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Abstract—In many applications of circuit design and synthesis, it is natural and in some in-
stances essential to manipulate logic functions and model circuits using word-level represen-
tations and arithmetic operations in contrast to bit-level representations and logic operations.
This paper reviews linear word-level structures and formulates their properties for combina-
tional circuit modeling. The paper addresses the following problem: given a library of gates
with their corresponding word-level representations such as linear arithmetic expressions or re-
spective graph structures, find a word-level model of an arbitrary combinational circuit/netlist
using that library of gates and minimizing memory allocation and time delay requirements. We
present a comprehensive study on linearization assuming various circuit processing strategies.
In particular, we develop a new approach to manipulate linear word-level representations by
means of cascades. The practical applicability of linear structures and developed algorithms is
strengthen by considering the problem of timing analysis. All this is supported by the experi-
mental study on benchmark circuits.

1. INTRODUCTION

In the computer-aided design of integrated circuits, word-level structures are defined as groupings
(corteges') of uniform objects: bits, functions, etc. Thus, the hexadecimal representation of a binary
number can be considered as a word-level structure obtained by decomposing the binary number
into groups of four bits. Word-level structures are described by arithmetic expressions, tabular or
graph representations, those parts are classified to be either linear or non-linear. Linearity of word-
level structures is important while performing the linear transformation of variables [4], finding
linear arithmetic expressions [3], and designing linear word-level decision diagrams [2]. Therefore,
a special modeling mechanism is required to work with various linear word-level structures.

We observe that the linear word-level modeling can be accomplished in two possible ways. The
first way is based on high-level abstract representations such as linear word-level diagrams [2].
Although finding linear sub-parts of a high-level representation is viable?, there is a little practical
impact of such modeling. It has been proved in [3] that a Boolean function can be represented
by a set of linear arithmetic expressions. Using graph terminology, this statement means that an
arbitrary word-level decision diagram is composed by a set of linear word-level diagrams. However,
there is no obvious link between an abstract model like a word-level diagram and a respective
circuit. The levelization of a circuit has been proposed in [2] to overcome this difficulty. The
levelization helps to identify components which have unique representations in terms of linear
word-level diagrams.

! The term “cortege” is used more frequently by eastern researches.
2 Linear word-level diagrams is a border case of classical word-level decision diagrams—linear word-level diagrams
can be found for the limited set of logic functions.
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MODELING COMBINATIONAL CIRCUITS 1019

The second way is based on low-level structural representations and preserves interconnections
of components along with the description of their desired behavior. Controversially, the low-level
structures fail to describe the behavior of an entire circuit. The focus of our interest is a mixed
high- and low-level representation. Within such a mixed-mode modeling, arithmetic expressions
and graph structures become high-level abstractions, whereas the networks of gates (netlists) are
employed for low-level representations. This paper emphasizes a tradeoff between abstract and
structural word-level modeling contrasting novel low-level and mixed-mode representations with
known word-level decision diagrams.

Even though our research is based on the theory presented in [3] for arithmetic expressions and
results reported in [2] for word-level decision diagrams, we seek an answer to the question on what
data structure would be the most efficient for mixed-mode linear modeling. It is also unknown what
kind of grouping procedures are required within the framework of mixed-mode modeling. Thus, we
distinguish three possible strategies to work with circuit components: gate based, level based, and
cascade based. We outline a methodology how to determine various components and introduce the
algorithms of circuit levelization and cascading. These strategies result in different characteristics
of memory allocation and timing for linear word-level models. Both memory requirements and time
delays are essential parameters for simulation and testing of combinational circuits.

The rest of the paper is organized as follows. In Section 2, we collect necessary definitions and
basic terminology. Different word-level models for circuit processing are given in Section 3. The
solution for the timing analysis problem based on linear word-level models is outlined in Section 4.
Section 5 is dedicated to the experimental results on benchmark circuits. Section 6 concludes the
paper and provides the directions of our future work.

