
 HIGH PERFORMANCE DIGITAL SIGNAL PROCESSING

Tom Curtis1, Michael Curtis2

Curtis Technology (UK) Ltd, Weymouth, Dorset, DT4 7BS

1tomc@curtistech.co.uk
2 michael.curtis@curtistech.co.uk

1. INTRODUCTION
 Recent improvements in the speed and complexity of commercially available digital signal
processing (DSP) devices have allowed digital techniques to be extended to a number of new
areas. Now many applications in RF and communications are within the bandwidth capability of
current generation DSP systems. This paper demonstrates a system developed recently for such
applications. It uses standard PC bus architectures and interface chipsets, together with
commercially available analogue-to-digital converters (ADCs), digital-to-analogue converters
(DACs), and field programmable gate arrays (FPGAs), to realise wide bandwidth, high
performance systems at relatively low cost.
 The system outlined provides multiple independent communications processing channels, each
with in excess of 100 MSPS real time bandwidth. Analogue interfaces are provided via ADCs and
DACs and the module supports frequency domain processing via real time forward, inverse fast
fourier transforms (FFTs) and various matrix manipulation algorithms. An industry standard
peripheral component interface (PCI) is also implemented on the system, so that raw or
processed time-series and/or frequency domain data can be examined and displayed as required,
using a standard personal computers (PCs). This PC interfacing also provides the necessary
hooks for simple adaptive processing on the high speed data stream.

2. TECHNOLOGY BACKGROUND
 Until relatively recently the choice of architectures available to system designers for high
performance DSP was limited. Mainstream integrated circuit manufacturers such as Analog
Devices [1], Texas Instruments [2], Motorola [3], etc, each produce families of programmable DSP
parts for the commercial market. In the main, these devices are derivations of architectures that
have been around for some time, with incremental improvements in performance being achieved
by successive geometry shrinks to improve clock speeds and reduce dynamic power
consumption. The mainstream devices are general purpose, in the sense that their architectures
were developed to cope with a number of different potential markets, with the customisation for
particular applications being achieved by software programming.

 Manufacturer Part No Clock Rate 1k complex FFT speed
 Analog Decices ADSP-BF53x 600 MHz 16.2 microseconds
 Motorola Star Core SC140 300 MHz 15.8 microseconds

 Texas Instruments TMS320C64x 720 MHz 8.34 microseconds

 Table 1(a) – Some Available Main-Stream Digital Signal Processors

 A further approach, by what could be described as the more "niche" DSP players in the IC
manufacturing area, such as Sharp [4], DSP Architectures [5], etc, has been to produce more
specialised DSP engine parts, with architectures more closely tuned to particular applications.
Whilst most of the mainstream programmable DSP parts provide mainly scalar arithmetic
functions, these DSP engines were designed to handle complex vector arithmetic directly. This
gives them some advantage in terms of lower clock rates and system software requirements but
at the expense of a more limited application area.

 Manufacturer Part No Clock Rate 1k complex FFT speed
 Sharp Microelectronics LH91V24 80 MHz 38.4 microseconds
 DSP Architectures DSP24 80 MHz 27.5 microseconds

 Table 1(b) – Some DSP “Processing Engines”

 These two “flavours” of DSP device architecture offer the system designer sufficient flexibility for
most applications but there are still some systems that benefit from a more customised processor
design. The cost of custom design for small geometry systems-on-chip (SoC) has always been a
problem but is cost effective in high value added or large user volume applications.

 However, the improvements in performance of SoCs that has been achieved by transistor
geometry scaling in recent years are starting to hit some fundamental limits. Recent geometry
scalings from 130 nm to 90 nm have not produced the increase in operating speed that previous
scaling steps have realised. Excessive transistor leakage at the smaller feature sizes on some
processes has resulted in die where the resultant dc dissipation has caused major thermal
problems, which sets the limit to device operating frequencies rather than the more normal
dynamic power dissipation limits that dominated earlier larger geometry processes [6].

 Figure 1 – Power Dissipation vs. Process Geometry – from [6]

 In order to circumvent these process problems, exotic technology tweaks like using strained
silicon and high-k dielectric gate materials are being incorporated into the process flow by the
major foundries. Consequently, it is becoming increasingly difficult for the smaller systems houses
to get access to these technologies and develop custom DSP parts on "leading edge" processes:

the up-front costs for computer aided design (CAD) tools for that level of design and the foundry
charges are just too prohibitive.

