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Classification and Properties of Fast Linearly
Independent Logic Transformations
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Abstract—The existence of numerous number of linearly inde- there exists a canonical three-level realizatfoa Aggo & - - -
pendent (LI) transformations in GF(2) algebra finds application @ A,g; @ - @ Agn_1gon_1,0 < i < 2" — 1, where functions
in the design of ex_cluswe-or bas_ed polynomial expansions. For g; are the given LI basis functions and coefficients are
a chosen LI matrix transformation, such expansion gives a determined b ltiolvi tigZ =L by the truth tor of
canonical representation of an arbitrary completely specified eermln_e y mu Iplying m_a_”_ n y tne _ru_ vector 0_
logical function. In this paper, family of LI transformations is  the functionf. With such definition, FPRME is just a special
introduced which possesses fast forward and inverse butterfly case of the new LI logic. Due to the fact that the selected LI
diagrams. These transforms are recursively defined and grouped functions can appear in both true and complemented forms,
into classes where consistent formulas relating forward and many MPRME can also be derived from LI Logic. Since the

inverse transform matrices are obtained. The classification is b fall Ll f fi . | for th ff
further extended into various LI transforms with horizontal and numberora unctions 1S very farge even lor the case or rew

vertical permutations. The possibility of easy implementation of Vvariables, efficient ways of finding those transform matrices
polynomial expansions based on classified LI logic transforma- that have fast algorithms is of great importance.

tions in the form of readily available fine grain FPGA's and In the current paper, ways of generation of fast transforms

EPLD's is also illustrated. for binary 27-dimensional LI transformation matrices are
Index Terms—Fast transforms, linearly independent logic, logic introduced. These LI Transforms are shown which may be

polynomial expansions, Reed-Muller transform. created efficiently in the form of transform matrices for=

2. Since the recursive equations for expanding the transform

matrices are provided, then the results presentedhfef 2

can be easily extended to transform matrices with higher di-

HE IDEA to represent switching circuits in different algeensions giving the best sets of basis functions for such cases

| bra has evolved in recent years. Reed-Muller transforga \ye||. Hence this paper introduces many new families of
utilizes algebra of GF(2) and any switching function may bgais functions foe™-dimensional LI transformation matrices
completely realized by the modulo-2 sum-of-products expregnich should be used in finding their polynomial expansions
sion which is known as theomplement-free ring-surf8]. 504 resulting hardware implementations rather than more
For many important functions that are nonunate (€.g., Parf¥neral but computationally inefficient approach based on the
checkers, adders and multipliers), Reed—Muller realizations Heitrix operations in earlier papers [15][17]. It is obvious

advantageous when area, speed, and testability are of Mg} e fast transforms exist only for some basis functions
concern [23]. For such linear functions, they allow surprisinglyg they constitute a small fraction of all possible LI basis
complex designs to be implemented using very few produgt,ction fors, > 2. Such fast transform matrices are classified
terms. When each variable throughout Reed-Muller expansignyer specific mathematical relations between its forward
assumes either true or complemented form, such an expressigg jnyerse transforms. Finally, those LI transform matrices
is known asFixed Polarity Reed-Muller Expansid®PRME). \hich require permutations for both the Forward and Inverse
It has been shown in the literature that for some switching,hstorms to obtain fast algorithms are also shown. Similarly
functions, more eff|_c:|ent implementations can be obtalnq_g arbitrary LI logic transformations [12]-[17], polynomial
when each variable in Reed-Muller expansion can be bothdpnansions obtained from fast LI Transforms can always be
afflrm'a'uon and negation. The_ latter expansion is callixed implemented in the form of fine grain FPGA's or EPLD
Polarity Reed-Muller Expan&oﬂ\/lPRME). devices. Hence, the fast LI transform matrices presented in this
The most general concept of a bindyearly Independent ,,5er should be used as the basis for LI expansions, rather than
(L1) Logic was introduced in [15], and expanded to a multiplene arhitrary LI transform matrices that in most cases do not
valued case in [17]. For its various properties and specidlye recursive fast decomposition and require computationally

cases see [8], [9], [12]-{17]. A theorem from [15] generaliz&nensive matrix inversion and multiplication to obtain the
all binary logic circuits that are realized in GF(2) algebra. ¥ eqfficients.

has been shown there that for any LI set of basis switching
functions ofrn variables represented a4 x 2™ matrix M,