2. COMBINATIONAL CIRCUITS AND THEIR WORD-LEVEL REPRESENTATIONS

In the following, we consider a circuit as a network of gates, which are solely combinational,
and a corresponding multi-output Boolean function f as the mapping B™ — B™ over the variable
set X ={x1,...,2,}, where B = {0,1}. Here, n is the number of inputs (variables), and m is
the number of outputs. Below we discuss various word-level representations of the function f:
(i) arithmetic expressions and their “border cases” of linear arithmetic expressions, and (ii) known
word-level graph structures. Throughout the section we seek an answer to the question on what
data structure would be the most efficient for the linear word-level modeling of combinational
circuits.

2.1. Arithmetic Expressions

It is a well known fact that an arbitrary Boolean function can be represented by an arithmetic
expression, also referred to as an arithmetic polynomial or algebraic form, where only arithmetic
operations of addition and subtraction are permissible for all terms.

Example 1. Let us consider the half adder as a two-output circuit of two variables x1 and xs:
fi = z1me (carry) and fy = x1 @ xo (sum). The related arithmetic expressions are f; = z1z2 and
f2 =21+ X9 — 2$1$2.

The fundamental advantage of word-level representations is their ability to describe a multi-
output function by a single arithmetic expression. This is achieved by assigning weights to each
output as a power of two integers: f = 2"~ fi4+.. . +20f,,, where f;, i = 1,...,m, is a single-output
function.

Example 2 (continuation of Example 1). Let us find the arithmetic expression for the multi-
output function of the half adder. Combining arithmetic expressions f; = x122 and fo = x1 +x9 —

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004



1020 POPEL, YANUSHKEVICH

2x1x9 by weighting each output, we obtain a single word-level representation of the half adder:
f=2fi+ fa =21+ 2.

It was found for certain circuits, and the half adder is one of them, that their corresponding
arithmetic expressions have a simplified format composed of terms with at most one literal. Such
expressions are called linear arithmetic expressions and the process of synthesizing them is known
as linearization.

2.2. Linear Arithmetic Expressions

As shown above, any function can be represented by either multiple arithmetic expressions
(an arithmetic expression for each output) or by a single arithmetic expression (a weighted sum of
arithmetic expressions for all outputs). Linearization can be defined as a process of transforming
an arithmetic expression into a linear one where all product terms are comprised of at most one
literal. In general, a linear arithmetic expression ( is given by

C:d0+d1x1+---+dnxnv (1)

where dy,dq, ..., d, are integer-valued coeflicients. Linear arithmetic expressions exploited in this
paper have a number of useful properties.

Property 1. The linear arithmetic expression ( takes only non-negative values. Therefore,

dp >0

<d0 + > dj) >0, for Vdj < 0.
j=1

n

Property 2. The linear arithmetic expression ¢ has the maximum value of do+ ) d;, for Vd; > 0.
j=1

It is necessary that the expression ( carries all required information about the initial function f.
Assigning proper values to all variables allows us to use this information for calculating the integer
value of (, then getting certain bits from the integer value enables the restoration of the original
function f. The idea of masking permits extracting of that information in the form of the linear
expression (. Thus for the function f, the masking operator Z¢~¢{(} extracts the range of bits
between ¢ and p, and results in f = Z87¢{(}.

Example 3 (continuation of Example 2). Applying the masking operator Z2{¢} to the linear
expression ( = x1+x9 of the half-adder, we extract the most significant bits from the integer-valued
vector [0112], and obtain the binary vector [0001] which reflects to f;. The masking operator Z1{(}
extracts the binary vector [0110] which corresponds to the output fs. So, a single linear arithmetic
expression can be deployed to describe several single-output functions.

The following property characterizes the masking operator Z¢{(} for the single-output func-
tion f.

Property 3. For the single-output function f, the masking operator EE{C} selects &-th bit,
n
E=1,..., {logQ <d0 + > dj>—‘ for Vd; > 0, this operation is equivalent to bit-shifting £ times.
j=1

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004



MODELING COMBINATIONAL CIRCUITS 1021

As stated earlier, the process of linearization results in a single linear arithmetic expression (.
However, the problem of finding the appropriate coefficients dy, d1,...,d, is NP-hard. Below, we
formulate a set of conditions to perform an efficient search for linear arithmetic expressions.

