)1(

1

jpn

ij
TB .

Similarly,

BTA

TTT

TT

⊗⊗=

⎟
⎠
⎞

⎜
⎝
⎛ ⊗⊗⊗⎟

⎠
⎞

⎜
⎝
⎛⊗=

⊗=

><

><

+=

><><
−

=

><

=

><

)1(

)1()1()1(

)1()(

'
1

'
1

1

1

i

jij

j

p

pn

ij

ppi

j

pn

j

h n

Figure 1: Dual polarity routes.

Due to the Kronecker structure of the transform matrix)(nh><T and the features of the Kronecker product

(assuming consistent dimensions), the inverse transform matrix () 1)(−>< nhT is given as

() () 11 BTAT −−><−−>< ⊗⊗=
1'1)1()(iph n .

Finally,
() ()() ()()

()()
()() in

pp
i

pp

pphg

ii

ii

iinn

−

−><><
−

−−><><−

−−><−><−><><

⊗⊗=

⊗⊗=

⊗⊗⊗⊗=⋅

ITTI

BBTTAA

BTABTATT 1

1'
1

11'1

1'11

)1()1(

)1()1(

)1()1()()(

where kI is the identity matrix of order qk.

void route(int level, int direction)
{
 if(direction == 0)
 { if(level == no_variable)

 { -- out new polarity vector h }
 else
 { h[level] = 0;
 route(level+1, 0);
 h[level] = 1;
 route(level+1, 1);
 h[level] = 2;
 route(level+1, 0);
 h[level] = 3;
 route(level+1, 1);
 }

 }
 else
 { if(level == no_variable)

 { -- out new polarity vector h }
 else
 { h[level] = 3;
 route(level+1, 0);

 h[level] = 2;
 route(level+1, 1);
 h[level] = 1;
 route(level+1, 0);
 h[level] = 0;
 route(level+1, 1);
 }
 }
}

Figure 2: Procedure route().

The matrix ><gS is a nicely structured sparse matrix which expresses a property that we will exploit for the
generation of a processing rule for transforming the coefficients of one polarity polynomial expression into
the coefficients of another extended dual polarity polynomial expression for the given function, i.e.

()()() ><
−

−><><
−

>< ⋅⊗⊗= h
in

pp
i

g ii SITTIS
1'

1)1()1(. (2)
The following example illustrates conversion of coefficients in the polynomial expansion for a given polarity
into a required dual polarity for the most familiar binary case. In the case of MV functions that would be the
extended dual polarity coefficients as it will be seen in further examples below. For simplicity of matrix
notation, the example is given for binary valued functions.

Example 7: Let a Boolean function f be given by the truth-vector []T0110011101111100=F . The fixed
polarity Reed-Muller (FPRM) expression of f for the polarity p=(0110) is given by the spectrum

[]T10110010001111110110 =><S while the FPRM expresion of f for the polarity p'=(0010) is given by the

spectrum []T10110001111111000010 =><S . Polarities p and p' are dual polarities, since they differ only in
the second bit, and, therefore,

><

−

>< ⋅
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⊗⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⊗= 0010

2

1

1
0110

11
10

11
01

SIIS

where 1I and 2I are the identity matrices of order 2 and 4, respectively.
Therefore,

[]

[].1011001000111111

0
0
1
1
0
1
0
0
1
1
1
1
1
1
1
0

1000000000000000
0100000000000000
0010000000000000
0001000000000000
1000100000000000
0100010000000000
0010001000000000
0001000100000000
0000000010000000
0000000001000000
0000000000100000
0000000000010000
0000000010001000
0000000001000100
0000000000100010
0000000000010001

1011000111111100

1000
0100
0010
0001

10
11

10
010110

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⋅

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⊗⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=>< TS

5. PROCESSING RULES

A relationship between two extended dual FPPEs given by (2) will be the starting point for the derivation of
a processing rule which should be applied to all the terms in FPPE for a given polarity to determine the FPPE
for another extended dual polarity.

Let n
ii

i mmmm 1
1

1 +
−= be a term in the FPPE of a function f for the polarity

),,,,(111 niii ppppph LL +−= . The value of the coefficient in the FPPE for f for the term m is)(mh><S .

The process assumes that non-zero terms of f are processed separately in determining FPPEs. Since

processing means multiplication with the rows of the transform matrices, and a row may have several non-
zero entries, a given term m for a specified polarity p may produce few new terms in the FPPE of the
function f for the extended dual polarity),,',,(111 niii pppppg LL +−= depending on the values of ip

and ip' . Thus, m generates new terms in ><gS representing coefficients in FPPE for f for the polarity g.

The value of the extended dual FPPE on a newly generated term is given by)(mv h><S where ν strongly
depends on the considered extended dual polarities g and h, which dependency can be conveniently
expressed in matrix notation by a matrix ()() 1')1()1(

−><><= ii pp TTL . The rules to process terms in FPPE for
the polarity h to determine new terms in the FPPE for the polarity g can be derived from the matrix L as
stated in the following theorem formulated for the general case of q-valued functions.