I. INTRODUCTION

[I. GENERAL DEFINITIONS OF GF(2)
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TABLE | where F' = [Fo, Fy, -+, Fon_1]" is a column vector defining
— _ the truth vector of a switching functior(«7,) in a natural
No. Symbol Switching function binary ordering, M, is an LI matrix of orderN = 2"
1 |gom XoX1 defined by any LI set oh-variable switching functions and
) T A = [Ag,A1,---, A _1]7 is the coefficient column vector
£ 271 for the particular transform matri&/,, with modulo-2 inverse
3 18» ) Mt
4 g X2X1 In particular, (3) may be expressed as
5 8o X1 =
6 |eo . () ; g (5)
718w X2V X whereg; is any set of.-variable switching functions such that
8 |g® XX the matrix
9 £ X290 x Mn = [9379?7"'79277—1]
10| gao X1 " . .
— whereg; represents the truth vector of the switching functions
11| gay X2 VX 0 <1< 2"—1 and the symboL is the addition in modulo-2.
12 | gan %5 Example 1: Let with f(z%) = oy with F'=[1,1,1,0]7.
— Let the matrix
13 £13) X2V X
14 2014) Xox] My = [g_évg_ivg_évg_?: = [g(—é)vg(fl)vg(_é)vg(_é)]
15 | gas 1 where
0 1 0 O 0 1 0 0
{10 0 0 1 |1 000
linearly independent with respect x@oR operations (i.e., rows M, = 11 1 1 and M, = 01 11
are bit-by-bitxored), thenM,, has only one inverse in GF(2) 01 01 10 0 1

and is said to bdinearly independent

Lemma 1 [16]: Let &£ = GF(q) be the Galois Field withy
elements. The order of the group of all nonsingulaby-m gy =21 ® 22, g1 =TT V22, g2 =221 and gz = xa.
matrices with entries in the field is

i.e., the basis LI functions are

The inverse ofAd, may be evaluated using Gaussian Elimi-

q(1/2)rn(rn—l) H(qi —1). (1) nation. By (4)
i=1 0 1 0 071 1
Lemma 2 [16]: Let#;, = {zn, Tn_1, - 2,21 andf(z7,) 100 01| _|1
be a switching function ofr variables. The number of all 0 1 1 1141 0
possiblexor canonical representations of the functions is 10 0 1110 1
nelyion 1y 27 By (5)
22" H(2"-1) 2
g 1@ -1 @ )=
2n! P f(#2) = Aogo ® A1g1 ® A2g2 @ Asgs

L : . . = TV .
The derivation of a family of recursive LI logic commences (1 ®w2) & @V 02) &2

from basic 4x 4 matrices, which may be recursively definedTo obtain the value of the original function for minterm 0 by
This ensures the existence of fast algorithms. For such bag&ing its LI Polynomial Expansion, we have

matrices, combinations of canonical representations of 2-,, - —
variable switching functions are adequate for the generatioﬁ[(()?) =/0,0)=080)&(0V0)s0=06160=1.

of all existing recursivexor canonical forms for an arbitrary Similarly all other values of the original function can be
n-variable switching functions. In order not to loose anyptained from this expansion.

information about the transformed functions, two different |n the continuation, the following notation for matrices will
columns in LI matrices cannot be identical, also the colunie used repetitively.

with zero entries is not allowed. Table | gives the set of , 1,0 matrix M,, is a 2" x 2" square matrix such that it

switching functions forn = 2. is recursively defined by
The LI Transform based on Definition 1 and Lemma 1 can
be described by the following general formulas performed in M. — M,(Ll_)l M,(LQ_);L ©6)
modulo-2 algebra: R VAR Vi
M, -A=F 3) where each submatri%\/[,(fll,i e {1, 2, 3, 4}, has
M'.F=A4 (4) a dimension of2n—1 x 27—1 contains one recursive
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equation which is eithe©,,_;, X,,_; or M,_, where Example 2: Let a nonsingular matrix be defined recursively
Op—1 is a 271 x 27~1 matrix with all its elements 0, as

Xpno1 =T,y 0rJ,_1,I,_1is a2r1 x 271 identity J 0
matrix and.J,_; a 2"~! x 271 reverse-identity matrix, M, = [J"_l M"_l }
i.e., elements in the reverse-diagonal positions are 1 and not not
0 at others. Then
e The matrix M,, is a 2™ x 2" square matrix such that it 010 0
can be partitioned into two vertical submatrices, each with 1 0 100 0
i i i n—1 — _
dimension2™ x 2"~ i.e., M, = L 1} and My = 011 0
W . 101 1
M, =My My 7 . — .
[y v @ The 3 operation onM,,, by (11) of Definition 4, is
or partitioned into two horizontal submatrices, each with BM,] = |:Jn—1 On-1 }
dimension2"—! x 27, i.e., Y Mpor My
ie.
(1) '
M, {Mfé)} (8) 0100
My 1 0 1 0 0 0
where the subscrigt or H denote the respective Vertical 11 1 1

or Horizontal partitioning of the original matri&,,.