Lemma 1. To avoid duplicated results while linearizing the single-output function f, the coeffi-
cients dg, dy, ..., dy, should have values within the following bounds (intervals):

do=0...(2" = 1)
on on
di_—{—J..[—J, i=1,....n.
n n

The coefficients which have values beyond these bounds would result in functions obtained by per-
mutation of already generated ones.

Example 4 (continuation of Example 3). The carry function f; is extracted by applying the
masking operator Z2{(} to the linear arithmetic expression ( = x1 + z2. However, the same func-
tion f; can be derived from the following linear expressions and respective masking operators:
23{271 + 222}, B3{2 4+ 21 + 22}, EH2 + 271 + 222}, EH4da + 422}, ete.

Theorem 1. For the linearization of the single-output function f, it is sufficient to have the

coefficients dg,d1,...,d, such that ’VlogQ (do + i dj)} <mn, for Vd; > 0.
j=1

Proof. According to Lemma 1, the maximum value of the coefficient dy is 2" — 1, and

n n
the maximum values of other coefficients are {—J Therefore, d; < 2" 1If dp = 0 then
n =1

J

n n
{log2 <d0 + > dj>—‘ <log, 2™, which results in {logQ (do + > dj>—‘ <n.
j=1 J=1

Example 5. There are 22° = 16 single-output functions of two variables. All these functions
can be generated by applying the masking operator =¢, where ¢ = 1 or £ = 2, to the following
list of linear arithmetic expressions: z1 + x9, 1 +x1 + 29, 1+ 21 — 22, 1 — 21 + 29, 2 — 1 — T2,
2411 —x9,2—2x1+ 29 and 3 — 1 — 9.

This set of conditions can be generalized for multi-output functions. We use these conditions to
perform a statistical experiment on limitations of linear arithmetic expressions.

2.8. Limitations of Linear Arithmetic Expressions

We conducted a statistical experiment to answer the question on how big is the set of functions
which can be represented by linear arithmetic expressions and permissible masking operators. We
considered the entire spectrum of (22”)™ Boolean functions with up to eight input variables (n = 8)
and up to eight outputs (m = 8). This experiment is based on naive linearization which generates
coefficients d; and permissible masking operators in a linear form. The naive linearization can
handle only certain classes of functions.

Example 6 (continuation of Example 1). Let us change the order of the weighted outputs f;
and f5. The resulting arithmetic expression f = 2f; 4+ f1 = 221 + 229 — 3x129 is non-linear.
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Fig.1. A plot of the percentage of successfully linearized circuits with up to eight inputs and up to eight
outputs, axes n and m respectively.

The search space of (22")™ is much larger than m! for the naive linearization. “Success” denotes
the case where a function extracted from the linear expression is identical to a given one. Figure 1
plots the percentage of successfully linearized functions by such an exhaustive search.

Observations. (1) All single output functions of two variables have been successfully linearized
through an exhaustive search for linear expressions. It corresponds to the pick, i.e., 100% of success.

For single output functions of three variables, the percentage of successfully linearized functions is
about 74%.

(2) Allowing permutations for multi-output functions, we reveal that only 51% of two-input
two-output functions are linearized. With the increase of the number of outputs, the percentage
of successfully linearized functions vanishes. Besides, the run-time of such an exhaustive search for
functions with more than four outputs is impractical.

(3) We unveiled that the linearization can be efficiently applied only to functions with less than
four inputs and four outputs. This is the motivation of our interest to another approach introduced
in [3].

Next we discuss linear word-level representations suitable for creation of netlist models.

3. LINEARIZATION OF NETLISTS

As demonstrated earlier (see, for example, Fig. 1), the linearization in general can be efficiently
applied to either certain classes of circuits or any circuits with up to four inputs and four outputs.
Following the problem stated above for low- or mixed-mode modeling of combinational circuits, we
determine three linearization strategies based on gate, level, and cascade representations.

Gate based. This basic strategy is based on replacing gates in a given netlist by corresponding
linear arithmetic expressions. Obviously, the resulting model includes the set of linear arithmetic
expressions. Since the number of linear components is the same as the number of gates, this
strategy explores limited possibilities of a word-level representation. However, it can be useful as
an intermediate model in word-level modeling of small size designs.