Theorem 1: Let a matrix L relating product terms in FPPEs for the polarities h and g be given as

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−−−

−−−−−−

−−

−−

1,12,11,10,1

1,22,21,20,2

1,12,11,10,1

1,02,01,00,0

qqqqqq

qqqqqq

qq

qq

llll
llll

llll
llll

L

L

MMOMM

L

L

L .

The processing rules to generate new terms in FPPE for the polarity g from terms in FPPE for the polarity h
are determined as follows:
Recall that n

ii
i mmmm 1

1
1 +
−= ;

if kmi = then generate n
i

i tmm 1
1

1 +
− 1,,0 ,1,,0 −=−= qkqt LL

and use ktlv ,= as the scaling factor in)(mv h><S

Proof: Rewrite the equation (2) in the form
()()() () ><><

−−
><

−

−><><
−

>< ⋅=⋅⊗⊗=⋅⊗⊗= hh
ini

h
in

pp
i

g ii SRSILISITTIS 1
1'

1)1()1(. (3)

The orders of the matrices ,],[1, −= ijil IL and in−I are ,r , 1
A

−= iqq and in
B qr −= , respectively.

From (3),],[, jir=R where wuji lr ,, ≡ for

⎩
⎨
⎧

−=++=
−=++=

,1,...,0,
,1,...,0,

BBB

ABB

rwrqrj
rurqri

ββα
αβα

i.e.

1,,0
),,,,,,,,,(
),,,,,,,,,(

11121

11121

−=
⎩
⎨
⎧

=
=

−+−

−+−

qz
zzzwzzzj
zzzuzzzi

i

nnii

nnii

L

LL

LL

 (4)

u, w ∈ {0, 1, … q-1}
Consider contribution of a term),,,,,,(111 nii mmkmmm LL +−= in ><hS to ><gS . The non-zero
coefficients in the m-th column of the matrix R are the elements with the decimal index

1,,0),,,,,,,(111 −== +− qtmmtmmd nii LLL .

This means that the term m from ><hS contributes to terms in ><gS with the decimal index d. The value of
contribution to these terms ><hvS , according to (4), is given as

><><>< ⋅=⋅=⋅ h
kt

h
md

h lrv SSS ,, .
End of the Proof.

Example 8: The contribution of the term m=(0,3) in >< 2,1S , for the (1,2) polarity FPRM of function f given
in Example 1 (the truth vector is F=[0,3,1,1,3,0,1,1,2,2,2,2,1,0,0,1]), to >< 1,1S , for the (1,1) polarity FPRM, is
given by (3,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0) (see Figure 3).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
0
0
0
0
0
0
0
0
0
0
0
0
2
1
3

0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0

0
0
1
2
3
2
3
0
3
1
1
2
0
0
3
1

0
0
1
2
3
2
3
0
3
1
1
2
3
0
3
1

1
0
0
1
2
2
2
2
1
1
0
3
1
1
3
0

 F >< 2,1S m m contribution of m to >< 1,1S

Figure 3: Term contribution

Above contributions of the term m are calculated by the following:

Starting polarity is <1,2>; Calculated polarity is <1,1>; Matrix ()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⋅=
−><><

1000
3100
2010
1231

112 GGL ;

Therefore, the term m = (0 3) with value 3, contribute to the terms (0 0), (0 1) and (0 2) with values given as
3 times the corresponding value from the fourth column in matrix L i.e. 3*1= 3, 3*2 = 1 and 3*3=2,
respectively.

Using the above theorem, it is possible to derive all the existing methods for optimization of polynomial
expressions which exploit the dual polarity property as well as to produce new methods for determination of
some new polynomial expressions.

6. DUAL POLARITY BASED OPTIMIZATION ALGORITHM

Since for an n-variable q-valued function f, there are qn possible FPPEs, in an exhaustive-search optimization
algorithms all of nq fixed polarity polynomial expressions should be calculated. Usually, the starting point
in determination of each of nq FPPEs is the truth-vector for f. In a class of algorithms which exploit dual

polarity feature [2], [3], [4], again these nq FPPEs are calculated, but the truth-vector is the starting point
only for the first FPPE. Any other FPPE is calculated starting from an arbitrary FPPE. Figure 4 illustrates the
way of traversing from one to another polarity in the classical approach and by exploiting the extended dual
polarity. In classical approach all of nq FPPEs are calculated from the truth vector (Figure 4-a). In dual-
polarity based approach only first FPPE is calculated from the truth vector while other FPPEs are calculated
from the previously calculated dual-polarity FPPE (Figure 4-b) which reduce the computational complexity
due to the features of the dual poarity route.

a)

. . .

