
Automation and Remote Control, Vol. 65, No. 6, 2004, pp. 938–954. Translated from Avtomatika i Telemekhanika, No. 6, 2004, pp. 112–128.
Original Russian Text Copyright c© 2004 by Kolpakov, Latypov.

DECISION DIAGRAMS

Approximate Algorithms for Minimization

of Binary Decision Diagrams on the Basis

of Linear Transformations of Variables

A. Kolpakov and R. Kh. Latypov

Kazan University, Kazan, Russia
Received December 17, 2003

Abstract—Algorithms for an approximate minimization of binary decision diagrams (BDD)
on the basis of linear transformations of variables are proposed. The algorithms rely on the
transformations of only adjacent variables and have a polynomial complexity relative to the
size of the table that lists values of the function involved.

1. INTRODUCTION

One of the main problems in the design of the equipment involving digital devices is the problem
of optimizing the sizes of circuits. A decrease in the sizes of circuits at the stage of the design of
devices makes it possible, on the one hand, to save means at the stage of production of circuits
and can lead, on the other hand, to an appreciably increased rate of the computation process on
account of a decrease in the delay time.

The idea of the linear transformation of input variables in the problem of minimization of circuits,
which is put forward in [1], lies in the fact that the calculation of the initial output function is
broken up into two steps. First, instead of the initial output function, the circuit calculates a
certain “changed” function and then the second step is taken to carry out the linear transformation
of variables so as to derive a “correct” output value. Thus, the value of the initial function is equal
to f(x1, . . . , xn) = L(f̃(x1, . . . , xn)), where L is the linear transformation of input variables and f̃
is the function calculated by the circuit. Various aspects of the linear transformations of variables
are set out in [2, 4]. Another approach based on the linear presentation of the structure of data is
evolved in [5–8].

The practical implementation of a linear transformation makes sense where the linear trans-
formation L and the function f̃ are performed in a simpler way than the initial function; the
minimization problem consists in the search for the simplest function f̃ in the sense of its im-
plementation. Whereas the effective implementation of the linear transformation on the basis of
binary adders has a satisfactory solution [9], the exact minimization of circuits on the basis of linear
transformations is unfortunately made difficult in view of a large number of possible transforma-
tions, which grows fast with an increase in the sizes of circuits. For this reason, the problem of the
search for approximate minimization algorithms is urgent.

The binary decision diagrams (BDD) offer an effective method of handling large data structures
in an effort to optimize and verify them and calculate various characteristics [10–14]. The BDD
structure directly maps into the architecture of hardware tools, for example, programmable logic
units, and finds use at the stage of synthesis of these units [14–16].

The linear transformations for the BDD minimization represent a reassuring concept because
data structures proper remain invariable and only input variables undergo changes (recoding).

0005-1179/04/6506-0938 c© 2004 MAIK “Nauka/Interperiodica”

APPROXIMATE ALGORITHMS FOR MINIMIZATION 939

Instead of the operations performed on the table of the function, only transformations of input
variables are produced, for which reason use is made of n × n matrices rather than matrices of
dimension 2n × 2n, where n is the number of variables. The simplest linear transformation is the
renaming or the permutation of variables. The complexity of the search for the optimal permutation
of variables is displayed in [17, 18]. It amounts to O(n2 ∗ 3n), where n is the number of variables.
The use of this method reduces the time it takes to seek the optimal result, on the average, by 50%.
But in the sense of complexity, O(3n) is a very large value. The algorithm is set out in [19] that
serves to find an optimal linear transformation of variables of the Boolean function with the aim
to minimize exactly a requisite BDD. It is shown that the BDD can markedly be cut down using
the linear transformations. In view of a large computation complexity, this algorithm is suitable
only for functions that have no more than 6 incoming variables. In [20], the BDDs of incompletely
prescribed functions are minimized with the use of a strict symmetry: the symmetric blocks are
fixed and the common permutations are used for the remaining portion. The method is sufficiently
effective, but it is proved that the results will be worse than in the case of common permutations,
although the processing time decreases.

The analysis of the works reveals that the effective minimization algorithms are set up only for
particular cases of linear transformations. An exact minimization is laborious. In this work, we
suggest algorithms for an approximate minimization of BDDs. As the basis of the algorithms, we
use transformations from a more common class in comparison with the linear transformation class,
namely, the class of affine transformations of adjacent variables. Experimental results are laid down
that confirm the effectiveness of the suggested algorithms.

The work presents the issues under discussion in the following sequence. First, we describe
basic definitions of the linear and affine transformations and the binary decision diagrams. Then,
we investigate the effect of linear and affine transformations on BDDs and single out the idea of
minimization algorithms. Further, we present algorithms for an approximate minimization of BDDs
and some experimental results.

2. BINARY DECISION DIAGRAMS

We will consider a Boolean function f : Bn ⇒ B of variables x1, . . . , xn. It is possible to correlate
to any Boolean function a binary tree (Fig. 1) in which each nonterminal vertex is denoted by a
variable xi and two branches emerging from it identify the decomposition of the function into two
cofunctions f = xifxi=0 ∨ xifxi=1, 1 ≤ i ≤ n.

In developing BDDs from a binary tree, use is made of the reduction of excessive subgraphs.
We will consider the basic types of applied reductions.

