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Abstract: In this article, a new algorithm that takes the truth
vector of a 5-valued function as its input and proceeds to generate all
of the function’s fixed polarity Reed-Muller (FPRM) spectral coefficient
vectors one by one in a certain sequence is presented. The experimental
results for this algorithm are compared with other methods and it was
found that it is more efficient than other methods for some functions.
Moreover, the presented algorithm requires very low memory storage.
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1 Introduction

Reed-Muller (RM) transform had been successfully applied in many areas
such as signal processing, fault detection, and coding techniques, especially
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those concerned with group or block codes for error control [1]. One reason
for the wide usage of the RM transform is because it has been found to be
advantageous in terms of area, speed, and testability [2]. This is true for
both binary and multiple-valued cases.

Fixed polarity RM expansion (FPRME) is the RM expansion in which
each variable has the same form throughout it. An n-variable p-valued func-
tion can be expressed by pn different FPRMEs, where each of them is canon-
ical and can be differentiated from each other by its polarity number. The
polarity number of the FPRME with smallest number of spectral coefficients
or literals is called the optimal polarity number.

Although an exact and non-exhaustive algorithm that generates optimal
RM expansion for 3-variable binary functions directly from just few Walsh-
Hadamard spectral coefficients had been developed in [3], in general no ef-
ficient method had been found that is able to obtain the optimal polarity
number without first constructing the FPRMEs for all polarity numbers.
Hence, it is important to find a method that is able to generate all polar-
ity FPRMEs efficiently. In this article, such an algorithm is proposed for
FPRME over Galois Field (5) (GF(5)), which is used in error-correcting
codes for CDMA systems [1].

A method that optimizes Kronecker expressions by introducing the term
extended dual polarity was presented in [4]. In [5], the method was extended
for the optimization of FPRMEs over GF(4). In this article, an algorithm
that uses extended dual polarity property for optimizing FPRMEs over GF(5)
is introduced. The new algorithm is simple and can be implemented with
low storage requirement. Experimental results for the algorithm are also
presented here and their comparisons with other methods show that this
algorithm is efficient in generating all possible FPRMEs for a given 5-valued
logic function and in finding its optimal FPRME.

2 Basic definitions

Definition 1 Each variable xl in an FPRME over GF(5) always appears
in one of its five possible literals throughout the expansion. Let us denote
the five possible literals by <0>xl, <1>xl, <2>xl, <3>xl, and <4>xl whereby
<jl>xl = xl + jl over GF(5) (0 ≤ jl ≤ 4, 1 ≤ l ≤ n). Then the polarity
number ω of the expansion is the decimal equivalent of the 5-valued digits
j1j2j3 . . . jn, <ω>10=<j1j2j3 . . . jn >5.
Definition 2 The spectral coefficient vector in polarity ω of an n-variable
function f(�x) is a collection of all 5n spectral coefficients of the function’s
FPRME in polarity ω,

Cω =
[
cω
0 , cω

1 , . . . , cω
5n−1

]
.

Let �F be the truth vector of the function for which the FPRME is to be
calculated. Then Cω and �F are related by the following transform:

Cω = S<ω>
n · �F , (1)
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where S<ω>
n = ⊗

n∏
l=1

S<jl>
1 , (0 ≤ jl ≤ 4, < ω >10=< j1j2j3 . . . jn >5), ‘⊗’

denotes Kronecker product [2], S<0>
1 =

⎡
⎢⎢⎣

1 0 0 0 0
0 4 2 3 1
0 4 1 1 4
0 4 3 2 1
4 4 4 4 4

⎤
⎥⎥⎦, and S<jl>

1 = S<0>
1 with

column d (d = {0, 1, 2, 3, 4}) rearranged to column ((d+(4×jl)) over GF(5)).
Definition 3 The FPRME in polarity ω of the function f(�x) is in the form
of

f(x1, x2, . . . , xn) =
5n−1∑
i=0

cω
i

[
n∏

l=1

x̂kl
l

]
,

where x̂l =<jl>xl is the literal of the l-th variable, <i>10=<k1k2 . . . kn >5,
kl ∈ {0, 1, 2, 3, 4}, and cω

i ∈ {0, 1, 2, 3, 4} is the i-th element of Cω.
Definition 4 The polarity ωa = ωa1ωa2 . . . ωar−1ωarωar+1 . . . ωan is an ex-
tended dual polarity for the polarity ωb = ωb1ωb2 . . . ωbr−1ωbrωbr+1 . . . ωbn iff
ωas �= ωbs for s = r and ωas = ωbs, otherwise [4].
Definition 5 For an n-variable p-valued function, extended dual polarity
route is an ordering of all pn polarities in which each two successive polarities
are extended dual polarities [4]. There are always more than one possible
extended dual polarity routes for a given function.
Definition 6 From Eq. (1), the following relationship between any two spec-
tral coefficient vectors with polarity numbers ωa and ωb can be derived:

Cωa =

(
⊗

n∏
l=1

(
S<ωal>

1 · T<ωbl>
1

))
· Cωb . (2)

When ωa and ωb are extended dual polarities, Eq. (2) is simplified into

Cωa =
(
Ir−1 ⊗

(
S<ωar>

1 · T<ωbr>
1

)
⊗ In−r

)
· Cωb , (3)

where Iu is an identity matrix of size 5u×5u, T<ωbl>
1 =

(
S<ωbl>

1

)−1
, T<ωbr>

1 =(
S<ωbr>

1

)−1
, and ωa and ωb are as in Definition 4.