Level based. This strategy uses the fact that an arbitrary function can be represented by a set
of linear arithmetic expressions. Since practical combinational circuits have a multi-level structure,
a linear model can be derived for each of its levels. Thus, a set of linear arithmetic expressions is
as large as the number of levels in the circuit [2]. However, the problem of canonicity arises for
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such a representation, where different sets of linear models can be synthesize for various partitions
of a netlist.

Cascade based. This linearization strategy is based on cascading, where a reasonably small set
of gates results in a linear model. However, with an uncertainty of partitioning/cascading process,
the problem of canonicity arises as well.

The hypothesis of our study is that different strategies of grouping gates in a given circuit can
significantly affect characteristics of a designing linear model. Further analysis of those strategies
is based on the following theorem.

Theorem 2. For an arbitrary variable x and a single output function f described by a linear
arithmetic expression ¢ and a masking operator = (f = Z{(}), linear expressions can be determined
for the following functions: (i) f Az, (ii) fVz, (iii) f &z, and (iv) f.

The proof is given in [3].

Example 7. Let us consider the function f given by the linear arithmetic expression { = 1 —
r1 + o2 and the masking operator Z: f = Z2{1 — x1 + x2}. The following set of linear expressions
can be found for the basic operations between the function f and the variable xz3: (i) f A x3 =
E3{1 — x1 + 20 + 223}, (i) f Va3 =233 — 21 + 23 + 223}, (iil) f ® 23 = Z2{1 — 21 + 22 + 223},
and (iv) f = Z2{2 + 21 — z2}.

3.1. Gate Based Linearization

The gate based linearization has a number of advantageous characteristics for the computer-
aided design and simulation:

(i) Memory required for the gate representation is comparable to memory required for the storage
of its linear arithmetic expression. Indeed, in a typical netlist, any gate is specified by its inputs,
performed function, and the output, whereas a linear model of a gate is comprised of coefficients
and a masking parameter.

(ii) This gate based model is the most appropriate for the analysis and simulation of small size
circuits.

(iii) The gate based model is considered being flexible for future technologies, where gates are
not associated with levels or partitions, but considered as nodes of a three dimensional structure.

All basic gates have their linear word-level counterparts. Moreover, this fact follows from the
above theorem.

Corollary 1. A linear arithmetic expression can be found for any k-input AND, OR or EXOR
gates.

The proof is based on the principle of mathematical induction. Thus, n-input basic gates can
be represented by the following linear arithmetic expressions [3]:

[1]

AND A % by m{2j—1—n+ i(oi—k(—l)"ixi)},
=1 =1

[1]

OR \T} xi' by m{2j1 -1+ i(ffz‘ + (—1)‘”90@')},
=1 3

=1

[1]

EXOR é z]" by 1 { an(oi + (—1)‘71':01-)} ,
i=1 i=1
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Fig. 2. The benchmark circuit C17 and its gate based linearization.

where

. oi __ €Ty if O'Z':O
j=lloggn]+1, and ] _{Tz‘ if o= 1. (2)

Note that for AND and OR gates, the output is extracted from the most significant bit m as
indicated by the masking operator Z™. The output of EXOR gate is extracted from the least
significant bit, i.e., Z!.

Although linear expressions can be uniquely assigned to all gates within a combinational circuit
and the total memory allocation for the netlist is less than for the original circuit, the practical
applicability of this assignment is restricted to the gate level only. The output of the gate based lin-
earization can be used to speed up circuit simulation, since only arithmetic operations are required

to obtain the output value.

Example 8. Let us consider the benchmark circuit C17 (Fig. 2a). The gate based linearization
is depicted in Fig. 2b.

3.2. Level Based Linearization

The level based linearization has a number of attractive features for combinational circuit mod-
eling, namely:

(i) The model is built directly from the given multi-level circuit; the number of linear arithmetic
expressions is equal to the number of levels in a circuit.

(ii) Memory requirements are acceptable for large combinational and even multiple-valued cir-
cuits [2].