Definition 2: Let M,, be a nonsingular square matrix which Definition 5: Let M, be any nonsingular squag x 2"
is partitioned into four appropriat&®~! x 2"~ dimensional matrix such thatd,, is defined by (7). The.y operator on

submatrices as shown in (6). M,, is defined as interchanging the two partitiorg¥dx 27!
The o Operator on the matridZ,, is defined as interchang- Submatrices
ing the diagonal submatrices J[My] = [Mé?) Mé})]. (12)
MW, M@, Definition 6: Let M, be any nonsingular squag# x 2"
ao[My] = M(3)1 M(l)1 ) matrix such thatd,, is defined by (8). Thg.y operator on

M,, is defined as interchanging the two partitiorgd! x 27

Definition 3: Let M,, be a nonsingular square matrix whichSUbrmjm'Ces

is partitioned into four appropriatg”~—! x 27—1 dimensional M,] = Ml(f) (13)
submatrices as shown in (6). Py an] = MP |

The «; operator on the matri®{,, is defined as interchang-

ing the reverse-diagonal submatrices Definition 7: Let A4, be any nonsingular squag® x 2"

matrix such that\/,, is recursivelydefined by (6) and (7), i.e.,

MY MY MY M
al[Mn]I{M@i M<4_>ﬂ' (10) M, = [M) M€?>]:{M’(3>i M’@)ﬂ-

The gy operator onM,, is defined as grouping the recursive

Definition 4: Let M, be a nonsingular squarg” x 2" o ations in the submatrices vertically and interchanging them
matrix with submatrices built of basic nonsingular Matrices the submatrices horizontally

of dimension2”—! x 2”1 as shown in (6), wherd/[,(fzjL €
{On—-1, Xn—1,Mp_1}. The matrix M,, consists of only one
O,,_1 submatrix, at least on#&{,,_; submatrix not diagonally
opposite to0,,_1, plus two other submatrices which are either L ]
X,_1 or M,_, and the two submatrices contain any combi- De€finition 8: Let A, be any nonsingular squag x 2"
nations of the submatrice¥,,_, or M,,_;. The 3 operator on matrix such that\{,, is recursivelydefined by (6) and (8), i.e.,
M, is defined as selecting the submatrix diagonally opposite M}}) M(l)1 M(2)1
to O,,_; and interchange it by the following operations: n = |:M(2):| = {M’@ u® }

H n—1 n—1-

M(Q) M(l)
ot "‘ﬂz[ML(?) MM 4

pealit) =[5, 35,

Xp_1 e M,_1 if M,_; andX,_; are submatrices in4,, 1€ pzy operator onM,, is defined as grouping the recursive
equations in the submatrices horizontally and interchanging

the equations in the submatrices vertically
or

M(?’) M(4) M(Q)
o - A R v v o B e A
Mu_1 & Xn_1 if X,_1 is @ submatrix in,,.  (11) My2, M2, My
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I1l. FAMILY OF FAST TRANSFORMS
FOR LINEARLY INDEPENDENT LOGIC

From (2) of Lemma 2, it can be shown that there are
altogether 840 LI matrices derived from combinations of 2-

variable switching functions. Table | shows the list of such 2-

variable switching functions that can be used as column entrie
in LI matrices. Combinations of four basic switching functions

which satisfy condition in Definition 1 will form a basic LI

matrix over GF(2). The main interest is on those LI matrices

649

which can be expressed in recursive mathematical equations

and possess both fast forward and inverse transforms. This[ My
as mentioned earlier, will lead to existence of fast algorithms

and recursive butterfly structures for any number of variables,
n. For transform matrices that are based on GF(2) algebFay. 1. ClassA.
there are altogether 44 LI matrices, in which the forward and
inverse transform matrices may be constructed effortlessly.