Type I. Reduction of isomorphic subgraphs. It is only one of all the isomorphic subgraphs that
is left intact. The input of the cancelable subgraph is redirected to the input of the isomorphic
subgraph (the example of this reduction is shown in Fig. 2a).

0 1 1 1 0 0...

...

0

0

01 1

1

f

0

f

1

f

2

f

3

x

2

x

1

x

2

Fig. 1. Example of a binary tree (the expansion in two variables is shown in detail).

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

940 KOLPAKOV, LATYPOV

Fig. 2. Operations on the binary tree for development of BDDs.

x

1

0

x

2

x

1

x

3

x

3

x

3

x

3

1101000

0 0 0 0

0

0

0 1

1 1 1 1

1

1

x

3

x

3

x

3

x

3

x

2

x

2

x

1

x

1

x

2

0 1

x

2

x

3

x

3

0 1

Fig. 3. Example of design of a BDD.

Type S. Reduction of redundant vertices. The vertex a is canceled, both outputs of which are
the inputs of one and the same vertex b. The input of the canceled vertex a is redirected to the
input of the vertex b (the example is shown in Fig. 2b).

The BDD of any kind must be ordered, i.e., any variable must occur merely once on any of the
paths from a vertex to the root of the graph, and it must be reduced, i.e., more reductions than the
possible ones applied to the diagrams of this type do not exist. The reduced and ordered BDDs
(ROBDDs) prescribe a canonical presentation of a Boolean function.

Example 1. Figure 3 illustrates the process of developing a BDD for the function f of variables
x1, x2, x3, which is preset by the truth vector 00010110.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

APPROXIMATE ALGORITHMS FOR MINIMIZATION 941

3. LINEAR AND AFFINE TRANSFORMATIONS OF VARIABLES

The linear transformation of variables means that each variable is replaced by a certain modulo
2 sum of variables, in which case some variables may not enter into the sum under consideration.
In addition, the affine transformation [21] involves the negation assigned to some variables.

Example 2. The affine transformation specified by equalities for the input variables

x1, x2, x3, x4,

y1 = x1 ⊕ x3,

y2 = x4,

y3 = x2 ⊕ x3,

y4 = x2

or in the matrix form

y1

y2

y3

y4

1

=

1 0 1 0 1
0 0 0 1 0
0 1 1 0 0
0 1 0 0 0
0 0 0 0 1

×

x1

x2

x3

x4

1

=

x1 ⊕ x3 ⊕ 1
x4

x2 ⊕ x3

x2

1

, (1)

means that x1 ⊕ x3 instead of x1 is fed to the first input, x4 instead of x2 is fed to the second input,
x2 ⊕ x3 is fed to the third input, and x2 is fed to the fourth input.

Let X =

x1

x2

. . .
xn

 be a prescribed vector of input variables, Y =

y1

y2

. . .
yn

 be a vector of transformed

variables, and D =

d1

d2

. . .
dn

 be a certain binary vector. Then, the linear transformation of variables is

preset by the relation Y = TX and the affine transformation is preset by the expression Y = TX⊕D
for a certain nonsingular matrix T , all operations being performed on the field GF (2). The matrix T
defines a method of the linear transformation. The nonsingularity of the matrix T implies that
it is possible to restore uniquely the initial input vector X if the vector Y is known, i.e., there
exists an inverse transformation that is also a linear one. The unit value of the component of the
vector D signifies that the negation is assigned to an appropriate transformed variable. The affine
transformation can be reduced to a linear one if we include an additional unit digit in the column
of variables and border the transformation matrix:

y1

y2

. . .
yn

1

=

t11t12 . . . t1nd1

t21t22 . . . t2nd2

.
tn1tn2 . . . tnndn

0 0 . . . 0 1

x1

x2

. . .
xn

1

. (2)

Linear transformations can lead to an appreciable decrease in the number of vertices (nodes) in
a BDD.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

942 KOLPAKOV, LATYPOV

Fig. 4. Result of applying the affine transformation L−1 to the function f(y1, y2, y3, y4) = 01011100011100010.

Example 3. Let us consider two Boolean functions prescribed by the truth vectors f(y1, y2,
y3, y4) = 0101110001110001 and f̃(x1, x2, x3, x4) = 0000101000111111. Figure 4a displays the
BDD corresponding to the function f and Fig. 4b displays appropriate functions f̃ . We will denote
by L the affine transformation (2) described in Example 2. It is easy to verify that f(y1, y2, y3, y4) =
L(f̃(x1, x2, x3, x4)). On the other hand, the function f̃ is found from the function f by applying
an affine transformation L−1 that is inverse to L, which is given by the equalities

x1 = y1 ⊕ y3 ⊕ y4,

x2 = y4,

x3 = y3 ⊕ y4,

x4 = y2.

The number of nodes in the BDD dropped from 7 to 5 as a result of this transformation.

Later on, under the minimization of a BDD will be understood a decrease in the number of nodes
in the BDD. In the course of the minimization of a BDD with the aid of linear transformations,
the main problem lies in a large number of the versions of transformations: in all, there exist
n−1∏
i=0

(2n − 2i) nonsingular linear transformations of the variables x1, . . . , xn and 2n
n−1∏
i=0

(2n − 2i)

affine transformations. These numbers are very large, and so even at the available powers of
computers, it is possible to solve the minimization problem by exhaustion only up to 6 variables
inclusive.