To implement a linearization algorithm in compliance with the level based processing, level labels
must be assigned to all gates. We include an additional field level into the standard description of
a gate G to keep the information about its level. Our levelization algorithm works as follows:
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X1
X, Attach level labels
to all gates and
X3 initialize to zero
X4
X5
Select an input
X and traverse the circuit
to corresponding
outputs
X2
*3 Increment the level label
X4 for the current gate
X5 if the condition is met
X
X Determine levels
according
X3 to the obtained
Xy level labels
X5

Fig.3. Levelizing the benchmark circuit C17.

Step 1. Initialize level labels for all gates with zeros: G.level = 0.

Step 2. Consider consequently all paths from each input to outputs. Traverse the circuit from
the current input to corresponding outputs.

Step 3. Increment the current level label for a gate if the current level is less than or equal to
the level of a previous gate: G.level = G.level 4 1, if G.level < GP™¢Y [evel.

Step 4. Go to Step 2 until all paths are covered.

Example 9 (continuation of Example 8). Fig. 3 shows the levelization algorithm in action for
the benchmark circuit C17. The linear model is depicted in Fig. 6a.

3.3. Cascade Based Linearization

As shown earlier, linear arithmetic expressions can be found for all basic gates. However, all
linear expressions obtained for basic gates result in multi-output functions, and the applicability of
the above theorem vanishes. Although extracting certain bits from their word-level representations
through masking gives single output functions, positions of those are different. We distinguish two
sets of basic gates: (i) the set {AND, OR, NAND, NOR} has the masking operator extracting
the most significant bits, and (ii) the set {EXOR, NEXOR} has the masking operator extracting
the least significant bits. This differentiation of basic gates allows us to formulate the following
definition and a corollary.

Definition 1. A single-rail cascade with irredundant inputs is defined having (i) a single wire
which connects adjacent gates, and (ii) a unique assignment of each variable to a gate input.
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A recent survey of representation methods using cascades can be found in [5]. An example of
a single-rail cascade is shown in Fig. 4a. We further classify single-rail cascades as (i) Z2 cascades
composed by the set of gates {AND, OR, NAND, NOR}, and (ii) Z! cascades made by the the
set of gates {EXYOR, NEXOR}.

2

Corollary 2. A linear arithmetic expression can be found for either Z' or 22 cascade of k-input

gates.

The proof is based on Theorem 2 and the fact that =! or =2 cascades are formed by grouping

gates with the identical masking operators which extract either least or most significant bits.

Example 10 (continuation of Example 8). The benchmark function C17 has four single-rail =2
cascades, one of them is depicted in Fig. 4b. The corresponding linear arithmetic expression is
fi=234+ 2 +a—2c}.

(a) (b)

et
]

X1 Xy X3 X1 a c

Fig.4. A single-rail cascade and a =2 cascade from the benchmark circuit C17.

The ultimate goal of the cascading process is to obtain reasonable characteristics of a linear
model, in particular, the minimal set of linear expressions, minimal values of weighted coefficients,
the simple masking procedure, acceptable memory allocation and optimal time delays. To start a
linearization algorithm through decomposing a circuit into a set of cascades, we integrate a cascade
label cascade into the standard description of a gate G. We propose the following cascading
algorithm:

Step 1. Initialize cascade labels for all gates with zeros: G.cascade = 0.

Initialize the cascade counter with one.

Step 2. Consider consequently all paths from each input to outputs. Traverse the circuit from
the current input to corresponding outputs.

Step 3. Assign the current cascade counter to the cascade label of the current gate. Increment
the cascade counter if the traversal reaches an output or fanout > 1.

Step 4. Go to Step 2 until all paths are covered.

Example 11 (continuation of Example 8). The results of the cascading algorithm for the bench-
mark circuit C17 are depicted in Fig. 5. The cascade based linear model is given in Fig. 6b.

Linear arithmetic expressions are obtained for each cascade by naive manipulations discussed
in Section 2. For a netlist of cascades, the linear description of a cascade evaluated by these
manipulations is substituted instead of the original cascade description.

Let us make preliminary evaluation of the level and cascade based strategies for the benchmark
circuit C17 (Fig. 6a shows the result of the level based modeling, the cascade based model is given
in Fig. 6b).

