
IEICE Electronics Express, Vol.1, No.8, 211–216

Generation of multi-polarity
helix transform over GF(3)
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Abstract: In this article, the new multi-polarity helix transform for
ternary logic functions has been introduced. In addition, an extended
dual polarity property that had been used to optimize Kronecker and
quaternary Fixed-Polarity Reed-Muller (FPRM) expressions has been
applied to generate efficiently the multi-polarity helix transform over
GF(3). The experimental results for the transform are compared with
the well known ternary Reed-Muller transform and it was found that
the helix transform is quite efficient in terms of non-zero spectral coef-
ficients and corresponding memory storage.
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1 Introduction

Reed-Muller (RM) transform that represents an important class of AND-
EXOR expressions had been successfully applied in many areas such as signal
processing, fault detection and coding techniques, especially those concerned
with group or block codes for error control [1]. Fixed-Polarity RM (FPRM)
is the RM polynomial expansion in which each variable has the same form [1,
2, 3]. An n-variable ternary logic function can be expressed by 3n different
FPRM polynomial expansions, where each of them is canonical and can be
differentiated from each other by its polarity number. FPRM polynomial
expansions with different polarity numbers generally possess different com-
putational complexity, which is measured by the number of nonzero spectral
coefficients or the number of literals in the FPRM polynomial expansion. The
polarity number, for which the number of the used computational complexity
measure is smallest, is called the optimal polarity number.

A method that optimizes binary FPRM based on the relationship between
two FPRMs was extended for the optimization of Kronecker expressions by
introducing the term extended dual polarity in [4] and for the optimization
of FPRM expressions over Galois Field (4) (GF(4)) in [5] as well as over
Galois Field (5) (GF(5)) in [6]. As mentioned in [4], Kronecker expansions
are potentially better than FPRMs in optimization of logic functions if the
criterion is the number of non-zero terms. Therefore it is interesting to
find novel Kronecker based transforms that are efficient in final polynomial
representations of logic functions, have nice properties as well as can be
calculated in efficient way what was done in [7].

In this article, the new ternary multi-polarity transform based on Kro-
necker product is introduced that is named helix transform [7] due to the
symmetrical structure along the diagonal or reverse-diagonal in the transform
matrices. Application of extended dual polarity for the efficient optimization
of multi-polarity helix transform over GF(3) is also introduced. Experimental
results showing big advantage in terms of non-zero spectral coefficients of the
new multi-polarity helix transform when compared with ternary Reed-Muller
transform are also presented in this paper.

2 Basic definitions

Definition 1. Let −→
F = [F0, F1, ..., F3n−1]T represent a column vector defin-

ing the truth vector of a ternary function f (−→xn) in a natural ternary ordering.
The helix transform Hn is an N×N (N = 3n) matrix with rows corresponding
to minterms and columns corresponding to some switching ternary functions
of n variables. If the sets of rows are linearly independent with respect to
ternary Galois Field, then Hn has only one inverse in GF(3). The truth
vector can be obtained by the following equation,

−→
F = Hn

−→
A, (1)

where −→
A = [A0, A1, ..., A3n−1]T is the spectral coefficient column vector for

the particular transform matrix Hn. The spectral coefficient column vector
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can be reconstructed by the following equation,

−→
A = H−1

n
−→
F . (2)

Definition 2. Let X be a matrix of order m×n and Y be a matrix of order
p × q, then their ternary Kronecker product, denoted by Z = X ⊗ Y that is
executed over GF(3) is a partitioned matrix Z of order (mp)×(nq) defined as
the following equation, where all the matrix elements belong to set {0,1,2}.

Z = X ⊗ Y =

⎡
⎢⎢⎢⎢⎣

x11Y x12Y ... x1nY

x21Y x22Y ... ...

... ... ... ...

xm1Y ... ... xmnY

⎤
⎥⎥⎥⎥⎦ . (3)

Definition 3. The ternary helix transform matrix of size N × N (N = 3n)
is created by applying n − 1 times ternary Kronecker product to basic helix
transform of size 3 × 3 where such basic ternary helix transform matrices
fulfill Definition 1.