4. EFFECT OF AFFINE TRANSFORMATIONS ON BDDs

Let the initial function be expanded in the two variables

f = xixjfxi=0,xj=0 ∨ xixjfxi=0,xj=1 ∨ xixjfxi=1,xj=0 ∨ xixjfxi=1,xj=1

or

f = xixjf0 ∨ xixjf1 ∨ xixjf2 ∨ xixjf3.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

APPROXIMATE ALGORITHMS FOR MINIMIZATION 943

We will consider the case of i = 1, j = 2 and the effect of the linear nonsingular transformations of
input variables x1 and x2 on the function (there is a total of five nonidentical linear transformations).

The linear transformation x1 = x1 ⊕ x2, x2 = x2 results in the permutation of f0, f3, f2, f1

cofunctions; the transformation x1 = x1, x2 = x1 ⊕ x2 results in the permutation of f0, f1, f3, f2; the
transformation x1 = x1⊕x2, x2 = x1 results in the permutation of f0, f2, f3, f1; the transformation
x1 = x2, x2 = x1⊕x2 results in the permutation of f0, f3, f1, f2; and transformation x1 = x2, x2 = x1

results in the permutation of f0, f2, f1, f3.
The considered transformations do not afford the permutations of functions f0 and fk, k = 1, 2, 3.

To avoid this restriction, we will consider the vector (x1, x2, 1) instead of the vector (x1, x2). This
enables us introduce the negation of variables, i.e., to extend the transformation to the affine one
and reduce the affine transformation x1 = a11x1 ⊕ a12x2 ⊕ b1, x2 = a21x1 ⊕ a22x2 ⊕ b2 to the linear
transformation represented by the matrix (1) of dimension 3.

Let us note that the number of possible permutations of four cofunctions is equal to 4! = 24.

This number coincides with the number 2n
n−1∏
i=0

(2n − 2i) = 4(4 − 1)(4 − 2) = 24 of possible affine

transformations of two elements. Thus, to any permutation of cofunctions in the expansion in two
variables there corresponds uniquely an affine transformation of two variables, and vice versa.

We will consider the affine transformations of a large number of variables. For n > 2, the
number 2n(2n − 1)(2n − 2)(2n − 3) . . . 2 × 1 of the permutations of functions is higher than the
number 2n(2n − 1)(2n − 2)(2n − 4) . . . (2n − 2(n−1)) of possible affine transformations. Thus, for
the transformations applied to three variables and more, there is an insufficient number of affine
transformations for prescribing all permutations of cofunctions in the Shannon expansion.

The main idea of the minimization algorithm involved lies in the fact that at each step, the
manipulations are performed only at adjacent levels, which corresponds to the expansion in two
adjacent variables. In this case, instead of affine transformations, use is made of various permuta-
tions of cofunctions.

5. DEVELOPMENT OF THE ALGORITHM

In the minimization of a BDD, the basic problem is the search for the criterion that enables us
to define at each step of the operation which of the possible transformations of adjacent variables
will lead to the BDD minimization. In this case, the complexity of operation of the algorithm must
be markedly lower than that of search algorithms.

As shown above, in the case of the expansion of the function in the first two variables, all values
of the cofunctions can be rearranged between one another with the aid of affine transformations.
We will now consider the expansion in three variables (Fig. 5).

In applying similar transformations to the variables x2 and x3, instead of the considered vari-
ables x1 and x2, the permutable values of the function will become the nodes of level 3, which are
shown in Fig. 5 in the form of functions fji, where i = 0, 1; j = 0, 1, 2, 3. Here, these transforma-
tions rearrange the functions within the rectangles denoted in Fig. 6 in synchronism with the rest
of the rectangles. In other words, in the permutation of fj0 and fk0, the functions fj1 and fk1

also undergo the permutation. In the general case, the process will occur in a similar way, and the
number of rectangles for the level L, L > 1, will be equal to 2L−2.

In the course of the minimization of Boolean functions, it is revealed that the least number of
BDD nodes proves to be in a function of such a form that in the binary tree corresponding to this
function, the end nodes (the resultant values of the function) have packages of identical numbers of
zeros or units, which rather large in length and lie in one subtree. Next, the linear transformations
are used for the ordering of the tree in the sense of the location of zeros and units.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

944 KOLPAKOV, LATYPOV

1

0

0

0

1

110 0 0

1 1 1 1

11

0 0 0

0

...

...

x

3

x

3

x

3

x

3

x

2

f

00

f

10

f

20

f

30

f

01

f

11

f

21

f

31

x

1

x

2

Fig. 5. Example of a binary tree (the expansion of the function in three variables is shown in detail).

1

10

1

11 1 1

0 0

0000

x

1

x

2

x

3

x

3

x

3

x

2

x

3

x

4

x

4

x

4

x

4

x

4

x

4

x

4

x

4

L

 = 0

L

 = 1

L

 = 2

L

 = 3

Fig. 6. Presentation of binary tree sections subjected to the linear transformation with respect to two preceding
variables, depending an the level L.

Definition 1. The weight of a subtree with the vertex g will be called the weight w(g), namely,
the number of resultant units in the subtree with the vertex g (i.e., units at terminal vertices).