Such results have been obtained computationally. The first

28 transform matrices are mentioned by the same authors| ; |
in [8]. The fast algorithms of those LI transform matrices

are efficiently constructed. In this paper, the family of LI

Transform matrices which can be formulated recursively, is

discussed in detail. Mathematical operations are developed,{ 7 '

allowing transformation of these 44 LI matrices into another
classes of LI matrices which require horizontal or vertical
permutations so as to possess similar property of recursiveness.

There are only 44 LI Transform matrices which can be
recursively defined. They are constructed by the basis recursiv

Irkl 0,,_1 Mn—l On—l
M,,_l 1,,_1 In—l Mn-l
1,,4 Mnfl Mn‘l In—l
Ont I On1 Muy
O,._l Mn—l Mml
M,,,l Mml On—l Mn—l
O,,,l J,,,l Onfl Mn—l |
Mrkl Mn—l Jrkl
In1 } J1 Mp |
n-1 O"’l Mn—l On~l
Ony Mua Mar Mus
Mn—l Mn—l Mn—l On—l

submatrice®),,_1, M,,_1, andX,,_;, where at most on&,, _,
submgtrlx an_d_t_onn_l sul_a_matrlces could appear in thq:ig. 2 ClassB.
recursive definitions. In addition, there must be at least oné

M, _1 in the recursive equation. Figs. 1-4 list out these LI
transforms which do not require any horizontal or vertica
permutations. In Fig. 1, those LI transforms that have identic
fast forward and inverse transforms, i.é84, =

are

n—1,

shown. This is categorized as Class A of LI Logic. In this class

of LI Logic, the submatrices consist of no reverse-identit
matrix J,_1. Moreover, the submatriO,_; lies in either
M,(f_)l or M,(f’_)l submatrices of (6) anM,(Ll_) = M,(f_)l. As it
can be seen, Fixed Polarity Reed—Muller transform belongs
this class of LI Logic. Moving the submatri®,,_; into either
M,(Ll_)1 or M,(f_)l will bring the LI Transform matrices into
Class B. There are altogether 6 LI transforms in Class B.
this class, the submatrices consist of no identity matix; ,
and the forward and inverse transform matrices are related

M(?’)

n—1-

. . 2
the following Property 1, WlthM,(L_)1 =

Property 1: Let Mg = M, be one of the nonsingular

square matrices in Class B. Then, the inversé&f is given

by

Mlgl = Oéo[MB].

MGt = BlMc).

MBI = OéoOélﬁ[MD].

| Property 2: Let M = M, be one of the nonsingular
uare matrices in Class C. Then, the inversé/ef is given

17

Eig. 3 shows the list of 16 LI Transforms in Class C. Shifting
the zero submatri>x(,,_; into eitherM,(Ll_)1 or Mff_)l, and
I&Seping the respective combinations and permutations of iden-
tity matrix 1,,_; with M,,_; and reverse-identity matrix,,_;
with A,,_; from Class C produces Class D of LI Logic. The
Lc%llowing property of Class D may be derived.

Property 3: Let Mp = M, be one of the nonsingular
%&uare matrices in Class D. Then, the inverséf is given
b

(18)

Property 4: Let M and Mp represent any nonsingular

square matrix in Class C and Class D, respectively. Then,

pen[Mc] € Mp

(16)
and

Different combinations and permutations of identity matrix
1,1 with M, and reverse-identity matriX,, _; with M,,_;
yield another class of LI Transforms. In this class, the positiothe .z or ;g1 Operations on the matrix is a one to one and

of the zero submatrix),_; lies in eitherM,(f_)1 and M,(f’_)l.

pev[Mc] € Mp.

(19)

(20)

onto mapping. Hence, there are similarly 16 LI Transforms

This categorizes Class C of LI Logic and for matrices frorm Class D. The following mathematical relationship may be

this class, Property 2 is satisfied.

derived.



650

J,,_l On.l 1n~l On—l
J,,_l M,Fl In—l Mml
Jnt On Inn Oma
Moy Moy Mpy My,
Jml Jml ]ml I,.,l
Oml Mml Oml Mn—l
-]n—l Mml In—l Mml
On~l Mnfl Onv] M,.-[

On—l
Jn—l

N W

Mml Jml
On—l Jn—l

Mn-l Mrrl
On—l Jml

Al

Fig. 3. ClassC.
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Mml
Mn—l

On—l Jn1 On1
Mn-l Jn In

Jn—l .
Mu

%

Onfl
[n—l

Onvl M O"Al
Jn—l Jn—l M

On—l
Mn—l

In—l ]rkl
Mn—l On—l

%

Fig. 4. ClassD.

