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Abstract

 Novel three-dimensional (3D) nanoscale 
integrated circuits (nanoICs) are examined in this 
paper. These nanoICs are synthesized utilizing 
aggregated 3D neuronal-hypercells ( -hypercells) 
with multi-terminal electronic nanodevices. The 
proposed nanodevices ensure multi-valued input-
output characteristic that lead to a direct technological 
solution of multi-valued logic synthesis problem. 
Super-high-performance computing architectures and 
memories can be devised (synthesized), designed and 
optimized. At the system-level, we examine nanoICs as 
networked aggregated 3D -hypercells. In particular, 
scalable 3D -hypercell topologies are under 
consideration. These -hypercells integrate 
interconnected functional multi-terminal electronic 
nanodevices that implement logic functions. The 
proposed nanoICs platform suits the envisioned 
cognizant computing ensuring preeminent information 
processing and immense memory. 

1. Introduction 

 Two-dimensional computing architectures have 
been examined extensively and exceptional solutions 
have been proposed. However, two-dimensional 
paradigm approaches fundamental limits. Optimal 
topologies and structures of the super-high-
performance computer architecture are three-
dimensional [1-3]. New areas in design of nanoICs 
have been emerged including nanoarchitectronics [1]. 
It has been shown that functional multi-terminal 
electronic nanodevices exhibit multi-valued input-
output characteristics [2]. Thus, multi-valued logic 
becomes a reality that can be integrated within 
advanced networked 3D -hypercell topologies. These 
hypercells are mapped in 3D space performing logic 
design, optimization and analysis tasks. This paper 
reports technology-dependent synthesis and design 
concepts for nanoICs. A library of 3D -hypercells 

can be developed and utilized. Three-dimensional 
design methods are based on embedding decision 
diagrams [3, 4] extending results reported in [5-14]. In 
this paper we generalize approaches in design of 3D 

-hypercell topologies. We report methods of 
manipulation, representation and optimization of multi-
valued nanoICs with the ultimate goal to perform the 
logic design and synthesize nanoICs. 

2. Synthesis and Design Taxonomy 

We propose a novel 3D computing architecture 
focusing on the unified technology-dependent top-
down and bottom-up synthesis taxonomy. As reported 
in Figure 1.a, by utilizing this synthesis and design 
taxonomy, one can coherently perform integrated top-
down and bottom-up syntheses.   
 Top-down synthesis: devise novel super-high-
performance computing platforms implemented 
utilizing aggregated 3D -hypercells with electronic 
nanodevices (see Figures 1.b and 1.c); 
 Bottom-up synthesis: use functional molecules 
(interconnected multi-terminal electronic nanodevices) 
aggregated within 3D -hypercells, and utilize these 
aggregated (networked) -hypercells within 
computing architectures. 
 Three-dimensional computing architectures can be 
synthesized using -hypercells Dijk that are analogous 
to multi-terminal neurons in the superb brain 
bioarchitecture shown in Figure 1.b. The reported 
concurrent synthesis taxonomy results in a radically 
new computing platform that utilize novel phenomena, 
advanced design, as well as new technologies at 
system-, subsystem- (aggregated -hypercells) and 
device-levels, see Figure 1.c. Synthesis and 
optimization of computing architectures is formulated 
using the Bayesian probability theory that results in a 
viable decision-theoretic informative analysis [1, 3]. 
The topological entropy ET is a function of 3D 
computing platform performance as well as 
characteristics of -hypercells and -hypertopologies. 
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The entropy can be maximized ensuring superior 
achievable performance [1]. Specifically, efficiency, 
bandwidth, reliability, compactness, simplicity, 
robustness and other parameters can be maximized 
while minimizing power and losses. Special attention 
can be focused to ensure distinct priorities, for 
example, robust massive parallel computing. 
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Figure 1. 
(a) Top-down and bottom-up taxonomy; 
(b) Three-dimensional architectures synthesized using -
hypercells Dijk (neurons); 
(c) Concurrent synthesis and design at system-, 
subsystem- and device- levels. 