Hn =
n−1⊗ H1;

H1 =

⎡
⎢⎣

1 0 0
1 1 1
0 0 1

⎤
⎥⎦ , and H−1

1 =

⎡
⎢⎣

1 0 0
2 1 2
0 0 1

⎤
⎥⎦ .

3 Multi-polarity helix transform

In this section, the new ternary multi-polarity helix transform will be pre-
sented whose all matrices fulfill Definitions 1-3.

Let H<k>
n represent the k-th polarity of the transform Hn. For any

number of variables, the generalized multi-polarity helix transform matrix
H<k>

n is recursively defined as

H<k>
n =

n−1⊗ H<k>
1 .

In general,

H<k=k0k1...kn−1>
n = H<k0>

1 ⊗ H<k1>
1 ⊗ ... ⊗ H

<kn−1>
1 .

All the elements in H<k>
n belong to the set {0, 1, 2}. The ternary multi-

polarity helix transform H<k>
n can be derived from H<0>

n using 3-adic shift
in the columns of H<0>

n .
Similarly, the inverse transform matrix (H−1

n )<k> can be obtained by

(H−1
n )<k> =

n−1⊗ (H−1
1 )<k>.

In general,

(H−1
n )<k=k0k1...kn−1> = (H−1

1 )<k0> ⊗ (H−1
1 )<k1> ⊗ ... ⊗ (H−1

1 )<kn−1>.

For any number of variables, (H−1
n )<k> can be obtained from (H−1

n )<0>,
also by using 3-adic shift in the rows of (H−1

n )<0>. Table I gives all the
polarities of forward and inverse multi-polarity helix transform matrix when
n = 1.
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Table I. Ternary multi-polarity helix transform

Forward Inverse

x<0> =

⎡
⎢⎣

0
1
2

⎤
⎥⎦ H<0> =

⎡
⎢⎣

1 0 0
1 1 1
0 0 1

⎤
⎥⎦ (

H−1
)<0> =

⎡
⎢⎣

1 0 0
2 1 2
0 0 1

⎤
⎥⎦

x<1> =

⎡
⎢⎣

1
2
0

⎤
⎥⎦ H<1> =

⎡
⎢⎣

1 1 1
0 0 1
1 0 0

⎤
⎥⎦ (

H−1
)<1> =

⎡
⎢⎣

0 0 1
1 2 2
0 1 0

⎤
⎥⎦

x<2> =

⎡
⎢⎣

2
0
1

⎤
⎥⎦ H<2> =

⎡
⎢⎣

0 0 1
1 0 0
1 1 1

⎤
⎥⎦ (

H−1
)<2> =

⎡
⎢⎣

0 1 0
2 2 1
1 0 0

⎤
⎥⎦

4 Generation of multi-polarity helix transform

The notion of extended dual polarity property was introduced in [4, 5] and
used for optimization of FPRM over GF(4) [5] and GF(5) [6] as well as Kro-
necker expressions [4]. In this section, it will be shown that the extended dual
polarity property also applies to the ternary multi-polarity helix transform.
The relationships between two helix transforms for ternary functions of dual
polarities are also derived.
Definition 4. P ′ = (p′1, ..., p′i−1, p

′
i, p

′
i+1, ...p

′
n) is extended dual polarity for

the given polarity P = (p1, ..., pi−1, pi, pi+1, ...pn) if p′j = pj , j �= i and p′i �= pi.
Example: For polarity P = (1, 2), the extended dual polarities are (0, 2)

and (1, 0).
The relationship between spectra of two multi-polarity helix transforms

is given by the following equation

−−−→
A<p′> = (H−1

n )<p′> · −→F = (H−1
n )<p′> · H<p>

n · −−−→A<p>.