. . .

f

p=(0,0,...,0) p=(0,0,...,1) p=(0,0,...,0) p q q q=(-1, -1, ... , -1)

b)

f

p=(0,0,...,0) p=(0,0,...,1) p=(0,0,...,0) p q q q=(-1, -1, ... , -1)

Figure 4: Optimization algorithms: a) classic b) dual-polarity based

In Section 3 is explained how to construct an extended dual polarity route. The main idea of the proposed
algorithm is that all nq FPPE are constructed along the extended dual polarity route, i.e., each FPPE is
calculated starting from an initial extended dual polarity FPPE. An open question is the determination of a
processing rule for processing of terms from one FPPE to produce terms in another extended dual polarity
FPPE. Theorem 1 gives the processing rule for arbitrary FPPEs. From this theorem, it follows that it is
possible to calculate all FPPEs by using the method for transforming a given FPPE into the extended dual
polarity FPPE along the route without repetitive calculations. Therefore, we can perform the optimization of
FPPE, i.e., construction of all FPPEs and subsequent selection of the FPPE with the minimum number of
non-zero coefficients, by using an effective exhaustive-search algorithm consisting of the following steps.

1. Initialization:
- Set the polarity vector p to)0,,0,0(L=p
- Calculate the spectrum >< pS
- Set minC = the number of non-zero coefficients in >< pS

2. Determine the next extended dual polarity p’, according to the recursive route.

3. List all the terms for >< pS .

4. For each term calculate the contribution to the spectrum >< 'pS by using the processing rule derived
from Theorem 1.

5. Delete terms whose value is equal to zero after summation of contributions of the processed terms.
6. Calculate the total number of non-zero coefficients min'C .

If minmin' CC < then minmin 'CC = .

7. Stop if all polarities have been treated. Otherwise go to Step 2.

The algorithm, as formulated above, starts from the zero polarity FPPE, but it can start from any other
polarity. The initial FPPE representing the input in the algorithm should be calculated from any specification
of the given function (for instance, truth-vector, cubes, decision diagrams) by using any of the existing
methods. Then, the terms in this initial FPPE should be specified by cubes which are the input in the
algorithm.

For instance, we may want to start from the FPPE for the zero polarity for a given function f , which may

be calculated from the truth vector for f. For this task we can also use some known methods, for example, the
tabular technique [5].
 It is interesting to notice that the algorithm proposed has high possibilities for parallelization. Each
processor performs the method along a piece of the extended dual polarity route. The extended dual polarity
route can be divided into z subroutes if the number of parallel processors is z.

In what follows, the theory presented in this section will be illustrated by examples of Galois field GF(4)
expressions.

7. FIXED POLARITY GF(4) EXPRESSIONS

In this section, we consider optimization of fixed polarity polynomial expressions of functions defined on
GF(4) by using the extended dual polarity method.

 The optimization of a GF(4) expression is possible by using different complements. There are three
complements for a variable in GF(4) denoted by 3,2,1 , =ixi and defined as 3,2,1 , =+= iixxi . In
FPGFs, the use of complements for a variable requires permutation of columns in the basic GF(4) transform
matrix corresponding to that variable. Table 2 shows complements and the corresponding basic transform
matrices as well as their inverses that are used to define the operators for calculating coefficients in GF-
expressions.

Table 2: Complements in GF(4) and basic transform matrices.

Variable Transform Inverse transform

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3
2
1
0

x
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1111
3210
2310
0001

G ()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=−

1231
1321
1111
0001

1G

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2
3
0
1

1x
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=><

1111
2301
3201
0010

1G ()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−><

1231
1321
0001
1111

11G

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
0
3
2

2 x
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=><

1111
1032
1023
0100

2G ()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−><

1111
0001
1231
1321

12G

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
1
2
3

3 x
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=><

1111
0123
0132
1000

3G ()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−><

0001
1111
1321
1231

13G

The following example illustrates GF(4) fixed polarity polynomial expressions.

Example 9: The fixed polarity GF (FPGF) expression of a two-variable four-valued function f in Example 1
for the polarity)1,2(=p is given by

() () () () () () () ()
() () () () () () ()2

13
1

23
1

23
2

12
1

2
2

12
1

2

2
1

23
2

1
1

22
2

1
1

2
2

1
1

2
1

2
21

3

33222),(

xxxxxxx

xxxxxxxxxxf

⋅++⋅⋅+⋅

++⋅⋅+⋅⋅+⋅⋅+⋅+=

The coefficients are elements of the corresponding FPGF spectrum, which is therefore is given by

]0,0,1,1,3,0,1,1,3,3,2,2,0,0,0,2[1,2 =><S .

The FPGF of a four-valued function f can be represented by a set of four-valued (n+1)-tuples, consisting of
terms and the corresponding function values on these terms. For simplicity, literals for variables in terms are
replaced by their indices. A variable that is present in a product term in the i-th complemented form is
replaced by i, and 0 replaces an absent variable. Therefore, the FPGF for the function f and the assumed

polarity)1,2(=p is represented by the following set of tuples where "–" separates the function value from
the literals of variables

{ }1-31 1;-30 ;3-23 ;121 1;-20 ;313 ;312 ;211 ;210 ;200 −−−−−− .

Now by the example 10 we will show how method for optimization of GF(4) expressions [14] can be derived
from our general method described in Section 6.