 Synthesis of novel computing architectures is a 
process to discover and study novel hardware 
topological evolutions based upon fundamental theory 
and synergetic integration of nanodevices in the unified 

functional core. High-level hierarchy, abstraction, 
adaptability, functionality, integrity, compliance, 
configurability, flexibility and prototypeability are 
integrated within proposed 3D -hypercell platform. 
Coherent quantitative synthesis and symbolic 
descriptions are used searching and evaluating possible 
architectures and topologies examining -hypercells 
aggregated in 3D -hypercells topologies [1]. Massive 
parallelization is due to the fact that data structures are 
embeddable to -hypercells and 3DA -
hypertopologies. Logic functions can be represented by 
word-level decision trees and diagrams [3]. This is a 
very important feature to ensure massive parallel 
computing. The node implements the processing of a 
set of functions reduced into a word. There are two 
unique parallelization sources that result in massive 
parallel computing: (1) natural parallelism of 3D -
hypercells and 3DA -hypertopologies is utilized 
(decision trees that represent logic functions are 
embedded into -hypercells); (2) enhanced parallelism
due to the word-level representation of logic functions 
(each node performs logic computations on the bits in 
the words in parallel). 

3. Synthesis and Design of -Hypercells

 We start with useful definitions. 
Definition 1. A multi-valued variable Xi can take 

values from
1210 ,,,,

ii PPi aaaaP . If each 

symbolic value ai is associated with a unique integer i,
we have 1,2,,1,0 iii PPP .

Definition 2. A multi-valued function F is a 
function which maps vertices in nn PPPP 121

to PF, e.g., 
Fnn PPPPPF 121: .

Definition 3. A cube nn ccccc 121

can be written as a product of multi-valued literals 
ic

iX  as nn c
n

c
n

cc XXXX 121
121 . Here, ic

iX  is the logic 

function as
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.

Definition 4. The cofactor of a function f with 

respect to a multi-valued literal Xs, denoted as sX
f , is 

obtained by eliminating all cubes of f that are disjoint 
to s, and expanding the remaining cubes by unioning 
into the X position all values not in s.

Multi-Valued Shannon Expansion Theorem. Let f

be a function, and ii cccc 121  be a set of 

multi-valued cubes such that 1
1
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ic . Then, 
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. Furthermore, iff ic
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 There are several methods for representing logic 
functions in the multi-valued domain. -hypercell is a 
core technology-defined subsystem in computing 
architecture. Each -hypercell can be considered as a 
homogeneous aggregated assembly for massive super-
high-performance parallel computing. In [3, 4], we 
applied the switching theory in logic design of 3D 
nanoICs in [3]. To perform logic design, the graph-
based data structures and 3D circuit topology was 
utilized. The -hypercell is a topological 
representation of a switching function by n-
dimensional graph, and the switching function f is 
given as 

FunctionSwitchingofForm...
12

0

FunctionSwitching

1
1

tCoefficien

Operation

ni
n

i

n

xxi
i

KL

  The data structure is described in matrix form 
using the truth vector F of a given switching function f
as well as the vector of coefficients K. The logic 
operations are represented by L.

-hypercells are used to compute switching 
functions. To illustrate the concept, in [3] distinct 
switching functions f (for example,  

21xxf 21xx 321 xxx ) were implemented by the 

N-hypercube, see Figure 2.a. From the technology-
dependent implementation viewpoint, we proposed the 

-hypercell as documented in Figure 2.b. This 
topology maps the device-level consideration. Utilizing 
the root and intermediate nodes at the edges, as shown 
in Figure 2, the reported -hypecell implements f.
 The logic design in spatial dimensions is based on 
advanced methods and data structures that fit 3D 
topology. The appropriate data structure of logic 
function and methods of embedding this structure in 
the -hypercells must be found. The three-step-
solution in logic function manipulation to change the 
carrier of information from the algebraic form (logic 
equation) to the hypercube structure is reported [3]. In 
particular, we proceed as follows. 
 Step 1: Logic function (switching or multi-valued) 
is transformed to the appropriate algebraic form (Reed-
Muller, arithmetic or word-level in matrix or algebraic 
representation).
 Step 2: Derived algebraic form is converted to the 
graphical form (decision tree, decision diagram or logic 
network). 
 Step 3: Obtained graphical form is embedded into 

-hypercell.
 The design is expressed as 
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  Figure 2. N- and -hypercubes that implement function f

 The proposed procedure results in: 
Algebraic representations and rules of 
manipulations with switching and multi-valued 
logic functions; 
Matrix representations and rules of manipulations 
with switching and multi-valued logic functions 
(matrix representations provide a consistent 
understanding of logic relationships for variables 
and functions from the viewpoint of spectral 
theory);
Graph-based representations are found using 
decision trees, decision diagrams and logical 
networks; 
Data structures are embedded into -hypercells. 

Definition 5. A ternary Shannon expansion 

2
2

1
1

0
0 fxfxfxf iii  is performed in every node 

of the ternary decision tree. Here, for example,  f0 = f(xi

= 0), f1 = f(xi = 1) and f2 = f(xi = 2). The complete n-
level ternary decision tree Cn, is a tree with 3k nodes at 
the kth level, k = 0, 1, …, n - 1.