 In the past, one way around this problem with foundry access was to develop custom hardware at
printed circuit board (PCB) level using "bit-slice" parts [7], for example using high-speed static
memory and various multiplier or multiplier/accumulator devices. However, with the increasing
complexity available on chip, these low complexity DSP "building block" parts have fallen off the
technology "trailing edge". Consequently it was difficult for a time to build efficient custom
architecture DSP systems for niche applications, as the basic components were just not available.

 However, recent advances in FPGA technology have started to fill that gap. FPGAs with random
access memory (RAM) based configurable logic blocks (CLBs) have been around for some time,
from the major players such as Xilinx [8] and Altera [9]. The combination of programmable logic
and the ability to use the CLB RAM blocks as distributed memory made these devices
immediately attractive in many DSP applications.

 More recently the manufacturers have started to add features to their basic FPGA architectures in
order to differentiate their products in the market place. Xilinx, for example, initially added blocks
of larger fast dual port RAM to their devices, making the chips useful in areas such as corner
turning for DSP. Arrays of embedded dedicated multipliers were soon added to this block memory
feature and current generation FPGA devices are available with hundreds of 4kbyte memory
blocks and 18x18 bit multipliers, together with upwards of 60,000 programmable logic slices.
Table 2 outlines the DSP related resources available on current generation FPGA families.

 Manufacturer FPGA Family Device Block RAM Multipliers
 Altera Stratix II EP2S60 128k bytes 144
 Altera Stratix II EP2S130 300k bytes 252
 Xilinx Virtex II XC2V3000 216k bytes 96
 Xilinx Virtex II XC2V8000 378k bytes 168
 Xilinx Virtex IIP XC2VP125 1251k bytes 556

 Table 2 – Typical DSP Resources on FPGAs

 Using these programmable parts, the system designer has much more freedom in architecture
design and the vast amount of DSP-related resources available on chip allows processing
engines with massive throughput to be considered. DSP-enabled FPGAs, together with current
generation ADCs [10] and DACs [11], provide the resources to implement processing hardware
for very high bandwidth systems. As an example of the capability of this type of device, the
following section outlines the development of a multiple channel parallel pipelined FFT for
professional RF applications that integrates several channels of frequency domain processing,
with bandwidths in excess of 100 MSPS.

3. ARCHITECTURE CONSIDERATIONS
 The availability of massive resources, in terms of dedicated multipliers and memory, provides
considerable flexibility for DSP design. However, to use these devices efficiently, the designer
needs detailed knowledge of the algorithms to be implemented and how to map them onto the
programmable hardware. In general terms, this type of programmable hardware design requires
a significantly different “skill-set” than that required for systems using main-stream DSP parts. To
reduce the "learning curve" associated with programmable hardware design, a number of

companies have started to offer "black box" designs for various DSP functions [12] that can be
readily integrated into the FPGA design flow. However, this “encapsulated IP” approach to
system development can be restrictive (and expensive!!), so the approach taken here was to
design the DSP engine from the ground up, building on previous DSP architectures and designs
[13].

 Only the FFT/IFFT engine design will be considered in any detail, although the performance of the
overall unit will be outlined in later sections. The main aim will be to illustrate the basic
architecture development and the level of performance that can be realised, rather than providing
a detailed formal description of FPGA hardware design.

3.1 Architecture Background
 In earlier hardware systems, using for example LSI multipliers and bit slice devices, one of the
major constraints on processor design was the need to reduce the complexity of control logic in
the system, as typically this was implemented using MSI TTL. Considerable efforts were made to
minimise the overall system cost, and balance the control complexity to arithmetic complexity
ratio, often by heavily massaging the processing algorithms to match the chosen implementation
technology [14,15]. Often, various number theory and matrix manipulation techniques were used
to achieve this balance.

 Similar massaging is needed to realise efficient performance on FPGA based systems. However,
the constraints are now very different. Control complexity is no longer an issue: there are
sufficient CLB resources for complex control designs. The main constraints are now in developing
algorithms that map readily onto the interconnection architecture provided on the device.
Interconnection routing tends to be faster and more efficient between neighbouring components
on FPGA chips, leading naturally to the choice of heavily pipelined architectures for fast, densely
packed systems.

 A number of previous designs [4,5,13] have used higher radix FFT butterflies but with pipelining
used only in the processor core itself, i.e. at the time they were designed, the technology could
not support enough resources on chip, in terms of memory and multipliers, to fully “unwrap” the
FFT algorithm.