Table 3 gives all possible matrices L for GF(4) expressions as shown in [3], while Table 4 shows the
corresponding processing rules derived from these matrices. It is obvious that these processing rules are
simple and, due to that, efficient in terms of time and space.

Table 3: Matrix L for GF(4).

() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⋅=⋅

=⋅=⋅
−><><−><><

−><><−><><

1000
1100
1010
1111

123132

101110

GGGG

GGGG

() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

=⋅=⋅

=⋅=⋅
−><><−><><

−><><−><><

1000
2100
3010
1321

113131

102120

GGGG

GGGG

() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

=⋅=⋅

=⋅=⋅
−><><−><><

−><><−><><

1000
3100
2010
1231

112121

103130

GGGG

GGGG

Example 10: Consider a two-variable four-valued function f given in Example 1. Let the GF(4) fixed
polarity expression of f, for the polarity)1,2(=p be represented by the spectrum

[]T0,0,1,1,3,0,1,1,3,3,2,2,0,0,0,21,2 =><S .

The extended dual polarities and the corresponding FPGFs are given in Table 5.
Calculation procedures for determination of these extended dual polarity FPGF expressions are shown in

Tables 6, and 7.

Table 4: Processing rule for GF(4) expressions.

ip ip' new terms

0

1

2

3

1

0

3

2

if im =1 then generate n
i

i mm 1
1

1 0 +
− 1=v

if im =2 then generate n
i

i mm 1
1

1 0 +
− 1=v

 if im =3 then generate n
i

i mm 1
1

1 0 +
− 1=v

 n
i

i mm 1
1

1 1 +
− 1=v

 n
i

i mm 1
1

1 2 +
− 1=v

0

1

2

3

2

3

0

1

if im =1 then generate n
i

i mm 1
1

1 0 +
− 2=v

if im =2 then generate n
i

i mm 1
1

1 0 +
− 3=v

 if im =3 then generate n
i

i mm 1
1

1 0 +
− 1=v

 n
i

i mm 1
1

1 1 +
− 3=v

 n
i

i mm 1
1

1 2 +
− 2=v

0

1

2

3

3

2

1

0

if im =1 then generate n
i

i mm 1
1

1 0 +
− 3=v

if im =2 then generate n
i

i mm 1
1

1 0 +
− 2=v

 if im =3 then generate n
i

i mm 1
1

1 0 +
− 1=v

 n
i

i mm 1
1

1 1 +
− 2=v

 n
i

i mm 1
1

1 2 +
− 3=v

Table 5: Extended dual polarity GF(4) expressions.

polarity spectrum
20
22
23
01
11
31

(2000010332330100)
(2000131310232100)
(2000002303133100)
(3113113333031100)
(0223003322031100)
(0230333300031100)

Table 6: Polarity (21) to (20).
polarity (21) terms New terms polarity (20) terms

00 – 2
10 – 2
11 – 2
12 – 3
13 – 3
20 – 1
21 – 1
23 – 3
30 – 1
31 – 1

10 – 2
10 – 3

10 – 3; 11 – 3; 12 – 3

20 – 1
20 – 3; 21 – 3; 22 – 3

30– 1

00 – 2
11 – 1
13 – 3
20 – 3
21 – 2
22 – 3
23 – 3
31 – 1

Table 7: Polarity (21) to (22).

polarity (21) terms new terms polarity (22) terms
00 – 2
10 – 2
11 – 2
12 – 3
13 – 3
20 – 1
21 – 1
23 – 3
30 – 1
31 – 1

10 – 1
10 – 1

10 – 3; 11– 1; 12 – 2

20 – 3
20 – 3; 21 – 1; 22 – 2

30 – 3

00 –2
10 – 1
11 – 3
12 – 1
13 – 3
20 – 1
22 – 2
23 – 3
30 – 2
31 – 1

7.1 Efficiency of the method

Features of the proposed method and its efficiency have been examined by a series of experiments the
sample of which is presented in the Section 9. Experimental results confirmed the efficiency of the method
compared to the related methods. For calculation of all FPRMs based on the truth vector, the inverse
transform matrix and its complemented forms are used. The number of zero coefficients in these matrices for
GF(4) is 3 (see Table 2). On the other side, for the method proposed in this paper, all FPRMS are calculated
but calculations are performed by using L matrices (for GF(4) see Table 3). The number of zero coefficients
in these matrices is 7. Increasing of number of zero coefficients in processing matrices leads to the reduction
in the number of operations required for calculation of FPRMs.

8. PARTICULAR CASES

In this section, in the manner used in the previous section, we will show that methods for generation fixed-
polarity Kronecker expressions [13], fixed polarity Reed-Muller expressions [31] as well as fixed polarity
arithmetic expressions [15] can be derived as particular cases of the extended dual polarity based
optimization algorithm described in Section 6.

8.1 Kronecker expressions for binary valued functions

In [13] is proposed a method for optimization of Kronecker expressions. This method can be considered as a
particular case of the present method as can be seen from Table 8 shows processing rules for all possible
cases for Kronecker expressions of Boolean functions [2] derived by the specification of parameters in the
general method discussed above. Note that polarity 2 denotes Shannon expansion while polarity 0 and 1
denote positive Davio and negative Davio expansions, respectively. Also, for all cases 1=v .

