Spec-C, Handel-C, SystemC
A Comparative Study
13 March 2006

Nikola Rank

HDL- Hardware Description Languages

A Hardware Description Language(HDL) is a text-based programming language that allows the description of physical electronic circuits. This description includes not only the overall structure of the circuit, but also operational (timing) characteristics of it. Every HDL has constructs to explicitly express timing and concurrency [10]. This is in contrast with a Netlist language whose purpose is solely to express the interconnections between system blocks (the network of interconnections between them).
Today, the most popular HDL are VHDL (Very high speed integrated circuit HDL) and Verilog. They both allow generally the same amount of control over hardware constructs, and the choice of which to use is generally given to user preference.

1.0 Modeling capability of HDL(source: [11])
As can be seen in Figure 1.0, the capabilities of both generally overlap. In general, the abilities of HDL become more limited as one nears the System level, hence the need for higher level languages. The languages described in this report attempt to fill this need.

Higher level C-based languages for hardware description

The idea behind most of these C-based languages is to allow people to use existing knowledge of a programming language to express high level system design concepts. This approach has several advantages and disadvantages, as follows:
Advantages:

· Ability to describe system-level constructs for hardware

· Ability to use existing knowledge of a high level language (in this case, ANSI-C)

· Ability to work at varying levels of abstraction(including very high levels)
· Enhance simulation and testing/debugging by increasing speed (by ignoring low-level simulation needs)

· Allow for easier exploration of design space

· Simplify the task of hardware/software partitioning by allowing both to be described within one language.
Disadvantages:

· Generally, only subsets of these languages can be synthesized to hardware

· There are many, many different such languages, some of which are better suited to some applications, difficult to choose among them which to learn.
· Hardware synthesis from C code may not yield the most efficient designs.

· When working with the synthesizable subset of the language, coding becomes similar to the syntax of VHDL and Verilog
These languages, when combined with the appropriate libraries of components, provide a powerful tool for describing complex systems quickly. They also allow for testing the functionality of these systems. They are not really geared for low level simulation/timing specification, and will not perform any better than a normal HDL at these levels.

This report will explore 3 different such languages, Handel-C, SpecC, and SystemC. However, there exist many more such languages with varying capabilities.

Handel-C

The language known as Handel-C was developed by the Oxford Hardware Compilation Group. It is based on a language known as Occam, and its goal is to allow someone not familiar with hardware to perform hardware design. Handel-C requires a special compiler to interpret the extra keywords and constructs it allows. Such a compiler, along with a set of other tools (a full development suite), is provided by the company Celoxica. The current version of this development suite is known as DK4.

This language allows the following concepts which are not available in normal ANSI-C code: Parallelism, Timing, Interfaces, Clocks, RAM/ROM, Shared expression, Communications, Handel-C libraries, Floating Point component library, Bit manipulation, Macro functions for hardware block reuse
The parallelism in Handel-C is true hardware parallelism, it can be specified using a special keyword. In the software model, all combinational instructions are assumed to execute instantaneously (0 clock cycles) while assignments and delay operations consume one cycle. Of course, when the target is hardware, the combinational logic consumes a known amount of time, and as usual the clock speed is limited to the longest combinational logic delay chain. There is only one clock for the whole program. Shared expressions allow for the reuse of hardware in different parts of the program. Communications are implemented between parallel branches of a program.
Handel-C does not support many parts of ANSI-C, such as Recursion, Side effects

Standard libraries, Malloc(), Standard floating point, Pointers. These concepts do not readily map to Hardware.
[image: image1.png]Port algorithm

to Handel-C
Compile program to .net Modify/debug program

file for simulator

¥

v

Use simulator to evaluate
and debug design

]

Add interfaces to
external hardware

v

Use Handel-C compiler to
target hardware netlist

v

Use FPGA tools to
place and route netlist

v

Program FPGA with result
of place and route

2.0 A typical design flow for Handel-C [5]

[image: image2]
2.1 A Celoxica Design flow using the DK suite[1]
System C

SystemC is offered by the Open System C Initiative (OSIC). It consists of a C++ library that adds hardware constructs and simulation abilty to C++. This library-based approach will allow its code to be compiled and simulated with any C++ compiler. However, when targeting hardware, a specific compiler is required.

SystemC allows modelling at various levels, as shown in the following diagram.

[image: image3]
3.0 Various model levels achievable with SystemC [2]