Definition 2. The balance of a binary tree will be called the difference between the weights of
the right and the left branch, or the subtrees.

Definition 3. The specific balance w(f, L) at the level L of a binary tree will be called the
sum of balances N = 2L of the subtrees extending from the level L. In other words, w(f, L) =
N
2 −1∑
i=0

(w1i − w0i + w3i − w2i), where w0i, w1i, w2i, and w3i are the weights of requisite subtrees.

Definition 4. An alternative specific balance at the level L of the binary tree will be called the

balance wa(f, L) =

N
2 −1∑
i=0

(w1i − w0i − w3i + w2i).

We will consider the tree up to the second level (Fig. 6). Because there is only one action area,
we will merely order 4 subtrees in their weight by rearranging the elements at level 2 with the aid
of transformations of the elements at levels 0 and 1 (these are the transformations with respect to
the variables x1 and x2).

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

APPROXIMATE ALGORITHMS FOR MINIMIZATION 945

x

1

0 1

x

2

1

0

0

1

x

2

L

L

 + 1

–

w

0

(–

w

0

)

+

w

1

(+

w

1

)
–

w

2

(+

w

1

)

+

w

3

(–

w

2

)

–

w

00

(–

w

00

)

+

w

10

(+

w

10

)

–

w

10

(+

w

20

)

+

w

30

(–

w

30

)

–

w

01

(–

w

01

)

+

w

11

(+

w

11

)

–

w

21

(+

w

21

)

+

w

31

(–

w

31

)

Fig. 7. Presentation of versions of the summation of weights.

At the next level (Fig. 6), we already have 2 areas of the synchronous action in using the
transformations with respect to the variables at the preceding two levels (x2 and x3). We will
consider the weights of 8 outgoing subtrees wij , i = 0, 1, 2, 3, j = 0, 1. Under the transformation
that leads to the permutation of w00 and w10, the permutation of w01 and w11 will also occur. This
procedure will take place at any level, starting from the second one, and there will be 2L quadruples
of this type at the level L.

To each element at the level L of the binary tree there corresponds a pair of elements at the next
level. In other words, to provide a way for a further maximization of the specific weight at a given
level, it is necessary to change the weights of these pairs relative to one another at the level L + 1.
This will redistribute the weights of elements corresponding to them at the level L. Because to one
quadruple at the level L there correspond two quadruples at the level L + 1 and the two versions
out of all the versions have no principal meaning, the versions of the change in the difference of
weights become equal to 2: − + − + or − + + − (Fig. 7).

Let us examine a general case. We assume that there is a certain BDD developed for L + 1
of incoming elements. We will consider the above—mentioned transformations for variables xL

and xL+1. These transformations act synchronously in a similar way on the terminal quadruples
of elements. Because to one quadruple at the level L there correspond two quadruples at the
level L + 1, in order to provide a way of increasing the difference between the weights of the left
and the right portion of this quadruple, it is necessary to increase at the most the difference between
the weights of elements in the left and the right pair. It is possible to reach this effect by way of
the operation on the quadruples at the level L+1. Examining a greater number of elements than 8
at the level L+1 makes no sense because the cells each of 4 elements are maximized at the level L
(because the preferable circuit is the circuit − + −+, etc., and the circuit − + +− is necessary in
view of the limited area of the action of transformations—blocks each of four values, located in one
subtree).

Next, we present the stages of developing an approximate algorithm for minimizing BDDs.

5.1. Algorithm for Ordering a Binary Tree

This algorithm preliminarily puts in order a binary tree, which leads to an appreciable min-
imization of a BDD. The algorithm is effective for the functions of a small number of variables.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

946 KOLPAKOV, LATYPOV

The algorithm maximizes the balance of a tree by maximizing the specific balances or alternative
specific balances of subtrees.

(1) L = 1. Order (rearrange) the functions f0, f1, f2, f3 in such a way that w(f0) ≤ w(f1) ≤
w(f2) ≤ w(f3).

(2) L = 2. Order f00, f10, f20, f30, f01, f11, f21, f31 by way of the permutations of pairs (f00, f01),
(f10, f11), (f20, f21), (f30, f31) so that w(f00) + w(f01) ≤ w(f10) + w(f11) ≤ w(f20) + w(f21) ≤
w(f30) + w(f31). In the case of the successful ordering (the value of w(f, L)) increased), return by
one step or try to increase the value of wa(f, L) by way of the same permutations. If the ordering
is successful (the value of wa(f, L) > w(f, L)), return to L = L − 1 by one step.

(3) L = L + 1, N = 2L. Order fij, i = 0, . . . , 3, j = 0, . . . ,
N

2
− 1 so that

∑
j

w(f0j) ≤
∑
j

w(f1j) ≤
∑
j

w(f2j) ≤
∑
j

w(f3j) by way of the permutations of four subsets: (f00, . . . , f0,N/2−1),

(f10, . . . , f1,N/2−1), (f20, . . . , f2,N/2−1), (f30, . . . , f3,N/2−1). Further, act in the same way as at Step 2.
The algorithm terminates if L is equal to the number of levels in the tree, otherwise we return

to Step 3.
The disadvantages of the designed algorithm are the following. The examined versions of the

circuits (−+ +−, and so on) are urgent only for binary trees of a small size, which depend merely
on three variables. For the functions of a higher number, we obtain more blocks of the types

(− + + −− + +−) (− + + −− + +−)

or

(− + − + − +−+) (− + − + − + −+).