Property 5: Let Mc and Mp represent any nonsingulargqation (22) of Property 5 may be proved similarl@ED.
square matrix in Class C and Class D, respectivelyd}f =

pen[Mc] of Mp = ugpyv[Mc], then from Properties 2—4,

Mp' = pev[M:"]

or

Mp' = per M

respectively.

Proof: Let Mc = M,, andMp = ugg[M,]. From (18)

(21)

(22)

Mpt = apa1B[Mp] = avcr Blupr[Mn]].

Interchanging and pgg

Myt = aparpipr[BM,]].

From (17) of Property 2,

Myt = agarpipr MG = ppv[MZ'].

Classes A, B, C, and D of LI Logic form the basic LI
Transforms which possess fast algorithms in forward and
inverse transform. They do not require any horizontal or
vertical permutations for the existence of their recursiveness.
Those 2 permutations, horizontal and vertical, are introduced
earlier by Definitions 5, 7 and Definitions 6, 8, respec-
tively. The LI transforms are classified according to their
mathematical relationship of forward transform matrices with
their respective inverse transform matrices. As shown from
all the basic LI transforms, they are constructed from four
basic submatrices, namely the zero submattix_,, the
identity submatrixl,,_1, the reverse-identity submatrix,
and the recursive submatridd,,_; in which general rules are
applied to them, following their classifications. The general
computational complexity of each LI transforms depends
solely on the construction of the matrices from the basic
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submatrices. Broadly speaking, LI transforms with matricdsom (22) of Property 5

constructed from only the recursive submathi,_; and the
zero submatrixQ,,_; yield least computational costs. This
implies that fixed polarity Reed—Muller transform belongs [0

Ap =

Fry

[
=
o]
=
by

o
o

to this category of LI transforms with lowest computational
complexity. Replacement of any submatfik, _; with X,,_1,
regardless whether it is an identity matrlx_, or reverse-
identity matrix.J,,—1, increases the computational costs of the
transform. Fom = 2, it can be shown that LI transforms with
one or two submatrices of eithdy,_; or J,_; will increase
the computational costs of the transform by 1 or 2 modulo-

RO OO RrRrOOoOO
R =, OOCOCOoOrk oo
PO, OO OoORrO
R = Ok OO O

=== O O

R O, ORrRF~RF~LO

= i en i en s R an]
R, ORrROOO

2 additions, respectively. However, it does not imply that Lt js clear that for the particular truth vector, the transform

transforms having one or two submatrices of eithgr, or magrix in Class C results in a simpler LI Spectrum with
Jn—1 are worse than the Reed-Muller transforms from thgore number of zeros than that of Class D. An LI transform
implementation point of view, when LI polynomial expansiong,atrix from Class B which has the same computational costs

for some logical functions are considered what is shown iy he two transform matrices selected earlier is chosen for
the following example.

Example 3: Let

with

) =T3 Tz V x3Tz V T3T1

comparison of the spectra. The recursive transform matrices
are

On—l Jn—l

MB - |:Jn—1 Mn—l

} and MA:{Mn_l O"_l}

Mn—l Mn—l

respectively. The resulting LI Logic spectra for the same
switching function are

F=11,1,0,01,1,1,0]7.

Let LI transform matrixA4,, of order2™ belong to Class C,
with recursive equation defined as

Ap =[0,0,0,0,0,0,1,1]* and
Ay =11,0,1,0,0,0,1,1]"

J 0 respectively. Comparin@}, A}, Ac, andA}, it can be seen
M, = { n—l1 n—l } that the optimal LI Logic spectrum results from the transform

Jn—l Mn—l

Applying gy operation tolM,, brings this matrix to Class D,
according to (20) of Property 4 i.e.,

Mp = ppy[Mc]= {

For the transform matrix of orde2?,

matrix in Class B which has the highest computational cost
since it possesses only oné,_; in the recursive trans-
form matrix. The known Reed—Muller transform together with
transform matrix from Class C yield the second best spectra
with four nonzero spectral coefficients. However, it has the
least computational costs among the four compared transform
matrices. From (5), the LI Expansion based on matrix