8.2 Fixed polarity Reed-Muller expressions

Fixed polarity Reed-Muller (FPRM) expressions can be optimized by using the dual polarity property as
given in [31] which can be viewed as a particular case of the general method discussed above.

Table 9 shows processing rules for the FPRM of Boolean functions. As for the Kronecker expressions, in this
case it is also 1=v .

Table 8: Processing rule for Kronecker expressions.

ip ip' new terms

0 1
1 0

if im =1 then generate n
i

i mm 1
1

1 0 +
−

0 2
2 0

if im =0 then generate n
i

i mm 1
1

1 1 +
−

1 2 if im =1 then set im =0

if im =0 then generate n
i

i mm 1
1

1 1 +
−

2 1 if im =0 then set im =1

if im =1 then generate n
i

i mm 1
1

1 0 +
−

Table 9: Processing rule for FPRM expressions of Boolean functions.

ip ip' new terms

0 1
1 0

if im =0 then generate n
i

i mm 1
1

1 1 +
−

8.3 Fixed polarity arithmetic expressions

Dual polarity is used in [15] for optimization of fixed polarity arithmetic expressions (FPAE). This method
can be also derived as a particular case of the general method.

Table 10 shows processing rules for fixed polarity arithmetic expressions FPAE [4].

Table 10: Processing rule for arithmetic expressions.

ip ip' new terms

0

1

1

0

if im =1 then a) generate n
i

i mm 1
1

1 0 +
−

and set 1=v .
 b) generate n

i
i mm 1

1
1 1 +
−

and set 1−=v .

9. EXPERIMENTAL RESULTS

In this section, we present some experimental results estimating features and efficiency of the proposed
algorithm for minimization of FPPEs. As example we give results for FPGF expressions for functions
defined on GF(4), FPAE of Boolean functions, and Kronecker expressions.

9.1 FPGFs

We developed a program in C for determination of optimal FPGF expression for an arbitrary four-valued
function represented by minterms. The experiments were carried out on a 1GHz PC Celeron with 128Mb of
main memory and all runtimes are given in CPU seconds. Table 11 compares the runtimes for optimization
of FPGF expressions by the CTT method introduced in [5] (columns CTT) with the extended dual polarity
based algorithm proposed in [3] that, as shown above, can be derived from the method given in this paper
(columns Dual). We consider randomly generated four-valued functions with 25% and 75% of non-zero
minterms (columns 25% and 75%, respectively) where the number of four-valued variables n ranges from 4
to 7. Columns %d show the ratio (CTT – Dual)/ Dual where CTT and Dual refer to the methods in [5] and
[3], respectively. CPU time reduction given in columns %d are shown in Figure 5.
 The extended dual polarity based algorithm is faster than CTT due to the simplified processing by using
the extended dual polarity property. This ratio increases with increasing number of variables. Furthermore,
the number of non-zero minterms has smaller influence upon the runtime of the proposed algorithm as
compared to CTT.

Table 11: CPU times for calculation of FPGF by Dual polarity and CTT .
25% 75%

N Dual CTT %d Dual CTT %d
4
5
6
7

0.04
0.54
10.34
251.32

0.06
2.17
89.75
3922.05

-33.33
-75.11
-88.48
-93.59

0.4
0.56
12.69
299.28

0.16
6.33
266.54
12429.99

-75.0
-91.15
-95.24
-97.59

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
4 5 6 7

d-25% d-75%

Figure 5: Reduction of CPU times for calculation of FPGF by Dual polarity method compared with CTT

method

9.2 Kronecker expressions

In this subsection, we present some experimental results estimating features and efficiency of the extended
dual polarity based method for optimization of Kronecker expressions. Table 12 and Figure 6 give the
runtimes (in milliseconds) for the Kronecker expression optimization for the same functions as for the
FPAEs optimization. The new column denoted as (012) represents the functions taking the value 1 at the first
three minterms and the value 0 at other minterms. The conclusion is the same as in the case of FPAEs, i.e.,
the number of minterms strongly influences the runtime of this algorithm.

Table 12: CPU times for calculation of Kronecker expressions, q=2.

n (012) 25% 75%
5
6
7
8
9
10
11

<0.01
<0.01
0.04
0.25
1.41
8.19
47.93

0.01
0.04
0.52
6.24
73.27

890.00
10831.21

0.01
0.05
0.56
5.93
75.19
917.09

11199.35

0.01

0.1

1

10

100

1000

10000

100000
5 6 7 8 9 10 11

(1 2 3) 25% 75%

Figure 6: CPU times (in milliseconds) for calculation of Kronecker expressions, q=2

 We expect that dual polarity based methods for optimization of other classes of polynomial expressions,
which can be derived from the proposed method will express the same or similar features.