But because the equivalent versions are also versions of the types

(− + + −− + +−) (+ − + + −+)

or

(− + − + − +−+) (+ − + − + − +−),

it is necessary to consider the summands taken in absolute values. In addition, on account of the
conjugation of wa(f, L) and w(f, L), the recycling of the algorithm may occur.

5.2. Modified Ordering Algorithm (A1)

1. L = 1, N = 2. Order (rearrange) the functions f0, f1, f2, f3 in such a way that w(f0) ≤
w(f1) ≤ w(f2) ≤ w(f3).

2. L = L + 1, N = 2N . Maximize the quantity

N/2−1∑
i=0

|w(f0i) + w(f1i) − w(f2i) − w(f3i)|,

by rearranging the subsets ((f00, . . . , f0,N/2−1), (f00, . . . , f0,N/2−1), (f20, . . . , f2,N/2−1), (f30, . . .,
f3,N/2−1).

If the permutation occurred successfully (the maximizable value changed), return by one level.
The cycle comes to an end if L is equal to the number of levels in the tree, otherwise return to

Step 2.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

APPROXIMATE ALGORITHMS FOR MINIMIZATION 947

This version enabled us to do away with the ambiguity of the criterion and a different interpre-
tation of the sequences +−. In addition, in view of the simplification of the criterion, there is no
recycling of the algorithm. However, the presented algorithm does not afford the uniqueness of the
function because a few versions of the location of quadruples are possible.

To reduce the size of the class of functions obtained after the use of the modified algorithm,
we can apply some transformations that do not worsen the described criterion, but prescribe more
clearly the form of the Boolean function. As one of the versions, use can be made of the method
involving the two-level minimization of the binary diagram, which also operates only on adjacent
variables, in order to reduce the size of the binary diagram that selects possible transformations
of adjacent variables. A moderate effect results from the use of the ordering of the value of the
function after the application of the above-described algorithm before the two-level minimization
of the binary diagram. Further, we design a few algorithms, the aim of which is either to reduce
the function to a definite form or to minimize the size, or to attempt to form a binary tree of the
kind that may afford performing the transformations more effectively.

5.3. Two-Level Search Method (A2)

We carry out the search using the transformations only with respect to adjacent variables.
(1) L = 1, N = 2. Minimize the number of nodes in a BDD by rearranging the functions f0, f1,

f2, f3.
(2) L = L + 1, N = 2N . Minimize the number of nodes in a BDD by rearranging the subsets

(f00, . . . , f0,N/2−1), (f00, . . . , f0,N/2−1), (f20, . . . , f2,N/2−1), (f30, . . . , f3,N/2−1).
If the permutation occurred successfully (the number of nodes decreased), return to the upper

position by one level.
The cycle terminates if L is equal to the number of levels in the tree, otherwise return to Step 2.

5.4. Algorithm for Symmetry Revealing (A3)

(1) L = 1, S = 0, N = 2. Reveal the symmetry in f0, f1, f2, f3: if there is a pair of equal values,
perform permutations and define the form XXYY or XXYZ or YZXX. In obtaining 2 pairs of equal
values (the case (XXYY)), fix the first level, setting S = 1. This means that the first level does
not undergo the transformation any more.

(2) L = L + 1, N = 2N . In a similar way, consider the subsets

(f00, . . . , f0,N/2−1), (f00, . . . , f0,N/2−1), (f20, . . . , f2,N/2−1), (f30, . . . , f3,N/2−1).

If there are no element-wise equal subsets, then pass on to the next level. If there are element-
wise equal subsets, perform permutations and define the form XXYY or XXYZ or YZXX. Here,
if 2 equal pairs are set up (the case (XXYY)), then in the case of S ≥ L − 1, return to the upper
position by one level, otherwise fix the upper levels, setting S = L. If there are no two equal pairs,
return to the upper position by one level.

(3) The cycle terminates if L is equal to the number of levels in the tree, otherwise return to
Step 2.

The idea of this algorithm lies in the revealing of the cases of the symmetry and the “lifting” of
it to higher levels where it would remain in the invariable state, because the symmetry is the most
optimal version for the reduction of the number of nodes in the binary tree.

5.5. Homogeneity Algorithm (A4)

In the algorithms described above, the way of estimating the number of steps is intricate. For
this reason, new ideas appeared for the design of a clearer algorithm that would minimize the value

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

948 KOLPAKOV, LATYPOV

of the common criterion at each level of operation. This will enable us to assert at once that there
no infinite cycles in the operation of the program because at each stage an improvement of the
common criterion occurs, such that it does not affect those components of the criterion that remain
intact at a given level.

Definition 5. The homogeneity H of the function will be called the modulus of the difference
between the number of units and zeros in a value of the function

H = | number of elements 1—number of elements 0|.

We will consider the assignment of the function in the form of a binary truth vector of length
N = 2n. Let the number of units in the collection be equal to n1 and the number of zero elements
in the collection be equal to n0, so that N = n1 + n0 and thus H = |n1 − n0| = |N − 2n0|.