As can be seen from the chart, the simulation speed increases with the abstraction level (as well as the implementation time). On the other hand, increased abstraction reduces the synthesizability of the model. Hence, a natural design flow would be to start with an Algorithmic model and test its functionality, then progress down the levels until a suitable synthesizable model is reached (if the target is hardware).
System C allows for parallel processes. It incorporates clocks, and communication between parallel processes. It has a variety of data types suitable for hardware, and supports the use of additional hardware block libraries. However, since it is C++, it is quite a powerful language and allows users to create behaviours that cannot easily be mapped to hardware. For this reason, SystemC has a synthesizable subset of commands (known as System C RTL). This subset is quite similar to an HDL, and it is often the case that a compiler will first generate HDL code from a SystemC model before going to hardware.
Many commercial design kits offer SystemC functionality, such as Synopsis SystemC, Cocentric SystemC. They offer special compilers that allow generation of synthesizable HDL code, as well as large libraries of commonly build hardware blocks (IP blocks) implemented in SystemC.
There has been an interesting development for SystemC in that research has suggested it is possible to generate synthesizable SystemC code from a UML model. UML is a modelling language that can be used to describe many things (including itself). A particular experiment consisted of creating a framework capable of generating synthesizable SystemC code from a high level UML modem created with Rational Rose Real Time edition. This particular tool (Rational Rose Real-Time) is meant for software development, but has many constructs that map readily to SystemC constructs. This allowed the implementation of a compiler generating SystemC code from Rational Rose C++ output. The suggested design flow is as follows:

[image: image4]
3.1 Synthesizable SystemC from UML[3]
This type of development allows designers to work at even higher levels than SystemC and other C-derivatives allow, leading to shorter design times, and further increases in the advantages already provided by the higher level C languages. It is reasonable to think that the future will follow this direction.
Spec C
Spec C (Specification Description Language based on C) was first developed at the University of California in 1997. It is designed to be a true superset of the C language. Like Handel-C, it requires a special compiler to run. A reference compiler is freely available.
Like Handel-C, Spec-C supports: Parallelism, State Transition, Structural Hierarchy, Exception Handling, Timing Constraints, Synchronization, Communication, Data Path. It comes with a standard Spec-C library as well as communication (channel) libraries. It also includes a simulation library. Like SystemC, it supports modeling at various levels of abstraction, as illustrated in the diagram on the following page.
[image: image5.png]Embedded SW Design LS Design Design Env.

4.0 How SpecC design flow fits in with current needs[4]

[image: image6]
4.1 SpecC design flow[4]
As with the other two languages, SpecC designs can lead to synthesizable code (shown in figure 4.0). This figure also shows where SpecC technology is geared to fit in with the current design process. Currently, the SpecC technology Open Consortium (similar to OSCI) is administering the language. Several large manufacturers such as Sony and Toshiba are on board with the SpecC technology Open Consortium.
Conclusions
There is no doubt a push in the direction to use higher level languages for hardware design. This push is being created by growing hardware complexity, and shrinking development time. These two factors require increases in abstraction above conventional languages, which these C variants are aiming to provide. Another contributing factor is that many people are quite good at C programming, while they are not capable of hardware design (the reason why so many of these languages are C-based).
There is quite a variety of these C-languages variants geared for hardware design. Aside from the ones outlined in the report, these include Impulse C, Catapult C, and many others. The variants studied in this report provide quite similar functionality, though achieved by different means (special compiler, libraries, etc…), and always differing keywords and commands. This means that someone is likely to learn one of them, and then simply keep using it exclusively instead of learning several variants.
None of the variants are perfect, and none are the industry standard, making it difficult to choose one. Currently, the choice of which one to use is closely linked to which will be the most readily available one.

As hardware complexity continues to increase, it is reasonable to conclude that abstraction levels will also have to increase. The UML to SystemC is an example of this idea. The UML to hardware design flow will likely be further investigated in the future, but current needs of abstraction can be achieved using the C-variants as explained above.
References

[1] Software-Compiled System Design:A Methodology for Field ProgrammableSystem-on-Chip Design.

EDP paper presentation. Jeff Jussel. April 15, 2003 (Celoxica)

[2] Synthesizable SystemC. Federico Angiolini. 2005-2006 DEIS – University of Bologna.

[3] Synthesizable SystemC Code from UML Models. W.H. Tan, P.S. Thiagarajan,W.F. Wong, Y. Zhu. School of Computing:National University of Singapore. S.K. Pilakkat. Institute for Infocomm ResearchSingapore http://www.comp.nus.edu.sg/~ctp/publications/UML_SoC.pdf
[4] The SpecC Methodology. Andreas Gerstlauer. Center for Embedded Computer Systems: University of California, Irvine. 2001. http://www.cecs.uci.edu/~SpecC/
[5] Handel-C Language Reference Manual. Embedded Solutions Limited: Version 2.1

[6] SpecC Language Reference Manual. SpecC Technology Open Consortium: Version 2.0. December 12, 2002

[7] SystemC 2.0.1 Language Reference Manual. Open SystemC Initiative : San Jose, California. 2003

[8] Presentation by SpecC Technology Open Consortium: http://www.specc.gr.jp/tech/stoc_dac00_presen.pdf
[9] A Survey on the Handel-C Language. Altaf Abdul Gaffar. http://www.iis.ee.ic.ac.uk/~frank/surp99/article1/amag97

[10] Wikipedia: http://en.wikipedia.org/wiki/Hardware_description_language
[11] VHDL & Verilog Compared & Contrasted. Douglas J. Smith. http://www.angelfire.com/in/rajesh52/verilogvhdl.html
[image: image7.wmf][image: image8.wmf][image: image9.wmf][image: image10.wmf][image: image11.wmf]