9.3 FPAEs

In this subsection, we present the same experimental results as in previous subsections, however, this time
estimating features and efficiency of the extended dual polarity based method for the minimization of fixed
polarity arithmetic expressions. Table 13 compares the runtimes for optimization of arithmetic expressions
by the Tabular technique in [12] (columns ATT) with the algorithm that is derived from the method proposed
in this paper (columns Dual). We consider the simple functions taking the value 1 at the first three minterms
(0,1,2), randomly generated functions with 25% of all possible minterms, and randomly generated functions
with 75% of all possible minterms, where the number of variables n ranges from 7 to 12. Columns %d show
the ratio (Dual – ATT)/ATT where ATT and Dual refer to the method in [12] and the proposed algorithm,
respectively. These columns are shown in Figure 7, too.

It can be concluded that the number of minterms strongly influences the runtime of the extended dual
polarity based algorithm, but it is faster than ATT.

Table 13: CPU times for calculation of arithmetic expressions, q=2.

(012) 25% 75% n ATT Dual %d ATT Dual %d ATT Dual %d
7
8
9
10
11
12

<0,01
0,02
0,08
0,3
1,14
4,62

<0,01
<0,01
<0,01
0,01
0,04
0,16

-
-50
-87,5
-96,67
-96,49
-96,53

0,03
0,16
1,04
6,12

36,66
222,22

<0,01
<0,01
<0,01
0,03
0,07
0,30

-66,67
-93,75
-99,04
-99,51
-99,81
-99,86

0,09
0,52
3,01
17,91
108,29
222,41

<0,01
0,01
0,01
0,03
0,11
0,35

-88,89
-98,08
-99,67
-99,83
-99,90
-99,84

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
7 8 9 10 11 12

(1 2 3) 25% 75%

Figure 7: Reduction of CPU times for calculation of arithmetic expressions, q=2 by Dual polarity method

compared with ATT method

10. CONCLUDING REMARKS

In this paper we have proposed a general method for optimization of polynomial expressions by using the
extended dual polarity property. We have introduced the notion of extended dual polarities as a extension of
the very well known term, dual polarity, in Boolean algebra. Based on the extended dual polarity, we have
shown dependencies between two extended dual polarity polynomial expressions. This dependency is used
as a base for deriving the method. All existing methods which exploit the dual polarity property in
optimization [13], [14], [15], [31] can be derived from our method as an particular cases. By using the
proposed method it is possible to derive similar methods for optimization of other polynomial expressions.
For all given cases the processing rules are simple and efficient. Due to that, although being an exhaustive-
search method, the proposed method is effective. Experimental results are given to show the performance of
the extended dual polarity methods.

The proposed optimization method works with minterms. An extension to work with disjoint cubes can
be a promising direction, since a cube based tabular technique, which starts from disjoint cubes [18], is more
efficient than similar techniques starting from minterms [30].

REFERENCES

[1] De Micheli, G. D., Brayton, R., Sangiovanni-Vincentelli, A., “Optimal state assignment for finite state

machines”, IEEE Trans. on CAD/ICAS, Vol. CAD-4, No. 3, July 1985, 269-284.

[2] Drechsler, R., Hengster, H., Schaefer, H., Hartman, J., Becker, B., “Testability of 2-Level AND/EXOR

Circuits”, in Journal of Electronic Testing, Theory and Application, Vol. 14, No. 3, June 1999, 173-192.

[3] Dubrova, E.; Farm, P.; “A conjunctive canonical expansion of multiple-valued functions”, Proc. 32nd

IEEE International Symposium on Multiple-Valued Logic, May 15-18, 2002, 35 -38.

[4] Dubrova, E.V., Muzio, J.C., “Generalized Reed-Muller canonical form for a multiple-valued algebra“,

Multiple-Valued Logic, An International Journal, Vol. 1, 1996, 65-84.

[5] Dubrova, E., Sack, H., “Probabilistic verification of multiple-valued functions”, in Proc. 30th Int. Symp.

on Multiple-Valued Logic, May 2000, 461-466,.

[6] Falkowski, B.J.; Cheng Fu; “Family of fast transforms over GF(3) logic”, Proc. 33rd Int. Symp. on

Multiple-Valued Logic, 2003., May 16-19 2003, 323 -328.

[7] Falkowski, B.J.; Chip-Hong Chang; “Optimization of partially-mixed-polarity Reed-Muller expansions”,

Proc. Int. Symp. on Circuits and Systems, ISCAS '99, Vol. 1, May 30- June 2, 1999, Vol. 1, 383 -386.

[8] Falkowski, B.J.; Rahardja, S.; “Efficient computation of quaternary fixed polarity Reed-Muller
expansions”, IEE Proc. Computers and Digital Techniques, Volume: 142 No. 5, Sept. 1995, 345 -352.

[9] Farm, P. Dubrova, E., Stankovic, R.S., Astola, J., "Conjunctive decomposition for multiple-valued input

binary-valued output functions", Proc. TISCP Workshop on Spectral Methods and Multirate Signal
Processing, SMMSP'02, Toulouse, France, September 7-8, 2002, 227-234.