The homogeneity of the level L is given by the formula

HL =
2L−1∑
i=0

|N − 2n0i|,

where n0i is the number of zeros in an appropriate minorant function. Accordingly, the homogeneity
of the function is given by formula

Hf =
n−1∑
L=1

HL.

On the basis of the introduced definitions, we develop a new algorithm with the criterion of
maximization of the function homogeneity.

(1) L = 1, N = 2. Order (rearrange) the functions f0, f1, f2, f3 so that w(f0) ≤ w(f1) ≤
w(f2) ≤ w(f3).

(2) L=L+1, N =2N . Maximize the quantity HL by rearranging the subsets (f00, . . . , f0,N/2−1),
(f00, . . . , f0,N/2−1), (f20, . . . , f2,N/2−1), (f30, . . . , f3,N/2−1).

If the permutation occurred successfully (the maximizable value changed), return to the upper
position by one level.

(3) The cycle terminates if L is equal to the number of levels in the tree, otherwise return to
Step 2.

The new approach enabled us to simplify extremely the criterion and thus obtain new results.
In addition, the possibility appeared that permits us to obtain theoretically the upper estimate of
the complexity of operation of the algorithm.

It is known that in view of a selected criterion, it is possible to perform no more than one
successful permutation at one level in succession, which satisfies the imposed constraints. Moreover,
a specific feature of the algorithm is the sequence of its operation. At each level, two outcomes
occur: the successful transformation and the unsuccessful one (i.e., transformations were not found,
such as could improve the criterion under consideration). In view of the structure of the tree
and the use of the transformations only with respect to adjacent variables, merely the preceding
level is brought into use at the current permutations. This is attributable to the fact that the
transformations of adjacent variables, which correspond to a given level of the tree, carry out the
synchronous permutations of elements of the level that are broken up into quadruples. In view of
the structure of the binary tree, to the quadruple of elements of the current level there corresponds
a pair of the elements of the preceding level and just only one element of a yet higher level. Hence
it follows that the permutation of elements in the quadruple can affect only the preceding level.

Let S be the number of successful transformations.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

APPROXIMATE ALGORITHMS FOR MINIMIZATION 949

Lemma 1. The number of steps of the algorithm is equal to 2S + n − 1.

We obtained the answer to the question as to how many steps the examined algorithms have
depending on the number of successful transformations. For the final estimate, we need to know a
value of S.

Theorem 1. The value of the homogeneity of a certain level L cannot change under transforma-
tions of another level.

If follows from Theorem 1 that from the viewpoint of the homogeneity criterion, all values of the
homogeneity of various levels can be considered separately and the algorithm ensures the possibility
to increase values of the homogeneity by performing limited manipulations at every instant.

Theorem 2. S ≤ H ≤ (n − 1)2n.

The number M of steps of the algorithm is equal to M ≤ 2(n−1)2n+n−1 or M ≤ (n−1)2n+1+
n − 1, so that in the worst case we have M = O (N logN), where N = 2n.

Example 4. We will consider in detail the operation of the presented algorithm on the basis of
the example of the test circuit XOR5 from the collection LGSynth 93. The truth vector of the
output function for this circuit is

f = 01101001100101101001011001101001.

The BDD for this circuit has 9 nodes. The initial value of the homogeneity is Hf = 0. We set the
initial value of the matrix of the transformation of input variables, which is given as T = I, where
I is the identity matrix of order 6. Let us consider the first stage of operation of the algorithm.

At the first three levels, we have the values of H1 = 0,H2 = 0,H3 = 0, and the versions of the
improvement of a value of H do not exist (any possible permutation of cofunctions does not change
values of the homogeneity), for which reason the transformations in the binary tree do not occur.

At the fourth level, we also have H4 = 0, but there is a version of the improvement, namely, the
permutation of the elements 0 and 2 (the rearrangeable elements are shown in the form of heavy
digits):

01101001100101101001011001101001.

After the permutation, we obtain the truth vector

11000011001111000011110011000011

and the homogeneity value of H4 = 32. To the permutation of the elements 0 and 2 at level 4 there
correspond changes of the transformation matrix in the form

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1

×

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

×

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

950 KOLPAKOV, LATYPOV

We return to the upper level L = 3. The homogeneity value is H3 = 0, but there is a version
of the improvement, namely, the permutation of the elements 0 and 2 at level 3 (the boldface
elements):

11000011001111000011110011000011.

The truth vector after this permutation is equal to

00001111111100001111000000001111.

The homogeneity value at the third level becomes equal to H3 = 32. The transformation matrix
changes to the matrix

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

.

We return once again to the level L = 2. Here, we also have a version of the improvement, namely,
the permutation of the elements 0 and 2 at level 2 (the boldface elements):

0000 11111111 0000111100000000 1111.

After the transformation, the truth vector is

11111111000000000000000011111111.

The homogeneity value is H2 = 32 and the transformation matrix takes the form

1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

=

1 0 0 0 0 0
0 1 1 1 1 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

.

We now return to the level L = 1. Here, the version of the improvement is the permutation of the
elements 0 and 2 at level 1 (the boldface elements):

1111 1111000000000000 000011111111.

After the transformation, the truth vector is equal to

000000000000001111111111111111.