Observations. (1) The cascade based model results in four linear arithmetic expressions: f; =
E3d+z1+a—2c}, fo=Z3{d+x5+b—2c}, b==3{3 —a — 24}, and ¢ = Z2{3 —b—1z2}. Whereas,
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Attach cascade
labels to all gates
and initialize to zero

Select an input
and traverse the circuit
to corresponding
outputs

Increment
the cascade label
for the current gate
if the condition is met

Determine
cascades according
to the obtained
cascade labels

Fig.5. Cascading the benchmark C17.

(a)
Xt — d=E2{3 -x; -x3} h=d |"|f=E23-h-c}
f=x c=E2{3-f-b} £H=E*3-e-c}
d=E52{3 —x; - x4} e=E2{3-g-b}
X, — g=xs ¢ i
x; —2%d+ 2%+ 21b + 20 22h+2c+ 2% 214 + 2%,
X4 —
e /2
X5 —]
(b)
X1 I_
ENd+x+a-2c} £
X2 =263 _x, —
a 23 -x-b} {9
*3 223 —x, —
N EX3 —x3 —xy}
53{4+x5+b—2c}_f2
X5

Fig. 6. Level and cascade based linearizations of the benchmark circuit C17.
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the level based model is comprised of nine linear arithmetic expressions: f; = Z2{3 — h — ¢},
fo=Z2283—e—c},h=d, c=Z2{3—f—-bl,e=22{3—g—0b},d=Z*{3 —x1 — a3}, f = 9,
=Z2{3 — 23— 24}, and g = 5.
(2) In cascade based model, 18 coefficients including the masking parameter should be stored,
whereas the level based model requires 24 coefficients including the masking parameter, and gate
based model needs 24 coefficients as well.

According to these preliminary evaluations, we envision that for large circuits reported effects
will be more impressive (see Section 5 for the discussion of the experimental results).

4. TIMING ANALYSIS

We examine the linear word-level modeling through finding time delays in signal propagation.
Topological timing analysis techniques are employed to make use of mixed-mode modeling and to
supply approximate values of delays which usually suffice in the earlier stages of circuit design.
Other methods with exact nature would be more appropriate to perform final tuning at the last
stages of circuit design. Such methods are computationally expensive and not covered in this
paper. Here, we use the fact that mixed-mode modeling reflects not only functional (high-level)
behavior but also topological (low-level) structure. There are many other competing methods for
an approximate timing analysis, for instance, a conditional delay method [6], and a methods based
on algebraic decision diagrams [1]. This section covers two timing analysis approaches using linear
word-level models.

Level based. The traditional problem of finding the longest topological path is considered. The
output of the levelizing algorithm is used to determine the longest path under the fixed gate delay
model [1].

Cascade based. Since the output of the cascading algorithm determines components that can
be isolated as separate blocks and even simulated independently, the cascade-based technique can
provide more accurate results. Thus, an approximation to the problem of a critical path can be
given, where the critical path is the longest sensitizable path under the fixed cascade delay model.

Example 12 (continuation of Example 8). Let us compare the results of timing analysis for the
benchmark circuit C17 by the level and cascade based modeling.

Level based. The longest topological path is equal to the number of levels, three for the bench-
mark circuit C17, under the fixed gate delay model. Since the circuit is composed of two-input
NAND gates, the fixed gate delay model is considered to be accurate.

Cascade based. The longest sensitizable path in the circuit is determined by (1) building cas-
cades, and (2) calculating the delay under the fixed cascade delay model. This delay for the
benchmark circuit C17 is equal to three.

Our experimental results on timing analysis are reported below.

5. EXPERIMENTS

All algorithms were coded in C++ and integrated into a single program neofractropy. The
experimental results were obtained on a Pentium III 1.0 GHz workstation with 256 Mb of memory.
We performed all experiments on the ISCAS852 benchmark set. This section shows the outcome of
the levelization, cascading, and linearization algorithms through three sets of experiments, namely:

(i) comparing different representations based on gate, level or cascade processing for building
word-level models;

3 http://www.cbl.ncsu.edu/CBL_Docs/iscas85.html
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(ii) building linear models and evaluating memory requirements for these models;
(iii) analyzing topological delays under these models.