 For example, the Complex Vector Processor outlined in Reference 13, used a three-port pipelined
butterfly engine, with three real multipliers and four arithmetic units, to implement the Radix-4
based system. Clocking at 25 MHz, this design achieved 1k-point complex FFT times of around
205 microseconds. The Sharp LH9124 used a four-port pipelined engine, with six multipliers and
eleven arithmetic units to implement a pseudo radix-16 system, with 1k-point transform times of
around 38 microseconds when run at a clock rate of 80 MHz.

 Similarly, bit slice designs have been reported [16] that used fully pipelined memory architectures,
but with simpler radix-2 FFT butterflies, to minimise the overall processor resources.

3.2 FPGA MAPPINGS

3.2.1 Dual Port RAM Based Systems
 Current generation FPGAs have enough routing and resources to consider fully pipelined, high-
radix FFT designs. The combination of dual port memory and hardware multipliers on the Xilinx
FPGAs, for example, leads naturally to radix-2 pipeline designs, such as that shown schematically
in Figure 3. Typically, for 1k-point complex FFT, this design can be clocked at around 150MHz,
giving a transform time of about 3.5 microseconds.

 Figure 3 – Pipelined Radix-2 FFT Schematic

 Even this simplistic design approach is faster than the best currently available main stream DSP
parts. However significant gains in performance are available by massaging the engine design to
fit the FPGA resources - there is around a factor of two difference in speed between the dual-port
block memory access time and the fall through time for the multipliers on the Xilinx devices.
Faster RAM access time can be traded to provide pseudo four-port RAM, as shown in Figure 4,
giving four port access speeds matched to the multiplier fall through time.

 Figure 4 – Pseudo 4-port RAM Schematic

 So, pipelined Radix-4 systems, such as shown in Figure 5, can be clocked at similar speeds to
the Radix-2 design in Figure 3. These achieve a 1k-point complex FFT speed of around 1.7
microseconds. This design uses around 48 multipliers and 30 block RAMs and represents around
50% of the multiplier and 30% of the BRAM available, on say a Xilinx XC2V3000.

 Figure 5 – Pipelined Radix-4 1k FFT Schematic

 This resource requirement assumes a 4 multiply/2 add implementation for each complex multiply:
using a 3 multiply/5 add design (See Figure 6) reduces the multiplier requirement to around 36
multipliers, with no speed penalty. The resources used to implement this basic radix-4 design then
represent about 30% of the total available on the XC2V3000.

 Four multiply/two add implementation:-

 (a+jb)(x+jy) = ax-by + j(bx+ay) ….. (1)

 Three multiply/five add implementation:-

 Writing

 X1 = (a+b)x

 X2 = (x+y)b

 X3 = (x-y)a

 Gives

 (a+jb)(x+jy) = (X1-X2) + j(X1-X3) ….. (2)

 Figure 6 – 4 Multiply/2 Add vs 3 Multiply/5 Add Complex Multiplier

 The hardware requirement can be reduced further using a pseudo radix-16 butterfly and a mixed
radix-16/radix-4 architecture. The pseudo radix-16 butterfly uses the radix-4 butterfly, with the
some additional real multipliers. This reduces the hardware needed for a 1k-point complex
transform to 26 multipliers and 18 BRAMS with no speed penalty.

 Consequently, it is possible to pack a number of separate FFT units, working in parallel on
different data streams, with their control, memory addresses and coefficients running in lock-step
from a common control system.

3.2.2 Shift Register Based Systems
 Using larger radix transforms becomes difficult using multi-port memory directly. However, using
a combination of fixed length delays and multiplexers [17], as shown in Figure 7 allows high radix
transforms to be implemented directly.

 Figure 7 – Pipelined Register/MUX based High Radix FFT Schematics

 This approach uses a reasonable mixture of CLK, multiplier and BRAM resources and various
mapping tricks can be used to implement the higher radix transform cores efficiently, using for
example small length low complexity Winograd transforms [18] .