Definition 6. The -hypercell is an extended 
classical hypercube that consists of terminal nodes, 
intermediate nodes, root node and interconnect. 

Figure 3 documents the ternary function f of two 
variables (x1 and x2) and its implementation. Letting 

2,1,0 2
1

1
1

0
1 xxx  and 2,1,0 2

2
1
2

0
2 xxx , we 

have corresponding 2,1,0
2

2,1,0
1 xx

f , e.g., 00, 01 and 02. 
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Figure 3. Ternary function f of two variables (x1 and x2)
and its implementation using N-hypercubes

The ternary as well as higher order decision trees 
can be embedded in -hypercells. The algorithm 
embedding a ternary and quaternary decision trees is 
illustrated by Figure 4. Letting q be the number of 
variables of a ternary function, the numbers of terminal 
and intermediate nodes in a -hypercell that represents 
a ternary decision trees are 3q and 3q-1. The number of 
terminal and intermediate nodes in a -hypercell that 
represents a quaternary decision trees are 4q and 4q-1.
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Figure 4. Embedding a ternary (quaternary) decision 
trees of two-variable ternary function into -hypercells 

The N-hypercube primitives for Boolean ternary, 
quartery as well as higher order functions are easy to 
derive and apply in the logic design. The library of 3D 
elementary gates, such as MIN, MAX, SUM, TSUM 
and TPRODUCT, was developed in [3]. It is 
documented that distinct decision trees are used to 
design 3D MIN and MAX -hypercell models. Each 
gate consists of three -hypercell primitives. The 
number of activated terminal nodes is defined by a 
logic function. In particular, the MIN gate has four 
active nodes, while the MAX gate generates 8 active 
nodes. In general, an arbitrary k-valued network can be 
represented in -hypercell space over the library of 3D 
primitives (e.g., gate primitives) because k-valued gate 
can be represented by a k-ary decision tree that is 
mapped to a -hypercell. Correspondingly, a network 
of gates can be represented by a set of a k-ary trees. 
These trees are mapped into a -hypercell topology 
formed by connecting the -hypercell primitives. The 
inner and outer -hypercells are three dimensional [3]. 
Each 3D -hypercell carries limited information 
because the number of nodes and links is limited. The 
3D -hypercells are aggregated in the 3D -
hypercells topologies. This technology-dependent 
approach allows one to design novel architectures from 
far-reaching physical, implementation, and 
technological viewpoints. 

4. Synthesis of Multi-Valued Logic 
Networks Using Multi-Valued Decision 
Diagrams

We examine a method for the synthesis of large 
multi-valued logic networks with -hypercell (MV )
using multi-valued decision diagrams. These decision 
diagrams can be mapped to netlists without reversing 
the information flow. The size of the resulting MV  is 
linear in the size of the decision diagram.  

In general, a MV  can be modeled as a directed 
acyclic graph C = (V, E) such that each vertex Vv
is labeled with the names of (1) basic cell, (2) input or
(3) output. The collection of basic cells that are 
possible in the MV  is given by a fixed library that 
contains MIN, MAX, INV and LITERAL gates. It is 
possible to include basic -hypercell with arbitrary 
complexity and with a varying number of inputs. There 
is an edge (u, v) in E from vertex u to v if and only if 
an output pin of the cell associated with u  is connected 
to an input pin of the cell associated with v. Edges also 
contain additional information to specify the pins of the 
source and sink nodes that they are connected to. 
Vertices have exactly one incoming edge per input pin. 
The nodes labeled as input/output may not have 
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incoming (outgoing) edges. To simulate a MV , each 
input may assume the values of a given ordered finite 
set P = {0, 1, …, k–1}, where k denotes the number of 
logic levels. The complement (INV gate) of a signal x
is defined as xkx )1( . A LITERAL gate  (a; b)

)0,,( kbaPba  has one input and one 

output. For a given input x, the behavior of this gate is 

othervise:0

:1
)(

bxak
xf . We assume that the 

characteristic functions are available for each of the 
inputs. The set of Jj(xi) values as Jj (xi) = k – 1 if xi = j,
and Jj(xi) = 0 otherwise. 

The binary decision diagram can be extended to 
represent functions  

1,,1,0: kf nB .

The resulting graphs represent a multi-terminal 
binary decision diagram that can be extended to multi-
valued decision diagrams that represent function 

}1,,1,0{}1,,1,0{: kkf n .