5.1. Comparison of Different Netlist Representations

Table 1 outlines the characteristics of all combinational circuits from the ISCAS85 benchmark
set. The column labelled Dataset gives the names of those circuits, and the column Function shows
their functional characteristics. The number of inputs, outputs and gates of those circuits are given
by the columns #lInputs, #QOutputs and #Gates respectively. The rest of the table contains our
experimental results. Thus, the columns labelled #Levels and #Cascades give the results of the
levelizing and cascading algorithms obtained by our neofractropy program.

In our experiments, we distinguish two types of cascades: ones composed of AND, OR, N AND
and NOR gates; and cascades formed of EXYOR and NEXOR gates and their variations. This
is done because of necessity to find linear word-level models for separate cascades (see Section 3).
Let us consider two benchmark circuits C17 and C432 in more detail.

The benchmark circuit C17 has five inputs, two outputs, and six NAND gates (Example 8). The
levelizing algorithm determines three levels: two gates per level (Fig. 2a). The cascading algorithm
finds four cascades with the density of one or two gates per cascade (Fig. 2b).

The benchmark circuit C432 has 36 inputs, 54 outputs, and 160 gates including NOT, AND,
NAND, NOR and EXOR. The levelizing algorithm finds 17 levels with nine gates per level on
average. The cascading algorithm determines 122 cascades with the number of gates per cascade
ranging from one to four.

Observations. (1) It takes less than a second to levelize and cascade the entire set of benchmarks,
because the computational complexity of both algorithms is in O(#Gates).

(2) These results reveal that in (13274 — 8422)/8422 = 58% cases cascades are formed of two
and more gates (the values of 13274 and 8422 are taken for the total number of gates and cascades
respectively). This number can be further justified by the fact that the vast majority of gates in the
selected benchmark set has the fanout greater than one. Such a condition terminates the process
of forming cascades (see Section 3). Thus, for example, the benchmark circuit C17 has six gates,
two gates have the fanout = 2, four others have the fanout = 1. Hence, only latter gates would
be possible candidates for forming a cascade.

(3) The worst ratio gates per cascade of 1.248 is obtained for the multiplication circuit C6288:
ratio = 2416/1936 = 1.248. The result for the ALU circuit C880 has the best ratio gates per

Table 1. Experimental results on circuit levelizing and cascading

Dataset Function #Inputs | #Outputs | #Gates | #Levels | #Cascades
C17 — 5 2 6 3 4
C432 Interrupt control 36 54 160 17 122
C499 Error detection 41 32 202 11 144
C880 ALU 60 32 383 24 215
C1355 Error detection 41 32 546 24 392
C1908 Error detection 33 25 880 40 506
C2670 ALU/control 233 108 1193 32 713
C3540 ALU 50 24 1669 47 961
C5315 ALU 178 163 2307 49 1397
C6288 Multiplication 32 32 2416 124 1936
C7552 Adder/comparator 207 109 3512 43 2032
Total 13274 414 8422
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cascade: ratio = 383/215 = 1.78. Thus, some improvements are expected in timing analysis for
the benchmark circuit C880, whereas no improvements are envisioned for the benchmark circuit
(6288 (see the columns #Gates and #Cascades from Table 1).

5.2. Evaluation of Memory Requirements

Table 2 gives the results of experiments on memory requirements for all linear models. The
column ISCAS shows the memory allocation for the circuits in ISCAS85 format. Another widely
used format EDIF requires much more memory, and therefore not covered by this study. The results
reported in the next column LDD are taken from [2]. The rest of the table, labelled neofractropy,
contains the results of our experiments using gate based, level based, and cascade based strategies
for circuit processing. To speed up the program, we created a database of linear representations for
all basic gates (AND, OR, NAND, NOR, EXOR, NOT and BUFF) with up to eight inputs.
For example, only two coefficients of an arithmetic expression are required to represent two-input
AND gate (see Section 2 for detail study).