 Benchmarks for various algorithm mappings are given in Table 3

 Radix Size Transform Size Speed (microseconds)
 2 1024 3.41
 4 1024 1.71
 8 512 0.43
 16 256 0.11
 32 1024 0.21

 Table 3 – Higher Radix Speed Benchmarks

4. PRACTICAL SYSTEMS
 A number of practical systems designs based on the architectures outlined above have been built.
In all cases, these have use arithmetic word widths of at least 24 bits for the data paths through
the system, with 18 bit wide coefficient data. The 24 bit x 18 bit multipliers for this were realised
by using the embedded 18 x 18 bit multipliers for the MS product and using CLB resources to

generate the LS product and combine the results. This approach was needed to achieve the
dynamic range required for the application.
 Figure 8 shows a photograph of one such practical system module. It uses two 14-bit, 105 MSPS
ADCs and a dual 14-bit, 125 MSPS DAC for analogue data interfacing. Analogue input and
outputs are transformer coupled for isolation. A transformer-coupled trigger input is also provided
for use in applications where synchronous snap-shot data is required. The module uses a Xilinx
XC2v3000 FPGA and three blocks of 64k x 64 fast synchronous static RAM. The FPGA can be
configured either via the module interface (using PCI bus on mother board), by a J-tag test
interface or using a dedicated flash memory.

 Figure 8 – FPGA based FFT Module

 The module normally sits on a cPCI mother board (as shown in Figure 9) to interface it to the rest
of the DSP system. Commercial PCI motherboards are also used – see Figure 10. This figure
also shows the format of the demonstration software used to exercise the system.

 Figure 9 – CPCI Processor Card

 Whilst this module was developed for an RF processing application, it has also been used as the
processing engine in high throughput sonar surveillance systems, as outlined in Reference [19].

 Figure 10 – FFT Module Demonstration Set-up

 © Copyright Curtis Technology (UK) Ltd, 2004.

REFERENCES
 [1] “ADSP-BF531/ADSP-BF532/ADSP-BF533: Blackfin® Embedded Processor Data Sheet”,
Analog Devices, Norwood, MA.
 [2] “TMS320C6414, TMS320C6415, TMS320C6416 Fixed-Point Digital Signal Processors”,
 Texas Instuments, Houston, Texas.

 [3] “MSC8102 Quad Core 16-Bit Digital Signal Processor Technical Data”, Motorola.
 [4] “LH9124 Digital Signal Processor Users Guide”, Sharp Electronics Corporation, Camas, WA,
USA, 1992.
 [5] “DSP24 – High Performance DSP Chip”, DSP Architectures, Vancouver, VA.
 [6] “Low Power SoC Design”, EDA Weekly Review for May 24, 2004.
 [7] "Control Ordered Sonar Hardware – COSH: A Distributed Processor Network for Acoustic
Signal Processing", T E Curtis, A G Constantinides and J T Wickenden, Part F, Proc IEE, 1984.
 [8] “Virtex-II Platform FPGA Handbook”, Xilinx, San Jose, CA.
 [9] “Stratix II Device Family Data Sheet”, Altera Corperation, San Jose, CA.
 [10] “AD6645: 14-bit 80/105 MSPS A/D Converter”, Data Sheet, Analog Devices, Norwood, MA.
 [11] “AD9767: 14-bit, 125 MSPS Dual TxDAC D/A Converer”, Data Sheet, Analog Devices,
Norwood, MA.
 [12] See for example – “Xilinx IP Center” at www.xilinx.com
 [13] “ A Fast 32-bit Complex Vector Processing Engine”, A J Kerr and T E Curtis, IOA Conference
on Sonar Signal Processing, Loughborough, 1989.
 [14] “The Interaction Algorithm and Practical Fourier Series”, I J Good, J Roy. Statist. Soc., Ser. B,
1953, 20 and Addendum, 22.
 [15] “Hardware-based Fourier Transforms: Algorithms and Architectures”, IEE Proc, Part F,
Communications, Radar and Signal Processing, 130.
 [16] “Wafer Scale Integration for Improved Signal Processor Efficiency”, E E Schwartzlander, Proc
of Digital Signal Processing-91, Florence, 1991.
 [17] see for example – “Theory and Application of Digital Signal Processing”, L R Rabiner and B
Gold, Prentice-Hall, NJ.
 [18] “On Computing the Discrete Fourier Transform”, S Winograd, Math Comput, 32, 1978.
 [19] “Compact Sonar Surveillance Processing Systems”, T E Curtis and M J Curtis, IOA
Conference on Sonar Signal Processing, Loughborough, 2004.

	INTRODUCTION
	TECHNOLOGY BACKGROUND
	ARCHITECTURE CONSIDERATIONS
	3.1 Architecture Background
	3.2 FPGA MAPPINGS
	3.2.1 Dual Port RAM Based Systems
	3.2.2 Shift Register Based Systems

	PRACTICAL SYSTEMS