[10] Gao , M., Jiang ,J.-H., Jiang , Y., Li , Y., Sinha , S., Brayton, R., “MVSIS”, in Proc. Int. Workshop on
Logic Synthesis, June 2001, 138-144.

[11] E. Dubrova. Multiple-valued logic synthesis and optimization. In Logic Synthesis and Verification,

Eds.: S. Hassoun and T. Sasao, pages 89-114, Kluwer Academic Publishers, 2002.

[12] Janković, D., “Tabular technique for the fixed polarity arithmetic transform calculation”, XLVII

Conference ETRAN, 2003, Herceg-Novi, Serbia and Montenegro (in Serbian).

[13] Janković, D., Stanković, R.S., Moraga, C., “Optimization of Kronecker expressions using the extended

dual polarity property“, Proc. XXXVII International Scientific Conf, on Information, Communication
and Energy Systems and Technologies, ICEST 2002, Nis, Yugoslavia, 749-752.

[14] Janković, D., Stanković, R.S., Moraga, C., “Optimization of GF(4) expressions using the extended dual

polarity property“,Proc. 33th Int. Symp. on Multiple-Valued Logic, Tokyo, Japan, May 2003, 50-56.

[15] Janković, D., Stanković, R.S., Moraga, C., “Optimization of arithmetic expressions using the dual

polarity property“, 1st Balkan Conference in Informatics, BCI ‘2003, Thessaloniki, Greece, 2003, pp.
402-410.

[16] Janković, D., Stanković, R.S., Drechsler, R., “Efficient calculation of fixed polarity polynomial

expressions for multi-valued logic function“, Proc. 32nd Int. Symp. on Multiple-Valued Logic, Boston,
USA, May 2002, 76-82.

[17] Janković, D., Stanković, R.S., Moraga, C.,"Arithmetic Expressions Optimization Using Dual Polarity

Property", Serbian Journal of Electrical Engineering, Vol. 1, No. 1, November 2003, pp. 71-80.

[18] Janković, D., Stanković, R.S., Drechsler, R., "Cube tabular technique for calculation of fixed polarity
Reed-Muller expressions and applications'', Proc. of a Workshop on Computational Intelligence and
Informational Technologies, June 20-21, Niš, 2001, 81-88.

[19] Karpovsky, M.G.; Stankovic, R.S.; Moraga, C., "Spectral techniques in binary and multiple-valued

switching theory. A review of results in the decade 1991-2000”, Proc. 31st Int. Symp. on Multiple-
Valued Logic, May 22-24, 2001, 41 -46.

[20] Muzio, J.C., Wesselkamper, T.C., Multiple-valued Switching Theory, Adam Hilger, Bristol, 1986.

[21] Rahardja, S.; Falkowski, B.J.; “Efficient algorithm to calculate Reed-Muller expansions over GF(4)”,

IEE Proc. Circuits, Devices and Systems, Vol. 148, No. 6 , Dec. 2001, 289 -295.

[22] Rudel , R., Sangiovanni-Vincentelli, A., "Multiple-valued minimization for PLA optimization", IEEE

Trans. on CAD/ICAS, Vol. CAD-5, No. 9, Sept. 1987, 727-750.

[23] Sarabi, A., Perkowski, M.A., “Fast exact and quasi-minimal minimization of highly testable fixed

polarity AND/XOR canonical networks”, Proc. Design Automation Conference, June 1992, 30-35.

[24] Sasao, T., "Multiple-valued logic and optimization of programmable logic arrays", IEEE Computer,
Vol. 21, 1988, 71-80.

[25] Sasao, T., “EXMIN - A simplification algorithm for exclusive-or-sum-of-product expressions for

multiple-valued input two-valued output functions”, 20th Int. Symp. on Multiple-Valued Logic,
Charlotte, North Carolina, May 23-25, 1990, 128-135.

[26] Sasao, T., “A transformation of multiple-valued input two-valued output functions and its application to

simplification of exclusive-or-sum-of-products expressions”, ISMVL-91, 1991, 270-279.

[27] Sasao, T., Butler, J.T, "A design method for look-up table type FPGA by pseudo-Kronecker

expansions'', Proc. 24th Int. Symp. on Multiple-valued Logic, Boston, Massachusetts, May 25-27, 1994,
97-104.

[28] Sasao, T., Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999.

[29] Stankovic, R.S., Spectral Transform Decision Diagrams in Simple Questions and Simple Answers,

Nauka, Belgrade, 1998.

[30] Tan, E.C., Yang, H., "Fast tabular technique for fixed-polarity Reed-Muller logic with inherent parallel

processes'', Int.J. Electronics, Vol.85, No.85, 1998, 511-520.

[31] Tan, E.C., Yang, H., “Optimization of Fixed-polarity Reed-Muller circuits using dual-polarity

property”, Circuits Systems Signal Process, Vol. 19, No. 6, 2000, 535-548.