Mp == (40, 91, 92, 93 G4, G5, 96, G7)
where
Jo =T3T2X1, ¢§1 = T3,T2T1, G2 = T3T2T1

g3 =23T2 Ty, G4 = ToT1, G5 = T2T1

g6 =x371 VTawy and gr = xowo VT3 T

J(23) = g6 ® g7 = (x3x1 V Tax1) @ (x3x2 V Tz T1)-

The resultant LI Expansion may be implemented easily by
existing 20X8 PAL device [11]. The device, in general, has D
flip-flops driven byxor gates. The inputs of theseRr gates

are fed by two sum-of-products arrays with two product terms
each, allowing the resultant LI Expansion to be implemented
directly. Some LI transform matrices may require more than
two product terms, which is not appropriate for the 20X8
architecture. However, other types of devices are available
to fit this demand, for example, the Cypress 330 [11] allows
many product terms. The same expansion may also be easily

M 0 0 1 0 0 0 07
0O 01 0 0 0 0O
01 0 0 0 0 0O
1 0 000 0 0O
Ms=Mc=1o 0010100
0O 01 01 0 00 ]
01 00 0110 IS
.11 0 0 0 1 0 1 14
From (17) of Property 2 and by (4)
Ac =Mg* - F =plMc]- F
M 0 0 1 0 0 0 07 r17 r0 7
0O 01 0 0 0 0O 1 0
01 0 0 0 0 0O 0 1
{1 0 00 0 0 0O 0 1
101 0 0 01 00 1 0
1 00 01 0 0O 1 0
1 01 01 010 1 1
11 1 1 1 1 1 1 11 LOJ L1 ]

implemented by Concurrent Logic CFA6006 fine grain Field
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Programmable Gate Array [2]. The basic symmetrical cell fand the corresponding modulo-2 inverseldfy is
this FPGA has two logic functions8AND and XOR which

, _ _ ISNAND and . 0 0 0 0 0 0 0 17
permits to implement arbitrary switching circuits represented 000000 1 0
by their LI polynomial expansions. 00 00UO0T1TU00
From the basic LI transform matrices, another category of 0000100 0
_ . X -1 _ 17 _
LI transform matrices may be derived. In this new category, Mpi- =pu[MpT] = pur 0001000 1
horizontal or vertical permutations are required before making 001000 10
the matrices recursive. 0101010 1
Property 6: Let AM,, be any nonsingular squa@* x 2" 111111 11
o P 1 L _
matrix with modulo-2 inversé\{,*. Then 0 0 0 1 00 0 01
[a [M]) ™ = pov (M) (23) 0010 0000
ML = MY o4 0100 0000
o [ 1) 7 = o [M] (24) T 5 00 000
Definition 8: Let My be any nonsingular, square, recursive o 0o 0 1 0 0 0 1
matrix belonging to Class Y of LI Logic wherd U B U 0 01 0 0 01 0
CuD=Y,ie,MsUMgUM-UMp = My. Then if 01 0 1 0 1 0 1
M, = pug[My], M, belongs to a class namédy where 1 1 1 1 11 1 14
Yy = Ap UBy U Cy U Dy, and Ay, By, Cu, and Dy, are Jhe corresponding LI Logic spectra are evaluated similarly.
classes in which its respective members are derived from tlnesummar
ivp operation on the LI transform matrices in Class YM§71 y
defines the modulo-2 inverse of the matd{y then from Axy =[1,0,0,1,0,0,1,1]F
ProDerty 6 A;V = [07 07 07 07 07 17 17 1]T
— -1 N
Mt = py[My ] (25) Ady =1[0,1,1,1,0,0,1,1]7
Similarly, if M, = puy[My], then Apy =[0,0,1,1,0,1,0,1]%.
Mt = pg M (26) From the spectra, it can be seen that the coefficient vector from

M gy transform matrix yields the optimal spectral coefficients.

Comparing with Example 345 still gives the best spectral

) b derived f . h coefficients with maximum number of zero coefficients. It

respective members are derived from fhe operation on the should be noted that the corresponding vertical or horizontal

Ll I:t)rcjfri]r?i];?c:nms n;a;rrl]c(:jez Tracril:fz?mY.all the basic classes of FLermutation of each class has identical complexity owing to
lt e same number of 1's and O’s in each permuted row.