3 Algorithm for calculating all FPRMEs from truth vector

Let us represent each product term cω
i x̂k1

1 x̂k2
2 . . . x̂kn

n in the FPRME by an
(n + 1)-digit 5-valued string ‘k1k2 . . . kncω

i ’ and call it “term”. Based on
Eqs. (1) and (3), a recursive algorithm that generates all polarity FPRMEs
from truth vector is derived. The algorithm contains two recursive loops
which are given below as Algorithm 1 and Algorithm 2. Given a truth vector,
the algorithm first replaces each truth vector element fi (0 ≤ i ≤ 5n − 1) by
an (n+1)-digit 5-valued string, i.e. truth vector term ‘m1m2 . . . mnfi’ where
<m1m2 . . . mn >5=<i>10. The generated truth vector terms are then taken
as the input for the first level recursion of Algorithm 1. Algorithm 1 has
n recursion levels. At each level, the output is taken as input for the next
recursion. The output of the last level recursion of Algorithm 1 is the polarity
zero FPRME terms. After Algorithm 1 is done, Algorithm 2 is then executed,
which generates all the nonzero polarities expansions terms for the input
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function one by one in a sequence determined by the extended dual polarity
route. The terms for each nonzero polarity FPRME are determined based on
the previous polarity FPRME terms according to the relation between the
current polarity ωa and the previous polarity ωb digits. At the end of the
algorithm, all 5n FPRMEs for the given function are obtained. Moreover,
the polarity number stored in ωbest is the optimal polarity number with Cmin

nonzero spectral coefficients.
Both Algorithm 1 and Algorithm 2 use matrix M below where the element

located at the row y and column z is denoted by Myz (1 ≤ y ≤ 3, 1 ≤ z ≤ 4).

M =

⎡
⎢⎣

2 4 1 3
3 1 4 2
4 3 2 1

⎤
⎥⎦

The steps of the algorithms are:
Algorithm 1
Step 1: Generate truth vector terms for the given truth vector.
Step 2: Initialize l to n. Take the truth vector terms as the input.
Step 3: Generate initial terms ‘k1k2 . . . kncω

i ’ for the output. The initial terms
are all the 5n terms (0 ≤ i ≤ 5n − 1) with zero as the last digit.
Step 4: For each nonzero term (the term with nonzero last digit) of the input,
generate its contribution to the output terms according to the rule given in
Table I. Note that q in Table I may represent k or m depending on the input
terms.
Step 5: Sum up the initial and all contributed terms. The summation is done
by replacing terms with identical first n-digit values with a new term. The
first n-digits of the new term are equal to those of replaced terms, while the
last digit of the new term is the summation of all the replaced terms last
digits over GF(5). After the summation the output terms are obtained.
Step 6: l = l − 1. If l = 0 go to Algorithm 2. Otherwise go back to Step 3
with current output as input.
Algorithm 2
Step 1: Initialization

- Initialize the polarity vector v to ’00..0’.
- Initialize the polarity number ω to 0.
- Initialize the variables ωbest and Cmin to 0 and the number of nonzero
terms in polarity zero, respectively.

Step 2: Determine the next polarity vector v in the employed extended dual
polarity route and set ω to the decimal equivalent of v.
Step 3: Generate polarity ω terms.

- List initial terms of polarity ω.
- Find the contribution of each nonzero term of previous polarity accord-
ing to the rules given in Table II.

- Sum up all the terms for the polarity ω.
- If the number of nonzero terms of polarity ω, N is less than current
value of Cmin, set ωbest = ω and Cmin = N .
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Table I. Contributed terms rule for generation of polarity
zero terms

Table II. Contribution of processed term for some combi-
nations of ωar and ωbr values

Step 4: If the terms for all polarities have been generated exit the algorithm.
Otherwise go back to Step 2.

4 Experimental results

The calculations of all the FPRMEs for a given 5-valued function using the
proposed algorithm (employing the extended dual polarity route in which
ωar + ωbr is always one or four) as well as by the direct and fast versions of
Eq. (2) in lexicographic order [6] have been implemented as C++ programs
and run on a 500MHz, 256MB RAM Pentium III computer. Their execution
results in term of execution time for some 5-valued test files are presented
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Table III. Execution times for some 5-valued test files (in
seconds)

in Table III. The 5-valued test files that are used here are binary MCNC
benchmarks that have been modified to represent 5-valued functions. Their
generation was described in [6].

It can be seen from Table III that the proposed algorithm is faster, and
hence more efficient than the other methods for most of the functions. This
is to some extent due to the reduced number of additions resulting from
the use of extended dual polarity routes instead of lexicographic order. The
other reason for the efficiency of the algorithm comes from the facts that this
algorithm only processes nonzero terms instead of all terms as in the other
methods and that it does not build any transform matrices. In addition to
eliminating the time spent on building transform matrices, the latter reason
also means that the algorithm has low storage requirement as it does not
need to store the transform matrix, which grows rapidly with an increase
in the number of variables. At any time, the only storage space required
is for the terms of current and previous polarities (which grows less rapidly
with an increase in the number of variables compared to those required to
store the transform matrix), v, ωa, ωb, ωbest, and Cmin. Furthermore, as the
number of input variables becomes larger, the increase in the time required
to build the transform matrix is larger than the increase in the time required
for determining the contributions of each nonzero term to the output terms.
This in turn results in the larger difference between the execution times of the
other algorithms and that of the proposed algorithm, which can be noticed
from the numbers in Table III.

5 Conclusions

An algorithm that efficiently generates all FPRMEs for 5-valued functions has
been presented. The proposed algorithm takes the truth vector of functions
defined over GF(5) as its inputs, calculates the polarity zero FPRME from
the truth vector, and then continues to generate the rest of the polynomial
expansions one by one. The algorithm is simple, requires small amount of
storage and is computationally efficient when compared with other methods
as shown by experimental results.
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