When the MV  is represented as a directed 
acyclic graph, a corresponding decision diagram is 
designed as: (1) terminal nodes for the k constant 
functions are synthesized; (2) for each input of the 
MV , a graph vertex (variable) in the decision 
diagram is designed, where the ith outgoing edge 
points to the terminal node labeled 

}1,,1,0{, kii ; (3) the gates of the MV  are 

checked in the topological order, and the corresponding 
decision diagram operation is designed. 

For the synthesis process, assume that a multi-
valued decision diagram, representing a k-valued 
function of k-valued variables, is given. The outgoing 
edges per node of a decision diagram are mapped to 
small sets of logic gates, producing a k-output circuit. 
If the function to being computed is f(X), then the k
outputs of the resulting circuit correspond to the 
characteristic functions of f, e.g., J0(f(X)), …, Jk–1(f(X)). 
The circuit outputs thus form a 1 of k code, where the 
ith output of the circuit is logically true if and only if 
the multi-valued decision diagram would evaluate to 
logic value i. This represents a general procedure for 
mapping a multi-valued decision diagram to a MV . It 
is assumed that the logic gates compute the MIN and 
MAX functions.  

5. Ternary Field Logic 

Ternary field consists of the set of elements 
}2,1,0{T  and two basic binary operations, e.g., 

addition (+) and multiplication (  or absence of any 
operator) as defined in Table 1. These addition and 
multiplication are: (1) closed, e.g., for Tyx, ,

Tyx , while Txy ; (2) commutative and 

associative, e.g., xyyx  and yxxy

(commutative), zyzzyzzyx )()(  and 

xyzzxyyzx )()(  (associative); (3) multiplication is 

distributive over addition, e. g., xzxyzyx )( .

 Table 1. Ternary field operations 
+ 0 1 2  . 0 1 2 
0 0 1 2  0 0 0 0 
1 1 2 0  1 0 1 2 
2 2 0 1  2 0 2 1 

There are six reversible ternary unary operations 
corresponding to six possible permutations of 0, 1, and 
2. These operations are called reversible ternary shift 
operations [16-19]. Six shift operations, their operator 
symbols and equations are reported in [16, 17]. All 
these six shift operators can be built as reversible 
ternary gates. The gate symbols for these shift gates are 
documented in Figure 5. A ternary signal can be 
converted to one of the six forms using one of the 
reversible ternary shift gates.  

' " #'" ^

Figure 5. Gate symbols for shift gates  

Literals of a ternary variable x can be defined. Any 
ternary function can be expanded using the following 
Shannon ternary field expansion theorem. 

Theorem. A ternary function f can be expanded 
with respect to the variable x as 2

2
1

1
0

0 xfxfxff .

 An optimized ternary decision diagrams for 
reversible logic design for an n-variable function f can 
be synthesized. The number of possible variable 
ordering is n!. One has n16  possible choices of ternary 
field expansions for n levels. Therefore, the total 
number of possible Kronecker ternary field decision 
trees for the function f is nn16! . For 3n , we have 
24,576. The number of Kronecker decision diagrams is 
the same resulting in the NP-hard optimization 
problem. For a pseudo-Kronecker ternary field 
decision tree for an n-variable function f, the number of 
possible variable orderings is !n . However, the total 
number of possible choices of ternary field expansions 

is )13(2
1

16
n

 for )13(2
1 n  nodes. Therefore, the total 

number of possible decision trees for the function f is 
)13(2

1

16!
n

n =27,021,597,764,222,976 for 3n .
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6. Conclusions

 This paper focuses on the development (synthesis), 
integration and demonstration of a novel technology-
dependent 3DnanoICs architecture that will ensure 
superior processing capabilities. It is envisioned that 
the integration of the technology-dependent 3D logic 
design with molecular nanotechnology (that allows one 
to synthesize complex functional molecules) will result 
in revolutionary performance evolvements. 
Quantitative and qualitative performance indexes, such 
as intrinsic data-intensive processing, robust adaptive 
computing, enhanced functionality, reliability, 
redundancy, fault- and defect-tolerance and other, 
under specific criteria to be examined. Superior 
performance are due to massive parallelism 
implemented by 3D -hypercells in terms of logic 
design and nanotechnology implementation. Though 
we may possess a limited knowledge in the molecular 
electronics design and its technological implementation 
execution, from nanobiocomputing standpoints and 
nanobioarchitectronics, we enable to mimic in some 
extent superb 3D networked biomolecular 
architectures. Novel methods under the developments 
to design novel computing and memory systems. 
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