transforms_ having fas_t transforms int_o two categories, forSo far, different LI transform matrices have been introduced
one of which the horizontal permutation needs to be d.ort]ﬁeat may be classified into 3 large classes. Class Y presents
in the forward transform and for the other one, the Vemc?}l]ose LI transforms which require no permutations. Class

permutation needs to be performed instead, Yr and Yy include such LI transforms that respectively

f Eﬁ?ngﬂlf ::1: ngthrlrS] ?Xa;n |p le, thg S?:nasbviirrﬁ?li iw'tigm equire horizontal and vertical permutation at the forward
unction 1ro ampie 5 1S used. Fro € 0 a ransform matrices, and in addition, vertical and horizontal

the corre_spondmg transform matrices which require vert|c8 rmutation at the inverse transform matrices. Another smaller
permutation at the Forward transforms adeyy, Mgy, Mcy

and Mpy, respectively. For example classes of LI transforms exist, which have distinct properties

' ' ' from the above 3 large classes of LI transforms. In these
classes, the transform matrices require either both horizontal
or both vertical permutations at forward and inverse transform
matrices. This is categorized as Class E. Class E divides into
two subclasses, namedy and Ev. Fig. 5 shows the fast
transforms for Class E.

Definition 9: Let M, be one of the nonsingular square
matrices in Class E. Le¥/g and Mgy be two LI transform
matrices belonging to Class&g; andEy;, respectively. Then
by definition, Mgy = NH[Mn]aMEV = uyf[Mn], and

Mgi; = pulon (My,)] (27)

and M,, belongs to a class naméd, whereYy = Ay UBy U
Cy UDy, and Ay, By, Cy, and Dy, are classes in which its

1
e}

Mpy =py[Mp] = pv

(il all =R ]
SO OO o mk O
SO OO OO
IOOOOOOO}—\

[l e en BN en i ol an i an)

and
Mgy = py[an(My)]. (28)

In this class of LI transform matrices, two fast forward
. algorithms exist which are shown in Fig. 5. The inverse fast

CHOHRPROOCOOorooOoORr OO

CORPrPOOCOO0 oo oo RO

COCOHOOCOCO oo o0 O R
1

= N eBaBal -
[Nl aoloRal =]
S OO OO QO
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same implementations of butterfly diagram can be used for
ﬁ N It Oy ] the calculation of both forward and inverse transforms.
Muy Jn Another class of transform matrices exists which has similar
properties to LI transform matrices in Class A but requires
----------------- identical permutations, eithefi;y or py at the forward or

o inverse transform matrices. This is categorized as Class F. The
p,,[ AJ;" J'“ } transform matrices in Class F contain no submatriges; .
n-1 n1

Definition 10: Let M,, be any nonsingular square matrices
from Class F, thed{r 5 and M gy belong to two LI transform
matrices in ClasseBy and Fy accordingly, where\ gy =

pe M), Mry = pyv[My]. Then,
Jn—l Mml
“y[ Ot I ] My} = puMa] = Mpy (31)

and

Jus My Mgy = py[Mn] = My (32)
4 On—l Jrkl

LI transform matrices in Class F have identical computa-
tional costs to that of Class E, since the recursive matrices
Fig. 5. ClassEy and Ey . possess only one submatrik/,,_;. Fig. 6 shows the fast
forward and Inverse transforms for LI transforms in Class
F. Generally, two different fast transforms exist for each

forward transforms. With this property, the same fast forwatd ransform matrix belonging to Classes E and F. This

transform may be used to calculate inverse transform dug to th_e ﬁperatlor;]s Oth or /t]‘_’ hto the_ recurs||ve
reversing the order of the spectral coefficients. equat|on§. Fma;] Y, anort] e][ casz w 'Cf requires only one
Property 7: Let /' define the column vector representin ermutation either at the forward transform matrices or at

the truth vector of am-variable switching function and its he inverse transform matrices but not at both, is introduced.

spectral coefficients in natural binary ordering. Suppdse Iq this class_of LI trangforms, the matrices contain all four
represents the LI transform matrices in Class E such that %ﬂ_er_ent basic submatrices Qfy,_y, In—1, Jn—1, and Op_1.
@) A= MEl'ﬁ- Defining the matrix operatak to a column is is categorized as Class G. Fig. 7_I|sts the.fast forward
vector as reversing the position of its elements, i.e., transforms for Class G. The mathematlcal.relatlons b_etwet_en
the Forward and Inverse Transform matrices are given in
E(ﬁ) =[fon_1, +, Fon_o, F,]* and each subclass of G. Some of the LI transform matrices of
T _ T G are related by the matrix operations,«; or (oo and
B(A) =[Aen1s Az A a1). Among all the presented LI transform matrices, Class
then G is most impractical from a computational point of view.
- - For some logical functions, this class can however have the
R(4) = Mg - [B(F)]. (29) simplest spectrum and the resulting hardware implementation
This implies and therefore is also discussed. The LI transforms from
. . Class G possess more computationally expensive fast forward
R(F) = Mz' - [R(4)]. (30) algorithms and their Inverses, though may be mathematically