The homogeneity level is H1 = 32 and the transformation matrix is given as

1 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

×

1 0 0 0 0 0
0 1 1 1 1 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

=

1 1 1 1 1 0
0 1 1 1 1 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

APPROXIMATE ALGORITHMS FOR MINIMIZATION 951

We will perform one more passage forward.
L = 1, H1 = 32, and there are no versions of the improvement;
L = 2, H2 = 32, and there are no versions of the improvement;
L = 3, H3 = 32, and there are no versions of the improvement;
L = 4, H4 = 32, and there are no versions of the improvement;
L = n = 5, and the algorithm terminates,

Hf =
n−1∑
L=1

HL = H1 + H2 + H3 + H4 = 128.

The transformed function is equal to f̃ = x1, and so the BDD for this function has only one
node. The matrix of the affine transformation of variables for deriving the initial function f from
this function is given as

1 1 1 1 1 0
0 1 1 1 1 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

.

6. EXPERIMENTAL RESULTS

The results were obtained with the aid of our own program written on the Visual C on the
computer-type PIII of 750 MHz. The algorithms were designed and worked out on the basis of
all possible functions of the number of incoming variables up to four inclusive. This stems from
the size of the set of all versions that are equal to 22n

. To test BDDs built up from 5 and more
incoming variables, recourse was made to the generation of 200 random test sequences from the
set {0, 1} of dimension 2n (i.e., random vectors relative to n variables), and the mean result was
taken of the percentage reduction of the size of binary diagrams. The results are shown in Fig. 8.
The results of operation of the algorithms described above are displayed in Fig. 8a. The partial
search method with the use of merely adjacent variables (Algorithm 2) has the best indices of the
percentage reduction of the size of a binary diagram, but Fig. 8b discloses that in their sequential

Fig. 8. Percentage reduction of the size of a BDD (the Y axis) depending on the number n of variables (the
number 2n laid off on the X axis defines the size of the truth table) with the use of the algorithms described
above.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

952 KOLPAKOV, LATYPOV

Results of testing of Algorithms A1 and A2 by the tests LGSynth 93. In the brackets are shown the
results obtained with the use of the homogeneity method (A4, A2). The symbol ∗ indicates that
the diagrams with a few outputs are considered as the aggregate of diagrams with one output. The
symbol ∗∗ denotes that the diagrams with a few outputs subdivide isomorphic subgraphs (here,
the methods act in the same way as in the case of ∗)

Type
of circuit

Number
of inputs

Number
of outputs

Initial
size*

Resultant
size

Size with regard
to isomorphism of

outputs**
t, s

initial resultant

Bw 5 28 253 170(158) 114 82(66) 1.60
C17 5 2 12 11 10 11 0.11
Rd53 5 3 29 15 23 15(14) 0.17
Xor5 5 1 9 1 9 1 0.07
9sym 9 1 33 38(24) 33 38(24) 0.59
Con1 7 2 18 15(16) 18 15(14) 0.18
Inc 7 9 115 96(100) 85 81(78) 0.72

Sqrt8 8 4 43 45(41) 42 44 0.61
Ex5p 8 63 793 672(639) 356 322(280) 9.80

Misex1 8 7 75 60(58) 47 41(45) 1.04
Apex4 9 19 1610 1563(1585) 1021 1034() 13.41
Clip 9 5 280 112(127) 254 97(87) 3.47
Sao2 10 4 182 103(108) 154 91(88) 11.11

joint use, the described algorithms complement one another, improving the result at the common
high speed (the time it takes to process all 65 536 functions of four variables is equal to about 1
minute).

Unfortunately, with an increase in the number of variables, the results get worse in regard to
a percentage decrease in the size of binary diagrams of a random function. This can readily be
explained. The transformations are performed synchronously on the quadruples of elements. At
small levels, each of the quadruples includes very many elements and they stochastically balance
each other. At large levels, a similar problem takes place, but now on account of a large number
of synchronously transformed quadruples. Therefore, there is a need for a more complex criterion
compensating for these phenomena, which is evolved for the functions of a large number of variables.
Apart from the tests on random variables, we carried out tests on the functions from LGSynth 93.
The results for the jointly used Algorithms A1 and A2 are listed in table. The results of the joint
use of Algorithms A4 and A2 are shown in brackets. It should be noted that the functions with a
few outputs were processed as a few functions with one output. The results are presented in two
types. First, the complexity of a function is defined as a sum of the complexities of all diagrams of
the functions representing its outputs and then it is defined with due regard for the isomorphism
(i.e., where the common portions of diagrams are reduced and have references to one another) in
much the same way as the reduction of the diagrams of type I.