Table 2. Experimental results on memory requirements (in bytes) for linearized benchmark circuits

neofractropy
Dataset ISCAS (original) LDDs [2] gates levels cascades
C17 1303 201 174 150 135
C432 18991 4601 5336 4066 3741
C499 21989 5427 4410 2473 2897
C880 37844 8306 12001 10496 7819
C1355 59573 16 850 18209 12028 11980
C1908 78574 22491 20530 15068 12056
C2670 110025 36 305 27961 19982 17575
C3540 145359 54 857 39815 30421 29868
C5315 220596 107392 57489 42513 10145
C6288 255406 68572 87071 59 066 56183
C7552 311939 271970 85351 63189 54088
Total 1261599 596 972 358 347 259452 206 487

Observations. (1) The linear word-level models built by our neofractropy program using level
based processing outperforms recent results reported in [2] and related to the linear decision diagram
modeling.

(2) The cascade linear models require (259 452 — 206 487) /259 452 = 20% less memory than their
level counterparts. These results indicate that memory consumption can be reduced significantly,
e.g. up to a factor of twenty for the benchmark circuit C5315, comparing to the original ISCAS85
format.

(3) The creation of gate, level and cascade linear models is computationally efficient. It takes less
than an hour to build word-level models for the entire set of benchmark circuits. The computational
complexity of the circuit linearization algorithm is in O(#Gates) for the gate based processing, in
O(#Levels) for the level based processing, and in O(#Cascades) for the cascade based processing.

5.8. Timing Analysis

Table 3 compares the topological delays of level based and cascade based linear models with
the known approximation methods: the conditional delay method [6]*, and the method based on

4 Here, we compare the results with the best reported values for the conditional delay method.
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Table 3. Experimental results on timing analysis

neofractropy delay
Dataset delay [6] delay [1] lovels cascades
C17 - - 3 3
C432 17 23 17 15
C499 11 24 11 10
C880 24 15 24 16
C1355 24 - 24 23
C1908 37 - 40 28
C2670 30 26 32 28
C3540 46 - 47 35
Ch315 47 34 49 32
C6288 124 - 124 124
C7552 - 38 43 30

algebraic decision diagrams [1]. Our program generates an expected output in terms of longest
paths for the level based modeling (see Section 4).

Observations. (1) The cascade based modeling shows more accurate results for the longest sen-
sitizable path under the fixed delay model. On the one hand, although these results are classified
as approximate, they can be used as a lower bound for exact timing analysis methods. On the
other hand, the results obtained through level based modeling determine upper bound values un-
der the fixed delay model. Based on the results reported in Table 3, one can make a conclusion
that the values taken from [6] are within intervals bounded by the outputs of cascade and level
based modeling. For example, the delay for the benchmark circuit C5315 listed in [6] is 47, whereas
the level based linear modeling results in 49, and the cascade based linear modeling estimates the
delay in 32.

(2) Results of the cascade timing analysis largely depend on the ratio gates per cascade discussed
previously. This fact is justified by the way how single-rail cascades are built (see Section 3). For
the circuit where each cascade contains a single gate, the output of the level based modeling must
be equal to the output of the cascade based modeling. Thus, the benchmark circuits C432, C499
and C6288 have low ratios gates per cascade, and the corresponding delays show no or very little
improvements comparing to the level based modeling. For example, the multiplication circuit C6288
with the ratio = 1.248 has identical delay values of 124 for both cascade and level based modeling.

6. SUMMARY

The paper surveyed linear word-level structures and their properties for combinational circuit
modeling. The problem of modeling was studied at both structural and behavioral levels. Different
strategies of circuit processing was outlined taking advantage of linear word-level models. The
practical problem of timing analysis was considered employing different linear word-level models.

Modeling approaches outlined above offer great potential for reducing design time and cost of
simulation on general purpose hardware using software tools. However, the successful use of linear
word-level structures depends on the effective utilization of hardware tools. In addition to software
driven simulation described above, combinational circuits can be further modelled and simulated
on inexpensive hardware: programmable logic devices. Currently, we focus on the problem of
hardware support for modeling. We also foresee other practical applications of linear word-level
models in circuit verification and testing.
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