Signal Processing for Wireless Communications and Multimedia: Design, Tools, Architectures Advanced Digital System Design Course 2006, EPF-L

Prof. Heinrich Meyr RWTH Aachen University , Germany and Chief Scientific Officer, CoWare Inc

ISS	Agenda	
	 Future Wireless Communication System Future Wireless Communication Systems and ist Impact on ESL The End of Moore's Law Receiver Structure, Models and Performance Metrics Massive Parallel Processing on heterogeneous MPSoC Application Specific Processors Summary and Conclusions 	
RWTH	AACKEN	2

1 ISS		Complexity DVB	-S	
		Area (cell area without RAM)	Lines VHDL	
	Timing & Carrier Sync.	32 %	7000 (+1000 .dc)	
	Viterbi Dec.	40 % (+RAM 15 mm^2)	4000 (+ 340 .dc)	
	Frame Sync.	1.5 %	700	
	Deinterleaver	2 % (+RAM 1.5)	640	
	RS Decoder	23 % (+RAM 1.4)	5400 (+ 630 .dc)	
	Descrambler	1 %	360	
	System	100 %	18100	
Sour	ce: Digital Commur	ication Receivers, H. Meyr, M.	Moeneclaey, S.A. Fe	chtel
RWITHAACHEN				49

1 ISS	DVB-T Specifications	
	Digital terrestrial video broadcasting:	
	high symbol rates: up to 7.4 Msym/s	
	sensitive modulation: 4 - 64 QAM	
	net bit rate up to 31.67 Mb/s	
	wide range of channels: (AWGN) 0 < Tau < 224 Os (SFN)	
	error correction:	
	outer coder: Reed Solomon (204,188)	
	inner code: punctured convolutional	
	BER < 10e-9 (after RS)	
	3dB < Es/No < 40 dB	
	Challenges: > 200 transmission modes	
	 algorithms 	
	 design methodology 	
RWTH	AACHEN	51

1 ISS	Parallel Computing in Mobiles								
	Massive Parallelism required in the foreseeable future								
	2003 2009 2013								
	Frequency (MHz)	300	600	1500					
	Giga Operations	0,3	14	2458					
	Operations per Cycle	1	23	1638					
	S	ource: International Techno	logy Roadmap for Semicor	nductors (ITRS, TX 2003)					
RWTHAA	KEV				58				

TISS	From Function to Algorithm Classes	
	 Butterfly unit 	
	 Viterbi & MAP decoder 	
	 MLSE equalizer 	
	 Eigenvalue decomposition (EVD) 	
	 Delay acquisition (CDMA) 	
	 MIMO Tx processing 	
	 Matrix-Matrix & Matrix-Vector Multiplication 	
	 MIMO processing (Rx & Tx) 	
	 LMMSE channel estimation (OFDM & MIMO) 	
	 Iterative (Turbo) Decoding 	
	 Message Passing Algorithm , LDPC Decoding 	
	 CORDIC 	
	 Frequency offset estimation (e.g. AFC) 	
	 OFDM post-FFT synchronization (sampling clock, fine frequency) 	
	 FFT & IFFT (spectral processing) 	
	 OFDM 	
	 Speech post processing (noise suppression) 	
	 Image processing (not FFT but DCT) 	
RWTH	AEGUEV	83

i iss	Decoder for Convolutional Codes					
	transition matrix calculation and matrix vector multiplication Image: Constraint of the sector multiplication and soft output calculation transition matrix calculation, matrix vector multiplication and soft output calculation Image: Constraint of the sector multiplication and soft output calculation $\underline{x}_{k+1} = \begin{bmatrix} x_{1,k+1} \\ x_{2,k+1} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$	forwar recurs backw recurs Late	$\begin{bmatrix} z_{0} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} z_{0} \\ 0 \\ 0 \end{bmatrix}$ ard ion incy: ~ 2N $\begin{bmatrix} x_{1,k} \\ x_{2,k} \end{bmatrix} = \begin{bmatrix} x_{1,k} \\ 0 \end{bmatrix}$	$\begin{bmatrix} a_{11,k} \otimes x_{1} \\ a_{21,k} \otimes x_{1} \end{bmatrix}$	symbols	× × × × × × × × × × × × × ×
	OPER	ATIONS	MAP	LOGMAP	VITERBI	
	x	∋ y	x + y	$\log_e[e^x + e^y]$	max(x,y)	
	x	⊗ y	х·у	x + y	x + y	
RWTH	ACHEN					84

System	Athlon XP 3000+	Retinex ASIP mapped on FPGA
Design Flow	plain C-application, compiled with gcc, executed on AMD Athlon	Optimized ASIP and handwritten assembly program (~100 lines of code)
Frequency	2100 MHz	16 MHz
Computation time (Picture 513x385)	~ 3000 ms	593 ms ~ 20 % of Athlon run-time

Initial Model 4 weeks
Design Space Analysis 3 weeks
Design Space Exploration 4 weeks
- Address Calculation 1 week - Non-delayed Branches 1 week - Timing Improvement ½ week - Others 1½ weeks
Translation Script 5 weeks
Move Elimination 2 week
Verification Script 5 weeks
Synthesis & FPGA Mapping 1 day FPGA System (one time effort)
RWITHAACHEN

PHILIPS

Processor Designer in a video deblocking unit

PHILIPS

Results

- Architecture far from the initial RISC
- Target of 166 MHz easily reached
- Size comparable to a all RTL design (processor = 50 kgates)
- Performances reached
- IP taped out in a Set Top Box chip

Next steps

- No problem met yet on prototype
- Make the block more generic to handle others standards

Semiconductors

PHILIPS						
Planning						
8 weeks	2 weeks	4 weeks	2 weeks	5 weeks		
Application development	Lt_risc_32p5 integration	Use of pixel memories	Pin interfaces	Optimisations +		
Step 1		Step 2		Step 3		
Semiconductors				151		

PHILIPS

Conclusion

- Con
- Long learning
- First use -> rough estimate of time needed

+ Pro

- RTL and SystemC always consistent (=> most of the validation can be run on SC)
- Faster than writing independent SC and RTL models
- Fast exploration of architecture choices
- Use of firmware :
 - can be generic
 - C debug
 - If program ram : fixes and feature changes can be downloaded
- No royalties

Semiconductors