7. CONCLUSIONS

The new algorithms for minimizing BDDs are worked out on the basis of the affine transforma-
tions of variables. The use of the presented minimization criteria enables reducing the size of a BDD
on account of the search for suitable transformations of input variables that involve a relatively
small amount of computations.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

APPROXIMATE ALGORITHMS FOR MINIMIZATION 953

APPENDIX

Proof of Lemma 1. The number of unsuccessful attempts cannot exceed the number of successful
attempts including the number of levels in the tree. At the first level (the transformation of the
first and the second variable), the cases of a success and a failure entail an identical action, namely,
the descent, which is equivalent to a failure. But each case of the successful step at any other level
is the ascent by one level. Considering that the tree has n − 1 levels, we find that the number of
unsuccessful attempts is equal to S + n− 1, while the number of steps of the algorithm is equal to
S + S + n − 1 = 2S + n − 1.
Proof of Theorem 1. If we consider the level that is larger than the current one, it will be seen

that transformations at the former level will lie within the block of the current level (see Fig. 6)
because the block is the pair of elements at the current level, which correspond to the quadruple
at the next level. Therefore, the changes in the number of units with respect to the number of
zeros in each individual block will not occur. If we examine the level that is less than the current
one, it will be found that the transformations will be made with respect to elements each of which
is a block at the requisite level. Thus, in none of these cases the value of the homogeneity of the
current level will change, apart from the case in which transformations take place at the current
level. This is what we set out to prove.
Proof of Theorem 2. The number of values of the function is equal to 2n. The quantity HL

takes a maximum value in the case when only units or zeros lie within each of the blocks. The
minimum value is equal to zero in the case when there is an equal number of zeros and units within
each of the blocks. In other words,

0 ≤ HL ≤ 2n.

Under each successful transformation at the level L, the value increases:

H =
n−1∑
L=1

HL.

We obtain

0 ≤ H ≤ (n − 1)2n.

The number S of successful transformations cannot be higher than the value of H. (The case is
unreal if at each step this quantity will increase only by unity).

REFERENCES

1. Nechiporuk, E.I., On Synthesis of Circuits with the Aid of Linear Transformations of Variables, Dokl.
Akad. Nauk SSSR, 1958, vol. 123, no. 4, pp. 610–612.

2. Rahardia, S. and Falkovski, B.J., Fast Linearly Independent Arithmetic Expansion, IEEE Trans. Com-
put., 1999, vol. 48, no. 9, pp. 991–999.

3. Stankovic, R. and Astola, J., Some Remarks on Linear Transform of Variables in Adders, Proc. 5 Reed–
Muller Workshop, Starkvill, USA, 2001, pp. 294–302.

4. Kolpakov, A. and Latypov, R., Minimization of BDDs Using Linear Transformation of Variables, Proc. 5
Reed–Muller Workshop, Starkvill, USA, 2001, pp. 57–65.

5. Karpovsky, M.G., Finite Orthogonal Series in the Design of Digital Devices , New York: Willey, 1976.

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

954 KOLPAKOV, LATYPOV

6. Malyugin, V.D., Implementation of Tuples of Boolean Functions by Means of Linear Arithmetic Poly-
nomials, Avtom. Telemekh., 1984, no. 2, pp. 114–121.

7. Dzyuzhan’ski, P., Malyugin, V., Shmerko, V., and Yanushkevich, S., Linear Models of Circuits Using
Multivalued Elements, Avtom. Telemekh., 2002, no. 9, pp. 99–119.

8. Shmerko, V., Malyugin’s Theorems: A New Insight into Logic Control, Design of VLSICs, and Three-
Dimensional Structures of Data for New Technologies, Avtom. Telemekh., 2004, no. 6.

9. Detjens, E., FPGA Devices Require FPGA-Specific Synthesis Tools, Computer Design, 1990, vol. 124.

10. Akers, S.B., Binary Decision Diagrams, IEEE Trans. Comput., 1978, vol. C-27, no. 6, pp. 509–516.

11. Bryant, R.E., Graph-Based Algorithms for Boolean Functions Manipulations, IEEE Trans. Comput.,
1986, vol. C-35, no. 8, pp. 667–691.

12. Drechsler, R., Formal Verification of Circuits, Boston: Kluwer Academic, 2000.

13. Verification of Digital and Hibrid Systems , Boston: Kluwer Academic, 2001.

14. Minato, S., Binary Decision Diagrams and Applications in VLSI CAD , Boston: Kluwer Academic, 1996.

15. Brown, S.D., Fracis, R.J., Rose, J., and Vranesic, Z.G., Field-Programmable Gate Arrays , Boston:
Kluwer Academic, 1992.

16. Murgai, R., Brayton, R.K., and Sangiovanni-Vincentelli, A.L., Logic Synthesis for Field-Programmable
Gate Arrays , Boston: Kluwer Academic, 1995.

17. Drechsler, R. and Gunter, W., Using Lower Bound During Dynamic BDD Minimization, Proc. Design
Automat. Conf., 1997, pp. 348–356.

18. Ruddel, R., Dynamic Variable Ordering for Ordered Binary Decision Diagrams, Proc. Int. Conf. on
CAD , 1993, pp. 42–47.

19. Gunter, W. and Drechsler, R., Linear Transformations and Exact Minimization of BDDs, Proc. IEEE
Great Lakes Sympos., VLSI , 1998, pp. 325–330.

20. Scholl, C., Melchior, S., Hotz, G., and Molitor, P., Minimizing ROBDD Sizes of Incompletely Specified
Boolean Functions by Exploiting Strong Symmetries, Proc. Eur. Design and Test Conf., Paris, 1997.

21. Thierauf, T., The Computational Complexity of Equivalence and Isomorphism Problems, New York:
Springer, 2000.

This paper was recommended for publication by P.P. Parkhomenko, a member of the Editorial
Board

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 6 2004