. . . fined, have no relations with the respective fast forward
Equation (30) shows that LI transform matrices in Class Utterflies. Moreover, only fom — 2, the fast transform

have fast forward transform such that the same fast algorithm_ . . o S :
o : r?quwes six modulo-2 additions which is one of the highest
could be used to evaluate the respective inverse by sim

reversing the input and output truth vectors. Equation (3 mputational costs among all other classes of LI transform
rsing P tput . atrices. This is the same as for all other LI transform matrices
applies to LI transform matrices in Class B too. In general, |

the forward and inverse transform matrices are relateddy hich posses only one submatrb;, ;.

and iy matrix operators with n@ operator and the samey

or uy operations are used at the forward or inverse transform IV. CONCLUSION

matrices, then the inverse fast transforms are easily derivedrhe suitability of an LI transform in a given application
by vertically flipping the respective fast forward transformsdepends not only on the choice of its basis functions but also
and (29) and (30) are applicable. The operators in Class Bar the existence of efficient ways of its calculation. When
Class E LI transform matrices involve only eitheg or «; the concept of LI Logic was introduced, the author used
matrix operator but not both. However, the existence of eithéére conventional means of calculating the LI transformations
identical diagonal submatrices or reverse-diagonal submatrits matrix inversion and multiplication [15]-[17]. In this
will satisfy the condition of forward and inverse transfornpaper, recursive forward and inverse equations and butterfly
matrices related byg and«; matrix operators. This property structures are used to decompose matrix multiplications into
is advantageous in terms of hardware architecture since gimple pairwise operations so that on average the number of

transforms are easily derived byertically flipping the fast
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p Mn—l In—l
]n—l Onvl
Mml Irkl

Ho Iny Ona
Oml Iml

u In—l Mml
Ona I

H In1 Mpa

Fig. 6. ClassFy and Fy .

Onr JIna Mpa Ina
In—l Mn‘l Jn—l On—l
M = wy[ugr(Ma)]
On1 Ina Muy Jua
Jn—l Mnfl InAl On—l
MG = pp{ps(Ma)]
Jn1 O,.;] In—l Mn—l
Mn—l ]n—l On—l -]nfl
M = pylpen(Mn)]
J,.,l M,,‘l In—l On—l
Ona Im Muy Jna
MY = wo[umr(M,))
Fig. 7. ClassG.

modulo-2 operations is minimized frolW? to N log, N for
an Nth-order transformation matrix.
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example. The theory presented in this paper allows to find and
calculate the polynomial expansions by using fast transforms.
The design of the next generations of fine grain architectures
should be influenced by the introduced efficient bases of LI
logic transformations so that the resulting hardware implemen-
tation could be calculated efficiently by fast transforms and use
minimal number of basic cells with a compact routing. As the
result, it would have also the advantages of high speed and area
minimization. Hence the practical applications of presented
developments on the direction of futufe” technology are
enormous.

For a selected class of LI logic transformations, the corre-
sponding polynomial expansion of an arbitrary logical function
is canonical. The proper selection of the transform matrix can
greatly reduce the final implementation of a given function
not only in the form of available EPLD devices and fine grain
FPGA'’s but also as custom made FPGA'’s. One of the future
related research topics is to associate presented classification of
LI Logic with some known classification of logical functions
and use it for matching. The ability to select in advance
those computationally effective fast LI transformations will
result in simple implementation of some classes of logical
functions. The good starting point in this new research would
be to use spectral classification of logical functions based
on Walsh functions and known relations between Walsh and
Reed-Muller spectra [3]. This is to find the relations between
LI transforms and expansions and spectral classification based
either on standard or generalized Walsh functions [6], [7].

The same concept of LI Logic can be applied easily to
logical functions with multiple-valued inputs (the transform
matrix M is the same for two-valued and multiple-valued
cases) [14], [20]-[22] and all the presented derivations are
valid for such instances as well. A unified approach to the
generation of butterfly structures for family of LI matrices can
be also of interest for researchers developing efficient multires-
olution digital signal processing systems using unconventional
applications of butterfly LI decomposition techniques [1], [4],
[5], [10], [18], [19], [25].
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