If polarities p′ and p are extended dual polarities as described in Definition
4, and p′i �= pi, then the relationship can be presented as

−−−→
A<p′> = (H−1

n )<p′> · −→F
=

((
i−1⊗
j=1

(H−1
n )<pj>

)
⊗ (H−1

n )<p′i> ⊗
(

n⊗
j=i+1

(H−1
n )<pj>

))
·((

i−1⊗
j=1

H
<pj>
n

)
⊗ H

<p′i>
n ⊗

(
n⊗

j=i+1
H

<pj>
n

))
· −−−→A<p>

Due to the properties of Kronecker product, the relation can be rewritten
as −−−→

A<p′> =
(
Ii ⊗ (H−1

n )<p′> · H<p>
n ⊗ In−i

)
· −−−→A<p>,

where Ik is identity matrix of order k.
It is clear that for any spectrum of polarity p, its dual polarity spectrum

vector
−−−→
A<p′> can be calculated very efficiently by only calculating the results

of multiplication between two helix transforms when n = 1. Table II gives
all possible matrix products for (H−1

n )<p′> · H<p>
n .c© IEICE 2004
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Table II. Relationships between different polarities

(
H−1

)<0> · H<1> =
(
H−1

)<1> · H<2>

=
(
H−1

)<2> · H<0>

=

⎡
⎣ 1 1 1

1 2 0
1 0 0

⎤
⎦

(
H−1

)<0> · H<2> =
(
H−1

)<1> · H<0>

=
(
H−1

)<2> · H<1>

=

⎡
⎣ 0 0 1

0 2 1
1 1 1

⎤
⎦

5 Experimental results

In this section, the ternary multi-polarity helix transform has been imple-
mented using Microsoft Visual C++ and run on PIII 500MHz computer with
128MB RAM. It is run on some benchmark functions that have been mod-
ified to represent ternary functions instead of original MCNC and IWLS’93
binary benchmark functions [7]. The translation from binary to ternary cases
has been done by changing every 2 input (output) bits in binary files to an
input (output) symbol in ternary files. If the number of input and/or output
variables is odd, then a zero bit is added behind the binary cubes to make it
even. For input (output), -- is taken as -, 00 is taken as 0, 01 is taken as 1
and 10 is taken as 2, whereas 11 is not used (taken as 0) for ternary case.

Table III presents the experimental results on some ternary benchmark
functions. The third column shows the number of non-zero spectral coeffi-
cients for the best polarity ternary helix transform. They are compared with
the experimental results for the best polarity ternary Reed-Muller transform
that are given in the fourth column of Table III. The used ternary bench-
mark functions have more than one output. It can be seen that for the
functions shown in the first column with their outputs pointed out in the
second column, the ternary multi-polarity helix transform can obtain smaller
number of non-zero spectral coefficients after searching out the best polarity
for majority of cases when compared with the best polarity ternary Reed-
Muller transform. The last column of this table also shows the decreasing
and sometimes increasing rates in the number of non-zero spectral coefficients
when the best polarity ternary Reed-Muller transform is compared with the
best polarity helix transform.
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Table III. Number of non-zero spectral coefficients

Ternary
functions

Output H−1
<best> TRM−1

<best>

Decrease
rate

apex4

O1 22 51 56.9%
O2 63 78 19.2%
O3 63 77 18.2%
O4 62 79 21.5%
O5 59 79 25.3%
O6 77 76 −1.3%
O7 60 85 29.4%
O8 69 82 15.9%
O9 23 52 55.8%
O10 37 51 27.5%

clip
O1 63 62 −1.6%
O2 88 75 −17.3%
O3 38 41 7.3%

ex1010

O1 112 133 15.8%
O2 103 134 23.1%
O3 105 136 22.8%
O4 105 127 17.3%
O5 107 137 21.9%

inc

O1 20 17 −17.6%
O2 28 30 6.7%
O3 16 22 27.3%
O4 21 23 8.7%
O5 7 2 −250%

6 Conclusions

In this article, novel Kronecker based transform called ternary multi-polarity
helix transform has been introduced which has very regular structure and
thus resulting efficient calculation. Kronecker based extended dual polarity
properties [4, 5, 6] are revised and applied for efficient calculation of ternary
multi-polarity helix transform. The presented properties and relationships
give an efficient method to optimize the corresponding spectral polynomial
expansions based on multi-polarity helix transform of any ternary function.
The comparison of experimental results between ternary multi-polarity helix
transform and ternary Reed-Muller transform are also discussed, and they
show that for almost all the cases of ternary benchmark functions, our new
ternary multi-polarity helix transform is more efficient than ternary Reed-
Muller transform in terms of bigger number of zero spectral coefficients.
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