[32] Tsai, C., Marek-Sadowska, M., “Generalized Reed-Muller forms as a tool to detect symmetries”, IEE

Proc. Computers and Digital Techniques, Vol. 141, No. 6, November 1994, 369-374.

[33] Tsai, C., Marek-Sadowska, M., “Boolean functions classification via fixed polarity Reed-Muller forms”,

IEEE Trans.Comput., Vol. C-46, No. 2, February 1997, 173-186.

[34] Stankovic, R.S., Jankovic, D., Moraga, C., “reed-Muller-Fourier versus Galois field representations of

four-valued logic functions”, Proc. 28th Int. Symp.On Multiple-Valued Logic, May 27-29, 1998, pp. 186-
191.

[35] Green, D.H., “Dual forms of Reed_Muller expansions”, IEE Proc. Computers and Digital Techniques,

Vol 141, No. 3, 1994, pp. 184-192.

Appendix

Examples of polynomial expressions for binary and multiple-value functions.

A.1 Reed-Muller expressions
Polynomial expression (1) defined over Galois field GF(2) is very well known as Reed-Muller expression of
Boolean functions. All calculations are done in GF(2) i.e. operations addition and multiplication are addition
modulo 2 and multiplication modulo 2, respectively. Reed-Muller expressions have the form

[] [] FFR ⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡⊗⎟

⎠
⎞

⎜
⎝
⎛⊗=⎟

⎠
⎞

⎜
⎝
⎛⊗⎟
⎠
⎞

⎜
⎝
⎛⊗=

==== 11
011)1(1),,(

11111

n

ii

n

i

n

ii

n

in xxxxf K

where F is the truth vector of Boolean function f.

Example 11: Reed-Muller expression of a 2-variable Boolean function f, given by the truth-vector
[]T1,1,1,0=F , is given by

[] []()
211

2121

11
01

11
0111),(

xxx

xxxxf

⊕=

⋅⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡⊗⎥⎦

⎤
⎢⎣
⎡⊗= F

A.2 Kronecker expressions

Kronecker expression of Boolean function f given by the truth vector F is given as

FTX ⎟
⎠
⎞

⎜
⎝
⎛⊗⎟
⎠
⎞

⎜
⎝
⎛⊗=

==

ii p
n

i

p
n

inxxf
111),,(K

where
[]
[]
[]⎪
⎩

⎪
⎨

⎧

=
=
=

=
,2,
,1,1
,0,1

iii

ii

ii
p

pxx
px
px

iX

and

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

=

,2,
10
01

,1,
11
10

,0,
11
01

i

i

i

p

p

p

p

iT

The vector [] { }2,1,0 ,,,1 ∈= i
T

n ppp KP determines the kind of expansions used for each variable where
0=ip denotes positive Davio expansion, 1=ip denotes negative Davio expansion and 2=ip denotes

Shannon expansion. Used operations are modulo 2 operations.

Example 12: Kronecker expression of a 2-variable Boolean function f, given by the truth-vector
[]T0,1,1,0=F , for a vector []T1,2=P is given by

[] []()
21121

21121

11
01

10
011),(

xxxxx

xxxxxf

⊕⊕=

⋅⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡⊗⎥⎦

⎤
⎢⎣
⎡⊗= F

A.3 GF(4) expressions
If q=4 and addition and multiplication are carried out in GF(4) (as specified in Example 1) then (1)
represents GF-expressions for a 4-variable function. Exponentiation in GF(4) is defined in Table 14. Notice
that if the Table 16 is viewed as a matrix whose rows correspond to the rows in the table, then this matrix is
the inverse matrix for the basic GF(4) transform matrix.

Table 14: Exponentiation in GF(4).

 0(.) 0 1(.) 2(.) 3(.)
0 1 0 0 0
1 1 1 1 1
2 1 2 3 1
3 1 3 2 1

Example 13: The basic GF(4) transform matrix is given as

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

1111
3210
2310
0001

)1(GT .

The GF(4) spectrum and the corresponding polynomial expression for a two-variable four-valued function f,
given by the truth-vector []T1,0,0,1,2,2,2,2,1,1,0,3,1,1,3,0=F are given as

() []T0,0,1,0,0,3,0,3,1,1,1,0,3,2,2,0)1()1()(=⊗== FGGF2TS
and

2
3
1

2
2

2
1

2
1

3
21

2
2121

3
2

2
2221 33322),(xxxxxxxxxxxxxxxxf ++++++++= ,

respectively.

A.4 Arithmetic expressions
Arithmetic expressions are closely related to Reed-Muller expressions since they are defined in terms of the
same basis, however, with variables and function values interpreted as integers 0 and 1 instead of logic
values. In this way, arithmetic expressions can be considered as integer counterparts of Reed-Muller
expressions.

FAX)()(),,(1 nnxxf n =K
where

[]i

n

i
xn 1)(

1=
⊗=X , ⎥

⎦

⎤
⎢
⎣

⎡
−

⊗=
= 11

01
)(

1

n

i
nA ,

and addition and multiplication are arithmetic operations.)(nA represents the arithmetic transform matrix
of order n.

